hexagon: time: include asm/time.h for prototypes
[sfrench/cifs-2.6.git] / arch / hexagon / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Time related functions for Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7
8 #include <linux/init.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/ioport.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/module.h>
19
20 #include <asm/hexagon_vm.h>
21 #include <asm/time.h>
22
23 #define TIMER_ENABLE            BIT(0)
24
25 /*
26  * For the clocksource we need:
27  *      pcycle frequency (600MHz)
28  * For the loops_per_jiffy we need:
29  *      thread/cpu frequency (100MHz)
30  * And for the timer, we need:
31  *      sleep clock rate
32  */
33
34 cycles_t        pcycle_freq_mhz;
35 cycles_t        thread_freq_mhz;
36 cycles_t        sleep_clk_freq;
37
38 /*
39  * 8x50 HDD Specs 5-8.  Simulator co-sim not fixed until
40  * release 1.1, and then it's "adjustable" and probably not defaulted.
41  */
42 #define RTOS_TIMER_INT          3
43 #define RTOS_TIMER_REGS_ADDR    0xAB000000UL
44
45 static struct resource rtos_timer_resources[] = {
46         {
47                 .start  = RTOS_TIMER_REGS_ADDR,
48                 .end    = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
49                 .flags  = IORESOURCE_MEM,
50         },
51 };
52
53 static struct platform_device rtos_timer_device = {
54         .name           = "rtos_timer",
55         .id             = -1,
56         .num_resources  = ARRAY_SIZE(rtos_timer_resources),
57         .resource       = rtos_timer_resources,
58 };
59
60 /*  A lot of this stuff should move into a platform specific section.  */
61 struct adsp_hw_timer_struct {
62         u32 match;   /*  Match value  */
63         u32 count;
64         u32 enable;  /*  [1] - CLR_ON_MATCH_EN, [0] - EN  */
65         u32 clear;   /*  one-shot register that clears the count  */
66 };
67
68 /*  Look for "TCX0" for related constants.  */
69 static __iomem struct adsp_hw_timer_struct *rtos_timer;
70
71 static u64 timer_get_cycles(struct clocksource *cs)
72 {
73         return (u64) __vmgettime();
74 }
75
76 static struct clocksource hexagon_clocksource = {
77         .name           = "pcycles",
78         .rating         = 250,
79         .read           = timer_get_cycles,
80         .mask           = CLOCKSOURCE_MASK(64),
81         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83
84 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
85 {
86         /*  Assuming the timer will be disabled when we enter here.  */
87
88         iowrite32(1, &rtos_timer->clear);
89         iowrite32(0, &rtos_timer->clear);
90
91         iowrite32(delta, &rtos_timer->match);
92         iowrite32(TIMER_ENABLE, &rtos_timer->enable);
93         return 0;
94 }
95
96 #ifdef CONFIG_SMP
97 /*  Broadcast mechanism  */
98 static void broadcast(const struct cpumask *mask)
99 {
100         send_ipi(mask, IPI_TIMER);
101 }
102 #endif
103
104 /* XXX Implement set_state_shutdown() */
105 static struct clock_event_device hexagon_clockevent_dev = {
106         .name           = "clockevent",
107         .features       = CLOCK_EVT_FEAT_ONESHOT,
108         .rating         = 400,
109         .irq            = RTOS_TIMER_INT,
110         .set_next_event = set_next_event,
111 #ifdef CONFIG_SMP
112         .broadcast      = broadcast,
113 #endif
114 };
115
116 #ifdef CONFIG_SMP
117 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
118
119 void setup_percpu_clockdev(void)
120 {
121         int cpu = smp_processor_id();
122         struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
123         struct clock_event_device *dummy_clock_dev =
124                 &per_cpu(clock_events, cpu);
125
126         memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
127         INIT_LIST_HEAD(&dummy_clock_dev->list);
128
129         dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
130         dummy_clock_dev->cpumask = cpumask_of(cpu);
131
132         clockevents_register_device(dummy_clock_dev);
133 }
134
135 /*  Called from smp.c for each CPU's timer ipi call  */
136 void ipi_timer(void)
137 {
138         int cpu = smp_processor_id();
139         struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
140
141         ce_dev->event_handler(ce_dev);
142 }
143 #endif /* CONFIG_SMP */
144
145 static irqreturn_t timer_interrupt(int irq, void *devid)
146 {
147         struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
148
149         iowrite32(0, &rtos_timer->enable);
150         ce_dev->event_handler(ce_dev);
151
152         return IRQ_HANDLED;
153 }
154
155 /*
156  * time_init_deferred - called by start_kernel to set up timer/clock source
157  *
158  * Install the IRQ handler for the clock, setup timers.
159  * This is done late, as that way, we can use ioremap().
160  *
161  * This runs just before the delay loop is calibrated, and
162  * is used for delay calibration.
163  */
164 void __init time_init_deferred(void)
165 {
166         struct resource *resource = NULL;
167         struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
168         unsigned long flag = IRQF_TIMER | IRQF_TRIGGER_RISING;
169
170         ce_dev->cpumask = cpu_all_mask;
171
172         if (!resource)
173                 resource = rtos_timer_device.resource;
174
175         /*  ioremap here means this has to run later, after paging init  */
176         rtos_timer = ioremap(resource->start, resource_size(resource));
177
178         if (!rtos_timer) {
179                 release_mem_region(resource->start, resource_size(resource));
180         }
181         clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
182
183         /*  Note: the sim generic RTOS clock is apparently really 18750Hz  */
184
185         /*
186          * Last arg is some guaranteed seconds for which the conversion will
187          * work without overflow.
188          */
189         clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
190
191         ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
192         ce_dev->max_delta_ticks = 0x7fffffff;
193         ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
194         ce_dev->min_delta_ticks = 0xf;
195
196 #ifdef CONFIG_SMP
197         setup_percpu_clockdev();
198 #endif
199
200         clockevents_register_device(ce_dev);
201         if (request_irq(ce_dev->irq, timer_interrupt, flag, "rtos_timer", NULL))
202                 pr_err("Failed to register rtos_timer interrupt\n");
203 }
204
205 void __init time_init(void)
206 {
207         late_time_init = time_init_deferred;
208 }
209
210 void __delay(unsigned long cycles)
211 {
212         unsigned long long start = __vmgettime();
213
214         while ((__vmgettime() - start) < cycles)
215                 cpu_relax();
216 }
217 EXPORT_SYMBOL(__delay);
218
219 /*
220  * This could become parametric or perhaps even computed at run-time,
221  * but for now we take the observed simulator jitter.
222  */
223 static long long fudgefactor = 350;  /* Maybe lower if kernel optimized. */
224
225 void __udelay(unsigned long usecs)
226 {
227         unsigned long long start = __vmgettime();
228         unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
229
230         while ((__vmgettime() - start) < finish)
231                 cpu_relax(); /*  not sure how this improves readability  */
232 }
233 EXPORT_SYMBOL(__udelay);