arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging
[sfrench/cifs-2.6.git] / arch / arm64 / mm / kasan_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains kasan initialization code for ARM64.
4  *
5  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  */
8
9 #define pr_fmt(fmt) "kasan: " fmt
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/task.h>
13 #include <linux/memblock.h>
14 #include <linux/start_kernel.h>
15 #include <linux/mm.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/page.h>
20 #include <asm/pgalloc.h>
21 #include <asm/sections.h>
22 #include <asm/tlbflush.h>
23
24 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
25
26 static pgd_t tmp_pg_dir[PTRS_PER_PTE] __initdata __aligned(PAGE_SIZE);
27
28 /*
29  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
30  * directly on kernel symbols (bm_p*d). All the early functions are called too
31  * early to use lm_alias so __p*d_populate functions must be used to populate
32  * with the physical address from __pa_symbol.
33  */
34
35 static phys_addr_t __init kasan_alloc_zeroed_page(int node)
36 {
37         void *p = memblock_alloc_try_nid(PAGE_SIZE, PAGE_SIZE,
38                                               __pa(MAX_DMA_ADDRESS),
39                                               MEMBLOCK_ALLOC_NOLEAKTRACE, node);
40         if (!p)
41                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n",
42                       __func__, PAGE_SIZE, PAGE_SIZE, node,
43                       __pa(MAX_DMA_ADDRESS));
44
45         return __pa(p);
46 }
47
48 static phys_addr_t __init kasan_alloc_raw_page(int node)
49 {
50         void *p = memblock_alloc_try_nid_raw(PAGE_SIZE, PAGE_SIZE,
51                                                 __pa(MAX_DMA_ADDRESS),
52                                                 MEMBLOCK_ALLOC_NOLEAKTRACE,
53                                                 node);
54         if (!p)
55                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n",
56                       __func__, PAGE_SIZE, PAGE_SIZE, node,
57                       __pa(MAX_DMA_ADDRESS));
58
59         return __pa(p);
60 }
61
62 static pte_t *__init kasan_pte_offset(pmd_t *pmdp, unsigned long addr, int node,
63                                       bool early)
64 {
65         if (pmd_none(READ_ONCE(*pmdp))) {
66                 phys_addr_t pte_phys = early ?
67                                 __pa_symbol(kasan_early_shadow_pte)
68                                         : kasan_alloc_zeroed_page(node);
69                 __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE);
70         }
71
72         return early ? pte_offset_kimg(pmdp, addr)
73                      : pte_offset_kernel(pmdp, addr);
74 }
75
76 static pmd_t *__init kasan_pmd_offset(pud_t *pudp, unsigned long addr, int node,
77                                       bool early)
78 {
79         if (pud_none(READ_ONCE(*pudp))) {
80                 phys_addr_t pmd_phys = early ?
81                                 __pa_symbol(kasan_early_shadow_pmd)
82                                         : kasan_alloc_zeroed_page(node);
83                 __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE);
84         }
85
86         return early ? pmd_offset_kimg(pudp, addr) : pmd_offset(pudp, addr);
87 }
88
89 static pud_t *__init kasan_pud_offset(p4d_t *p4dp, unsigned long addr, int node,
90                                       bool early)
91 {
92         if (p4d_none(READ_ONCE(*p4dp))) {
93                 phys_addr_t pud_phys = early ?
94                                 __pa_symbol(kasan_early_shadow_pud)
95                                         : kasan_alloc_zeroed_page(node);
96                 __p4d_populate(p4dp, pud_phys, P4D_TYPE_TABLE);
97         }
98
99         return early ? pud_offset_kimg(p4dp, addr) : pud_offset(p4dp, addr);
100 }
101
102 static p4d_t *__init kasan_p4d_offset(pgd_t *pgdp, unsigned long addr, int node,
103                                       bool early)
104 {
105         if (pgd_none(READ_ONCE(*pgdp))) {
106                 phys_addr_t p4d_phys = early ?
107                                 __pa_symbol(kasan_early_shadow_p4d)
108                                         : kasan_alloc_zeroed_page(node);
109                 __pgd_populate(pgdp, p4d_phys, PGD_TYPE_TABLE);
110         }
111
112         return early ? p4d_offset_kimg(pgdp, addr) : p4d_offset(pgdp, addr);
113 }
114
115 static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
116                                       unsigned long end, int node, bool early)
117 {
118         unsigned long next;
119         pte_t *ptep = kasan_pte_offset(pmdp, addr, node, early);
120
121         do {
122                 phys_addr_t page_phys = early ?
123                                 __pa_symbol(kasan_early_shadow_page)
124                                         : kasan_alloc_raw_page(node);
125                 if (!early)
126                         memset(__va(page_phys), KASAN_SHADOW_INIT, PAGE_SIZE);
127                 next = addr + PAGE_SIZE;
128                 set_pte(ptep, pfn_pte(__phys_to_pfn(page_phys), PAGE_KERNEL));
129         } while (ptep++, addr = next, addr != end && pte_none(READ_ONCE(*ptep)));
130 }
131
132 static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
133                                       unsigned long end, int node, bool early)
134 {
135         unsigned long next;
136         pmd_t *pmdp = kasan_pmd_offset(pudp, addr, node, early);
137
138         do {
139                 next = pmd_addr_end(addr, end);
140                 kasan_pte_populate(pmdp, addr, next, node, early);
141         } while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp)));
142 }
143
144 static void __init kasan_pud_populate(p4d_t *p4dp, unsigned long addr,
145                                       unsigned long end, int node, bool early)
146 {
147         unsigned long next;
148         pud_t *pudp = kasan_pud_offset(p4dp, addr, node, early);
149
150         do {
151                 next = pud_addr_end(addr, end);
152                 kasan_pmd_populate(pudp, addr, next, node, early);
153         } while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp)));
154 }
155
156 static void __init kasan_p4d_populate(pgd_t *pgdp, unsigned long addr,
157                                       unsigned long end, int node, bool early)
158 {
159         unsigned long next;
160         p4d_t *p4dp = kasan_p4d_offset(pgdp, addr, node, early);
161
162         do {
163                 next = p4d_addr_end(addr, end);
164                 kasan_pud_populate(p4dp, addr, next, node, early);
165         } while (p4dp++, addr = next, addr != end && p4d_none(READ_ONCE(*p4dp)));
166 }
167
168 static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
169                                       int node, bool early)
170 {
171         unsigned long next;
172         pgd_t *pgdp;
173
174         pgdp = pgd_offset_k(addr);
175         do {
176                 next = pgd_addr_end(addr, end);
177                 kasan_p4d_populate(pgdp, addr, next, node, early);
178         } while (pgdp++, addr = next, addr != end);
179 }
180
181 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS > 4
182 #define SHADOW_ALIGN    P4D_SIZE
183 #else
184 #define SHADOW_ALIGN    PUD_SIZE
185 #endif
186
187 /*
188  * Return whether 'addr' is aligned to the size covered by a root level
189  * descriptor.
190  */
191 static bool __init root_level_aligned(u64 addr)
192 {
193         int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 1) * (PAGE_SHIFT - 3);
194
195         return (addr % (PAGE_SIZE << shift)) == 0;
196 }
197
198 /* The early shadow maps everything to a single page of zeroes */
199 asmlinkage void __init kasan_early_init(void)
200 {
201         BUILD_BUG_ON(KASAN_SHADOW_OFFSET !=
202                 KASAN_SHADOW_END - (1UL << (64 - KASAN_SHADOW_SCALE_SHIFT)));
203         BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), SHADOW_ALIGN));
204         BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), SHADOW_ALIGN));
205         BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, SHADOW_ALIGN));
206
207         if (!root_level_aligned(KASAN_SHADOW_START)) {
208                 /*
209                  * The start address is misaligned, and so the next level table
210                  * will be shared with the linear region. This can happen with
211                  * 4 or 5 level paging, so install a generic pte_t[] as the
212                  * next level. This prevents the kasan_pgd_populate call below
213                  * from inserting an entry that refers to the shared KASAN zero
214                  * shadow pud_t[]/p4d_t[], which could end up getting corrupted
215                  * when the linear region is mapped.
216                  */
217                 static pte_t tbl[PTRS_PER_PTE] __page_aligned_bss;
218                 pgd_t *pgdp = pgd_offset_k(KASAN_SHADOW_START);
219
220                 set_pgd(pgdp, __pgd(__pa_symbol(tbl) | PGD_TYPE_TABLE));
221         }
222
223         kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, NUMA_NO_NODE,
224                            true);
225 }
226
227 /* Set up full kasan mappings, ensuring that the mapped pages are zeroed */
228 static void __init kasan_map_populate(unsigned long start, unsigned long end,
229                                       int node)
230 {
231         kasan_pgd_populate(start & PAGE_MASK, PAGE_ALIGN(end), node, false);
232 }
233
234 /*
235  * Return the descriptor index of 'addr' in the root level table
236  */
237 static int __init root_level_idx(u64 addr)
238 {
239         /*
240          * On 64k pages, the TTBR1 range root tables are extended for 52-bit
241          * virtual addressing, and TTBR1 will simply point to the pgd_t entry
242          * that covers the start of the 48-bit addressable VA space if LVA is
243          * not implemented. This means we need to index the table as usual,
244          * instead of masking off bits based on vabits_actual.
245          */
246         u64 vabits = IS_ENABLED(CONFIG_ARM64_64K_PAGES) ? VA_BITS
247                                                         : vabits_actual;
248         int shift = (ARM64_HW_PGTABLE_LEVELS(vabits) - 1) * (PAGE_SHIFT - 3);
249
250         return (addr & ~_PAGE_OFFSET(vabits)) >> (shift + PAGE_SHIFT);
251 }
252
253 /*
254  * Clone a next level table from swapper_pg_dir into tmp_pg_dir
255  */
256 static void __init clone_next_level(u64 addr, pgd_t *tmp_pg_dir, pud_t *pud)
257 {
258         int idx = root_level_idx(addr);
259         pgd_t pgd = READ_ONCE(swapper_pg_dir[idx]);
260         pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd));
261
262         memcpy(pud, pudp, PAGE_SIZE);
263         tmp_pg_dir[idx] = __pgd(__phys_to_pgd_val(__pa_symbol(pud)) |
264                                 PUD_TYPE_TABLE);
265 }
266
267 /*
268  * Return the descriptor index of 'addr' in the next level table
269  */
270 static int __init next_level_idx(u64 addr)
271 {
272         int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 2) * (PAGE_SHIFT - 3);
273
274         return (addr >> (shift + PAGE_SHIFT)) % PTRS_PER_PTE;
275 }
276
277 /*
278  * Dereference the table descriptor at 'pgd_idx' and clear the entries from
279  * 'start' to 'end' (exclusive) from the table.
280  */
281 static void __init clear_next_level(int pgd_idx, int start, int end)
282 {
283         pgd_t pgd = READ_ONCE(swapper_pg_dir[pgd_idx]);
284         pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd));
285
286         memset(&pudp[start], 0, (end - start) * sizeof(pud_t));
287 }
288
289 static void __init clear_shadow(u64 start, u64 end)
290 {
291         int l = root_level_idx(start), m = root_level_idx(end);
292
293         if (!root_level_aligned(start))
294                 clear_next_level(l++, next_level_idx(start), PTRS_PER_PTE);
295         if (!root_level_aligned(end))
296                 clear_next_level(m, 0, next_level_idx(end));
297         memset(&swapper_pg_dir[l], 0, (m - l) * sizeof(pgd_t));
298 }
299
300 static void __init kasan_init_shadow(void)
301 {
302         static pud_t pud[2][PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
303         u64 kimg_shadow_start, kimg_shadow_end;
304         u64 mod_shadow_start;
305         u64 vmalloc_shadow_end;
306         phys_addr_t pa_start, pa_end;
307         u64 i;
308
309         kimg_shadow_start = (u64)kasan_mem_to_shadow(KERNEL_START) & PAGE_MASK;
310         kimg_shadow_end = PAGE_ALIGN((u64)kasan_mem_to_shadow(KERNEL_END));
311
312         mod_shadow_start = (u64)kasan_mem_to_shadow((void *)MODULES_VADDR);
313
314         vmalloc_shadow_end = (u64)kasan_mem_to_shadow((void *)VMALLOC_END);
315
316         /*
317          * We are going to perform proper setup of shadow memory.
318          * At first we should unmap early shadow (clear_pgds() call below).
319          * However, instrumented code couldn't execute without shadow memory.
320          * tmp_pg_dir used to keep early shadow mapped until full shadow
321          * setup will be finished.
322          */
323         memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir));
324
325         /*
326          * If the start or end address of the shadow region is not aligned to
327          * the root level size, we have to allocate a temporary next-level table
328          * in each case, clone the next level of descriptors, and install the
329          * table into tmp_pg_dir. Note that with 5 levels of paging, the next
330          * level will in fact be p4d_t, but that makes no difference in this
331          * case.
332          */
333         if (!root_level_aligned(KASAN_SHADOW_START))
334                 clone_next_level(KASAN_SHADOW_START, tmp_pg_dir, pud[0]);
335         if (!root_level_aligned(KASAN_SHADOW_END))
336                 clone_next_level(KASAN_SHADOW_END, tmp_pg_dir, pud[1]);
337         dsb(ishst);
338         cpu_replace_ttbr1(lm_alias(tmp_pg_dir));
339
340         clear_shadow(KASAN_SHADOW_START, KASAN_SHADOW_END);
341
342         kasan_map_populate(kimg_shadow_start, kimg_shadow_end,
343                            early_pfn_to_nid(virt_to_pfn(lm_alias(KERNEL_START))));
344
345         kasan_populate_early_shadow(kasan_mem_to_shadow((void *)PAGE_END),
346                                    (void *)mod_shadow_start);
347
348         BUILD_BUG_ON(VMALLOC_START != MODULES_END);
349         kasan_populate_early_shadow((void *)vmalloc_shadow_end,
350                                     (void *)KASAN_SHADOW_END);
351
352         for_each_mem_range(i, &pa_start, &pa_end) {
353                 void *start = (void *)__phys_to_virt(pa_start);
354                 void *end = (void *)__phys_to_virt(pa_end);
355
356                 if (start >= end)
357                         break;
358
359                 kasan_map_populate((unsigned long)kasan_mem_to_shadow(start),
360                                    (unsigned long)kasan_mem_to_shadow(end),
361                                    early_pfn_to_nid(virt_to_pfn(start)));
362         }
363
364         /*
365          * KAsan may reuse the contents of kasan_early_shadow_pte directly,
366          * so we should make sure that it maps the zero page read-only.
367          */
368         for (i = 0; i < PTRS_PER_PTE; i++)
369                 set_pte(&kasan_early_shadow_pte[i],
370                         pfn_pte(sym_to_pfn(kasan_early_shadow_page),
371                                 PAGE_KERNEL_RO));
372
373         memset(kasan_early_shadow_page, KASAN_SHADOW_INIT, PAGE_SIZE);
374         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
375 }
376
377 static void __init kasan_init_depth(void)
378 {
379         init_task.kasan_depth = 0;
380 }
381
382 #ifdef CONFIG_KASAN_VMALLOC
383 void __init kasan_populate_early_vm_area_shadow(void *start, unsigned long size)
384 {
385         unsigned long shadow_start, shadow_end;
386
387         if (!is_vmalloc_or_module_addr(start))
388                 return;
389
390         shadow_start = (unsigned long)kasan_mem_to_shadow(start);
391         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
392         shadow_end = (unsigned long)kasan_mem_to_shadow(start + size);
393         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
394         kasan_map_populate(shadow_start, shadow_end, NUMA_NO_NODE);
395 }
396 #endif
397
398 void __init kasan_init(void)
399 {
400         kasan_init_shadow();
401         kasan_init_depth();
402 #if defined(CONFIG_KASAN_GENERIC)
403         /*
404          * Generic KASAN is now fully initialized.
405          * Software and Hardware Tag-Based modes still require
406          * kasan_init_sw_tags() and kasan_init_hw_tags() correspondingly.
407          */
408         pr_info("KernelAddressSanitizer initialized (generic)\n");
409 #endif
410 }
411
412 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */