x86/sme: Replace occurrences of sme_active() with cc_platform_has()
[sfrench/cifs-2.6.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30
31 #ifdef CONFIG_ACPI
32 /*
33  * Used while adding mapping for ACPI tables.
34  * Can be reused when other iomem regions need be mapped
35  */
36 struct init_pgtable_data {
37         struct x86_mapping_info *info;
38         pgd_t *level4p;
39 };
40
41 static int mem_region_callback(struct resource *res, void *arg)
42 {
43         struct init_pgtable_data *data = arg;
44         unsigned long mstart, mend;
45
46         mstart = res->start;
47         mend = mstart + resource_size(res) - 1;
48
49         return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
50 }
51
52 static int
53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
54 {
55         struct init_pgtable_data data;
56         unsigned long flags;
57         int ret;
58
59         data.info = info;
60         data.level4p = level4p;
61         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
62
63         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
64                                   &data, mem_region_callback);
65         if (ret && ret != -EINVAL)
66                 return ret;
67
68         /* ACPI tables could be located in ACPI Non-volatile Storage region */
69         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
70                                   &data, mem_region_callback);
71         if (ret && ret != -EINVAL)
72                 return ret;
73
74         return 0;
75 }
76 #else
77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
78 #endif
79
80 #ifdef CONFIG_KEXEC_FILE
81 const struct kexec_file_ops * const kexec_file_loaders[] = {
82                 &kexec_bzImage64_ops,
83                 NULL
84 };
85 #endif
86
87 static int
88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
89 {
90 #ifdef CONFIG_EFI
91         unsigned long mstart, mend;
92
93         if (!efi_enabled(EFI_BOOT))
94                 return 0;
95
96         mstart = (boot_params.efi_info.efi_systab |
97                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
98
99         if (efi_enabled(EFI_64BIT))
100                 mend = mstart + sizeof(efi_system_table_64_t);
101         else
102                 mend = mstart + sizeof(efi_system_table_32_t);
103
104         if (!mstart)
105                 return 0;
106
107         return kernel_ident_mapping_init(info, level4p, mstart, mend);
108 #endif
109         return 0;
110 }
111
112 static void free_transition_pgtable(struct kimage *image)
113 {
114         free_page((unsigned long)image->arch.p4d);
115         image->arch.p4d = NULL;
116         free_page((unsigned long)image->arch.pud);
117         image->arch.pud = NULL;
118         free_page((unsigned long)image->arch.pmd);
119         image->arch.pmd = NULL;
120         free_page((unsigned long)image->arch.pte);
121         image->arch.pte = NULL;
122 }
123
124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125 {
126         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127         unsigned long vaddr, paddr;
128         int result = -ENOMEM;
129         p4d_t *p4d;
130         pud_t *pud;
131         pmd_t *pmd;
132         pte_t *pte;
133
134         vaddr = (unsigned long)relocate_kernel;
135         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136         pgd += pgd_index(vaddr);
137         if (!pgd_present(*pgd)) {
138                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139                 if (!p4d)
140                         goto err;
141                 image->arch.p4d = p4d;
142                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143         }
144         p4d = p4d_offset(pgd, vaddr);
145         if (!p4d_present(*p4d)) {
146                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147                 if (!pud)
148                         goto err;
149                 image->arch.pud = pud;
150                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151         }
152         pud = pud_offset(p4d, vaddr);
153         if (!pud_present(*pud)) {
154                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155                 if (!pmd)
156                         goto err;
157                 image->arch.pmd = pmd;
158                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159         }
160         pmd = pmd_offset(pud, vaddr);
161         if (!pmd_present(*pmd)) {
162                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163                 if (!pte)
164                         goto err;
165                 image->arch.pte = pte;
166                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167         }
168         pte = pte_offset_kernel(pmd, vaddr);
169
170         if (sev_active())
171                 prot = PAGE_KERNEL_EXEC;
172
173         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174         return 0;
175 err:
176         return result;
177 }
178
179 static void *alloc_pgt_page(void *data)
180 {
181         struct kimage *image = (struct kimage *)data;
182         struct page *page;
183         void *p = NULL;
184
185         page = kimage_alloc_control_pages(image, 0);
186         if (page) {
187                 p = page_address(page);
188                 clear_page(p);
189         }
190
191         return p;
192 }
193
194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195 {
196         struct x86_mapping_info info = {
197                 .alloc_pgt_page = alloc_pgt_page,
198                 .context        = image,
199                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
200                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
201         };
202         unsigned long mstart, mend;
203         pgd_t *level4p;
204         int result;
205         int i;
206
207         level4p = (pgd_t *)__va(start_pgtable);
208         clear_page(level4p);
209
210         if (sev_active()) {
211                 info.page_flag   |= _PAGE_ENC;
212                 info.kernpg_flag |= _PAGE_ENC;
213         }
214
215         if (direct_gbpages)
216                 info.direct_gbpages = true;
217
218         for (i = 0; i < nr_pfn_mapped; i++) {
219                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
220                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
221
222                 result = kernel_ident_mapping_init(&info,
223                                                  level4p, mstart, mend);
224                 if (result)
225                         return result;
226         }
227
228         /*
229          * segments's mem ranges could be outside 0 ~ max_pfn,
230          * for example when jump back to original kernel from kexeced kernel.
231          * or first kernel is booted with user mem map, and second kernel
232          * could be loaded out of that range.
233          */
234         for (i = 0; i < image->nr_segments; i++) {
235                 mstart = image->segment[i].mem;
236                 mend   = mstart + image->segment[i].memsz;
237
238                 result = kernel_ident_mapping_init(&info,
239                                                  level4p, mstart, mend);
240
241                 if (result)
242                         return result;
243         }
244
245         /*
246          * Prepare EFI systab and ACPI tables for kexec kernel since they are
247          * not covered by pfn_mapped.
248          */
249         result = map_efi_systab(&info, level4p);
250         if (result)
251                 return result;
252
253         result = map_acpi_tables(&info, level4p);
254         if (result)
255                 return result;
256
257         return init_transition_pgtable(image, level4p);
258 }
259
260 static void load_segments(void)
261 {
262         __asm__ __volatile__ (
263                 "\tmovl %0,%%ds\n"
264                 "\tmovl %0,%%es\n"
265                 "\tmovl %0,%%ss\n"
266                 "\tmovl %0,%%fs\n"
267                 "\tmovl %0,%%gs\n"
268                 : : "a" (__KERNEL_DS) : "memory"
269                 );
270 }
271
272 int machine_kexec_prepare(struct kimage *image)
273 {
274         unsigned long start_pgtable;
275         int result;
276
277         /* Calculate the offsets */
278         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
279
280         /* Setup the identity mapped 64bit page table */
281         result = init_pgtable(image, start_pgtable);
282         if (result)
283                 return result;
284
285         return 0;
286 }
287
288 void machine_kexec_cleanup(struct kimage *image)
289 {
290         free_transition_pgtable(image);
291 }
292
293 /*
294  * Do not allocate memory (or fail in any way) in machine_kexec().
295  * We are past the point of no return, committed to rebooting now.
296  */
297 void machine_kexec(struct kimage *image)
298 {
299         unsigned long page_list[PAGES_NR];
300         void *control_page;
301         int save_ftrace_enabled;
302
303 #ifdef CONFIG_KEXEC_JUMP
304         if (image->preserve_context)
305                 save_processor_state();
306 #endif
307
308         save_ftrace_enabled = __ftrace_enabled_save();
309
310         /* Interrupts aren't acceptable while we reboot */
311         local_irq_disable();
312         hw_breakpoint_disable();
313
314         if (image->preserve_context) {
315 #ifdef CONFIG_X86_IO_APIC
316                 /*
317                  * We need to put APICs in legacy mode so that we can
318                  * get timer interrupts in second kernel. kexec/kdump
319                  * paths already have calls to restore_boot_irq_mode()
320                  * in one form or other. kexec jump path also need one.
321                  */
322                 clear_IO_APIC();
323                 restore_boot_irq_mode();
324 #endif
325         }
326
327         control_page = page_address(image->control_code_page) + PAGE_SIZE;
328         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
329
330         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
331         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
332         page_list[PA_TABLE_PAGE] =
333           (unsigned long)__pa(page_address(image->control_code_page));
334
335         if (image->type == KEXEC_TYPE_DEFAULT)
336                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
337                                                 << PAGE_SHIFT);
338
339         /*
340          * The segment registers are funny things, they have both a
341          * visible and an invisible part.  Whenever the visible part is
342          * set to a specific selector, the invisible part is loaded
343          * with from a table in memory.  At no other time is the
344          * descriptor table in memory accessed.
345          *
346          * I take advantage of this here by force loading the
347          * segments, before I zap the gdt with an invalid value.
348          */
349         load_segments();
350         /*
351          * The gdt & idt are now invalid.
352          * If you want to load them you must set up your own idt & gdt.
353          */
354         native_idt_invalidate();
355         native_gdt_invalidate();
356
357         /* now call it */
358         image->start = relocate_kernel((unsigned long)image->head,
359                                        (unsigned long)page_list,
360                                        image->start,
361                                        image->preserve_context,
362                                        cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
363
364 #ifdef CONFIG_KEXEC_JUMP
365         if (image->preserve_context)
366                 restore_processor_state();
367 #endif
368
369         __ftrace_enabled_restore(save_ftrace_enabled);
370 }
371
372 /* arch-dependent functionality related to kexec file-based syscall */
373
374 #ifdef CONFIG_KEXEC_FILE
375 void *arch_kexec_kernel_image_load(struct kimage *image)
376 {
377         vfree(image->elf_headers);
378         image->elf_headers = NULL;
379
380         if (!image->fops || !image->fops->load)
381                 return ERR_PTR(-ENOEXEC);
382
383         return image->fops->load(image, image->kernel_buf,
384                                  image->kernel_buf_len, image->initrd_buf,
385                                  image->initrd_buf_len, image->cmdline_buf,
386                                  image->cmdline_buf_len);
387 }
388
389 /*
390  * Apply purgatory relocations.
391  *
392  * @pi:         Purgatory to be relocated.
393  * @section:    Section relocations applying to.
394  * @relsec:     Section containing RELAs.
395  * @symtabsec:  Corresponding symtab.
396  *
397  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
398  */
399 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
400                                      Elf_Shdr *section, const Elf_Shdr *relsec,
401                                      const Elf_Shdr *symtabsec)
402 {
403         unsigned int i;
404         Elf64_Rela *rel;
405         Elf64_Sym *sym;
406         void *location;
407         unsigned long address, sec_base, value;
408         const char *strtab, *name, *shstrtab;
409         const Elf_Shdr *sechdrs;
410
411         /* String & section header string table */
412         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
413         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
414         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
415
416         rel = (void *)pi->ehdr + relsec->sh_offset;
417
418         pr_debug("Applying relocate section %s to %u\n",
419                  shstrtab + relsec->sh_name, relsec->sh_info);
420
421         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
422
423                 /*
424                  * rel[i].r_offset contains byte offset from beginning
425                  * of section to the storage unit affected.
426                  *
427                  * This is location to update. This is temporary buffer
428                  * where section is currently loaded. This will finally be
429                  * loaded to a different address later, pointed to by
430                  * ->sh_addr. kexec takes care of moving it
431                  *  (kexec_load_segment()).
432                  */
433                 location = pi->purgatory_buf;
434                 location += section->sh_offset;
435                 location += rel[i].r_offset;
436
437                 /* Final address of the location */
438                 address = section->sh_addr + rel[i].r_offset;
439
440                 /*
441                  * rel[i].r_info contains information about symbol table index
442                  * w.r.t which relocation must be made and type of relocation
443                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
444                  * these respectively.
445                  */
446                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
447                 sym += ELF64_R_SYM(rel[i].r_info);
448
449                 if (sym->st_name)
450                         name = strtab + sym->st_name;
451                 else
452                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
453
454                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
455                          name, sym->st_info, sym->st_shndx, sym->st_value,
456                          sym->st_size);
457
458                 if (sym->st_shndx == SHN_UNDEF) {
459                         pr_err("Undefined symbol: %s\n", name);
460                         return -ENOEXEC;
461                 }
462
463                 if (sym->st_shndx == SHN_COMMON) {
464                         pr_err("symbol '%s' in common section\n", name);
465                         return -ENOEXEC;
466                 }
467
468                 if (sym->st_shndx == SHN_ABS)
469                         sec_base = 0;
470                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
471                         pr_err("Invalid section %d for symbol %s\n",
472                                sym->st_shndx, name);
473                         return -ENOEXEC;
474                 } else
475                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
476
477                 value = sym->st_value;
478                 value += sec_base;
479                 value += rel[i].r_addend;
480
481                 switch (ELF64_R_TYPE(rel[i].r_info)) {
482                 case R_X86_64_NONE:
483                         break;
484                 case R_X86_64_64:
485                         *(u64 *)location = value;
486                         break;
487                 case R_X86_64_32:
488                         *(u32 *)location = value;
489                         if (value != *(u32 *)location)
490                                 goto overflow;
491                         break;
492                 case R_X86_64_32S:
493                         *(s32 *)location = value;
494                         if ((s64)value != *(s32 *)location)
495                                 goto overflow;
496                         break;
497                 case R_X86_64_PC32:
498                 case R_X86_64_PLT32:
499                         value -= (u64)address;
500                         *(u32 *)location = value;
501                         break;
502                 default:
503                         pr_err("Unknown rela relocation: %llu\n",
504                                ELF64_R_TYPE(rel[i].r_info));
505                         return -ENOEXEC;
506                 }
507         }
508         return 0;
509
510 overflow:
511         pr_err("Overflow in relocation type %d value 0x%lx\n",
512                (int)ELF64_R_TYPE(rel[i].r_info), value);
513         return -ENOEXEC;
514 }
515 #endif /* CONFIG_KEXEC_FILE */
516
517 static int
518 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
519 {
520         struct page *page;
521         unsigned int nr_pages;
522
523         /*
524          * For physical range: [start, end]. We must skip the unassigned
525          * crashk resource with zero-valued "end" member.
526          */
527         if (!end || start > end)
528                 return 0;
529
530         page = pfn_to_page(start >> PAGE_SHIFT);
531         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
532         if (protect)
533                 return set_pages_ro(page, nr_pages);
534         else
535                 return set_pages_rw(page, nr_pages);
536 }
537
538 static void kexec_mark_crashkres(bool protect)
539 {
540         unsigned long control;
541
542         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
543
544         /* Don't touch the control code page used in crash_kexec().*/
545         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
546         /* Control code page is located in the 2nd page. */
547         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
548         control += KEXEC_CONTROL_PAGE_SIZE;
549         kexec_mark_range(control, crashk_res.end, protect);
550 }
551
552 void arch_kexec_protect_crashkres(void)
553 {
554         kexec_mark_crashkres(true);
555 }
556
557 void arch_kexec_unprotect_crashkres(void)
558 {
559         kexec_mark_crashkres(false);
560 }
561
562 /*
563  * During a traditional boot under SME, SME will encrypt the kernel,
564  * so the SME kexec kernel also needs to be un-encrypted in order to
565  * replicate a normal SME boot.
566  *
567  * During a traditional boot under SEV, the kernel has already been
568  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
569  * order to replicate a normal SEV boot.
570  */
571 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
572 {
573         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
574                 return 0;
575
576         /*
577          * If host memory encryption is active we need to be sure that kexec
578          * pages are not encrypted because when we boot to the new kernel the
579          * pages won't be accessed encrypted (initially).
580          */
581         return set_memory_decrypted((unsigned long)vaddr, pages);
582 }
583
584 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
585 {
586         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
587                 return;
588
589         /*
590          * If host memory encryption is active we need to reset the pages back
591          * to being an encrypted mapping before freeing them.
592          */
593         set_memory_encrypted((unsigned long)vaddr, pages);
594 }