Merge tag 'sched-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / base / firmware_loader / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40
41 #include <generated/utsrelease.h>
42
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50
51 struct firmware_cache {
52         /* firmware_buf instance will be added into the below list */
53         spinlock_t lock;
54         struct list_head head;
55         int state;
56
57 #ifdef CONFIG_FW_CACHE
58         /*
59          * Names of firmware images which have been cached successfully
60          * will be added into the below list so that device uncache
61          * helper can trace which firmware images have been cached
62          * before.
63          */
64         spinlock_t name_lock;
65         struct list_head fw_names;
66
67         struct delayed_work work;
68
69         struct notifier_block   pm_notify;
70 #endif
71 };
72
73 struct fw_cache_entry {
74         struct list_head list;
75         const char *name;
76 };
77
78 struct fw_name_devm {
79         unsigned long magic;
80         const char *name;
81 };
82
83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85         return container_of(ref, struct fw_priv, ref);
86 }
87
88 #define FW_LOADER_NO_CACHE      0
89 #define FW_LOADER_START_CACHE   1
90
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92  * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94
95 struct firmware_cache fw_cache;
96 bool fw_load_abort_all;
97
98 void fw_state_init(struct fw_priv *fw_priv)
99 {
100         struct fw_state *fw_st = &fw_priv->fw_st;
101
102         init_completion(&fw_st->completion);
103         fw_st->status = FW_STATUS_UNKNOWN;
104 }
105
106 static inline int fw_state_wait(struct fw_priv *fw_priv)
107 {
108         return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109 }
110
111 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
113 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114                                           struct firmware_cache *fwc,
115                                           void *dbuf,
116                                           size_t size,
117                                           size_t offset,
118                                           u32 opt_flags)
119 {
120         struct fw_priv *fw_priv;
121
122         /* For a partial read, the buffer must be preallocated. */
123         if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124                 return NULL;
125
126         /* Only partial reads are allowed to use an offset. */
127         if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128                 return NULL;
129
130         fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131         if (!fw_priv)
132                 return NULL;
133
134         fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135         if (!fw_priv->fw_name) {
136                 kfree(fw_priv);
137                 return NULL;
138         }
139
140         kref_init(&fw_priv->ref);
141         fw_priv->fwc = fwc;
142         fw_priv->data = dbuf;
143         fw_priv->allocated_size = size;
144         fw_priv->offset = offset;
145         fw_priv->opt_flags = opt_flags;
146         fw_state_init(fw_priv);
147 #ifdef CONFIG_FW_LOADER_USER_HELPER
148         INIT_LIST_HEAD(&fw_priv->pending_list);
149 #endif
150
151         pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153         return fw_priv;
154 }
155
156 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157 {
158         struct fw_priv *tmp;
159         struct firmware_cache *fwc = &fw_cache;
160
161         list_for_each_entry(tmp, &fwc->head, list)
162                 if (!strcmp(tmp->fw_name, fw_name))
163                         return tmp;
164         return NULL;
165 }
166
167 /* Returns 1 for batching firmware requests with the same name */
168 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169                          struct fw_priv **fw_priv, void *dbuf, size_t size,
170                          size_t offset, u32 opt_flags)
171 {
172         struct fw_priv *tmp;
173
174         spin_lock(&fwc->lock);
175         /*
176          * Do not merge requests that are marked to be non-cached or
177          * are performing partial reads.
178          */
179         if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180                 tmp = __lookup_fw_priv(fw_name);
181                 if (tmp) {
182                         kref_get(&tmp->ref);
183                         spin_unlock(&fwc->lock);
184                         *fw_priv = tmp;
185                         pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186                         return 1;
187                 }
188         }
189
190         tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191         if (tmp) {
192                 INIT_LIST_HEAD(&tmp->list);
193                 if (!(opt_flags & FW_OPT_NOCACHE))
194                         list_add(&tmp->list, &fwc->head);
195         }
196         spin_unlock(&fwc->lock);
197
198         *fw_priv = tmp;
199
200         return tmp ? 0 : -ENOMEM;
201 }
202
203 static void __free_fw_priv(struct kref *ref)
204         __releases(&fwc->lock)
205 {
206         struct fw_priv *fw_priv = to_fw_priv(ref);
207         struct firmware_cache *fwc = fw_priv->fwc;
208
209         pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210                  __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211                  (unsigned int)fw_priv->size);
212
213         list_del(&fw_priv->list);
214         spin_unlock(&fwc->lock);
215
216         if (fw_is_paged_buf(fw_priv))
217                 fw_free_paged_buf(fw_priv);
218         else if (!fw_priv->allocated_size)
219                 vfree(fw_priv->data);
220
221         kfree_const(fw_priv->fw_name);
222         kfree(fw_priv);
223 }
224
225 void free_fw_priv(struct fw_priv *fw_priv)
226 {
227         struct firmware_cache *fwc = fw_priv->fwc;
228         spin_lock(&fwc->lock);
229         if (!kref_put(&fw_priv->ref, __free_fw_priv))
230                 spin_unlock(&fwc->lock);
231 }
232
233 #ifdef CONFIG_FW_LOADER_PAGED_BUF
234 bool fw_is_paged_buf(struct fw_priv *fw_priv)
235 {
236         return fw_priv->is_paged_buf;
237 }
238
239 void fw_free_paged_buf(struct fw_priv *fw_priv)
240 {
241         int i;
242
243         if (!fw_priv->pages)
244                 return;
245
246         vunmap(fw_priv->data);
247
248         for (i = 0; i < fw_priv->nr_pages; i++)
249                 __free_page(fw_priv->pages[i]);
250         kvfree(fw_priv->pages);
251         fw_priv->pages = NULL;
252         fw_priv->page_array_size = 0;
253         fw_priv->nr_pages = 0;
254         fw_priv->data = NULL;
255         fw_priv->size = 0;
256 }
257
258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259 {
260         /* If the array of pages is too small, grow it */
261         if (fw_priv->page_array_size < pages_needed) {
262                 int new_array_size = max(pages_needed,
263                                          fw_priv->page_array_size * 2);
264                 struct page **new_pages;
265
266                 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267                                            GFP_KERNEL);
268                 if (!new_pages)
269                         return -ENOMEM;
270                 memcpy(new_pages, fw_priv->pages,
271                        fw_priv->page_array_size * sizeof(void *));
272                 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273                        (new_array_size - fw_priv->page_array_size));
274                 kvfree(fw_priv->pages);
275                 fw_priv->pages = new_pages;
276                 fw_priv->page_array_size = new_array_size;
277         }
278
279         while (fw_priv->nr_pages < pages_needed) {
280                 fw_priv->pages[fw_priv->nr_pages] =
281                         alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283                 if (!fw_priv->pages[fw_priv->nr_pages])
284                         return -ENOMEM;
285                 fw_priv->nr_pages++;
286         }
287
288         return 0;
289 }
290
291 int fw_map_paged_buf(struct fw_priv *fw_priv)
292 {
293         /* one pages buffer should be mapped/unmapped only once */
294         if (!fw_priv->pages)
295                 return 0;
296
297         vunmap(fw_priv->data);
298         fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299                              PAGE_KERNEL_RO);
300         if (!fw_priv->data)
301                 return -ENOMEM;
302
303         return 0;
304 }
305 #endif
306
307 /*
308  * ZSTD-compressed firmware support
309  */
310 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312                               size_t in_size, const void *in_buffer)
313 {
314         size_t len, out_size, workspace_size;
315         void *workspace, *out_buf;
316         zstd_dctx *ctx;
317         int err;
318
319         if (fw_priv->allocated_size) {
320                 out_size = fw_priv->allocated_size;
321                 out_buf = fw_priv->data;
322         } else {
323                 zstd_frame_header params;
324
325                 if (zstd_get_frame_header(&params, in_buffer, in_size) ||
326                     params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327                         dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328                         return -EINVAL;
329                 }
330                 out_size = params.frameContentSize;
331                 out_buf = vzalloc(out_size);
332                 if (!out_buf)
333                         return -ENOMEM;
334         }
335
336         workspace_size = zstd_dctx_workspace_bound();
337         workspace = kvzalloc(workspace_size, GFP_KERNEL);
338         if (!workspace) {
339                 err = -ENOMEM;
340                 goto error;
341         }
342
343         ctx = zstd_init_dctx(workspace, workspace_size);
344         if (!ctx) {
345                 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346                 err = -EINVAL;
347                 goto error;
348         }
349
350         len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351         if (zstd_is_error(len)) {
352                 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353                         zstd_get_error_code(len));
354                 err = -EINVAL;
355                 goto error;
356         }
357
358         if (!fw_priv->allocated_size)
359                 fw_priv->data = out_buf;
360         fw_priv->size = len;
361         err = 0;
362
363  error:
364         kvfree(workspace);
365         if (err && !fw_priv->allocated_size)
366                 vfree(out_buf);
367         return err;
368 }
369 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371 /*
372  * XZ-compressed firmware support
373  */
374 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375 /* show an error and return the standard error code */
376 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377 {
378         if (xz_ret != XZ_STREAM_END) {
379                 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380                 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381         }
382         return 0;
383 }
384
385 /* single-shot decompression onto the pre-allocated buffer */
386 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387                                    size_t in_size, const void *in_buffer)
388 {
389         struct xz_dec *xz_dec;
390         struct xz_buf xz_buf;
391         enum xz_ret xz_ret;
392
393         xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394         if (!xz_dec)
395                 return -ENOMEM;
396
397         xz_buf.in_size = in_size;
398         xz_buf.in = in_buffer;
399         xz_buf.in_pos = 0;
400         xz_buf.out_size = fw_priv->allocated_size;
401         xz_buf.out = fw_priv->data;
402         xz_buf.out_pos = 0;
403
404         xz_ret = xz_dec_run(xz_dec, &xz_buf);
405         xz_dec_end(xz_dec);
406
407         fw_priv->size = xz_buf.out_pos;
408         return fw_decompress_xz_error(dev, xz_ret);
409 }
410
411 /* decompression on paged buffer and map it */
412 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413                                   size_t in_size, const void *in_buffer)
414 {
415         struct xz_dec *xz_dec;
416         struct xz_buf xz_buf;
417         enum xz_ret xz_ret;
418         struct page *page;
419         int err = 0;
420
421         xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422         if (!xz_dec)
423                 return -ENOMEM;
424
425         xz_buf.in_size = in_size;
426         xz_buf.in = in_buffer;
427         xz_buf.in_pos = 0;
428
429         fw_priv->is_paged_buf = true;
430         fw_priv->size = 0;
431         do {
432                 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433                         err = -ENOMEM;
434                         goto out;
435                 }
436
437                 /* decompress onto the new allocated page */
438                 page = fw_priv->pages[fw_priv->nr_pages - 1];
439                 xz_buf.out = kmap_local_page(page);
440                 xz_buf.out_pos = 0;
441                 xz_buf.out_size = PAGE_SIZE;
442                 xz_ret = xz_dec_run(xz_dec, &xz_buf);
443                 kunmap_local(xz_buf.out);
444                 fw_priv->size += xz_buf.out_pos;
445                 /* partial decompression means either end or error */
446                 if (xz_buf.out_pos != PAGE_SIZE)
447                         break;
448         } while (xz_ret == XZ_OK);
449
450         err = fw_decompress_xz_error(dev, xz_ret);
451         if (!err)
452                 err = fw_map_paged_buf(fw_priv);
453
454  out:
455         xz_dec_end(xz_dec);
456         return err;
457 }
458
459 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460                             size_t in_size, const void *in_buffer)
461 {
462         /* if the buffer is pre-allocated, we can perform in single-shot mode */
463         if (fw_priv->data)
464                 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465         else
466                 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467 }
468 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470 /* direct firmware loading support */
471 static char fw_path_para[256];
472 static const char * const fw_path[] = {
473         fw_path_para,
474         "/lib/firmware/updates/" UTS_RELEASE,
475         "/lib/firmware/updates",
476         "/lib/firmware/" UTS_RELEASE,
477         "/lib/firmware"
478 };
479
480 /*
481  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482  * from kernel command line because firmware_class is generally built in
483  * kernel instead of module.
484  */
485 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488 static int
489 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490                            const char *suffix,
491                            int (*decompress)(struct device *dev,
492                                              struct fw_priv *fw_priv,
493                                              size_t in_size,
494                                              const void *in_buffer))
495 {
496         size_t size;
497         int i, len, maxlen = 0;
498         int rc = -ENOENT;
499         char *path, *nt = NULL;
500         size_t msize = INT_MAX;
501         void *buffer = NULL;
502
503         /* Already populated data member means we're loading into a buffer */
504         if (!decompress && fw_priv->data) {
505                 buffer = fw_priv->data;
506                 msize = fw_priv->allocated_size;
507         }
508
509         path = __getname();
510         if (!path)
511                 return -ENOMEM;
512
513         wait_for_initramfs();
514         for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515                 size_t file_size = 0;
516                 size_t *file_size_ptr = NULL;
517
518                 /* skip the unset customized path */
519                 if (!fw_path[i][0])
520                         continue;
521
522                 /* strip off \n from customized path */
523                 maxlen = strlen(fw_path[i]);
524                 if (i == 0) {
525                         nt = strchr(fw_path[i], '\n');
526                         if (nt)
527                                 maxlen = nt - fw_path[i];
528                 }
529
530                 len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531                                maxlen, fw_path[i],
532                                fw_priv->fw_name, suffix);
533                 if (len >= PATH_MAX) {
534                         rc = -ENAMETOOLONG;
535                         break;
536                 }
537
538                 fw_priv->size = 0;
539
540                 /*
541                  * The total file size is only examined when doing a partial
542                  * read; the "full read" case needs to fail if the whole
543                  * firmware was not completely loaded.
544                  */
545                 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546                         file_size_ptr = &file_size;
547
548                 /* load firmware files from the mount namespace of init */
549                 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550                                                        &buffer, msize,
551                                                        file_size_ptr,
552                                                        READING_FIRMWARE);
553                 if (rc < 0) {
554                         if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555                                 if (rc != -ENOENT)
556                                         dev_warn(device,
557                                                  "loading %s failed with error %d\n",
558                                                  path, rc);
559                                 else
560                                         dev_dbg(device,
561                                                 "loading %s failed for no such file or directory.\n",
562                                                 path);
563                         }
564                         continue;
565                 }
566                 size = rc;
567                 rc = 0;
568
569                 dev_dbg(device, "Loading firmware from %s\n", path);
570                 if (decompress) {
571                         dev_dbg(device, "f/w decompressing %s\n",
572                                 fw_priv->fw_name);
573                         rc = decompress(device, fw_priv, size, buffer);
574                         /* discard the superfluous original content */
575                         vfree(buffer);
576                         buffer = NULL;
577                         if (rc) {
578                                 fw_free_paged_buf(fw_priv);
579                                 continue;
580                         }
581                 } else {
582                         dev_dbg(device, "direct-loading %s\n",
583                                 fw_priv->fw_name);
584                         if (!fw_priv->data)
585                                 fw_priv->data = buffer;
586                         fw_priv->size = size;
587                 }
588                 fw_state_done(fw_priv);
589                 break;
590         }
591         __putname(path);
592
593         return rc;
594 }
595
596 /* firmware holds the ownership of pages */
597 static void firmware_free_data(const struct firmware *fw)
598 {
599         /* Loaded directly? */
600         if (!fw->priv) {
601                 vfree(fw->data);
602                 return;
603         }
604         free_fw_priv(fw->priv);
605 }
606
607 /* store the pages buffer info firmware from buf */
608 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609 {
610         fw->priv = fw_priv;
611         fw->size = fw_priv->size;
612         fw->data = fw_priv->data;
613
614         pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615                  __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616                  (unsigned int)fw_priv->size);
617 }
618
619 #ifdef CONFIG_FW_CACHE
620 static void fw_name_devm_release(struct device *dev, void *res)
621 {
622         struct fw_name_devm *fwn = res;
623
624         if (fwn->magic == (unsigned long)&fw_cache)
625                 pr_debug("%s: fw_name-%s devm-%p released\n",
626                                 __func__, fwn->name, res);
627         kfree_const(fwn->name);
628 }
629
630 static int fw_devm_match(struct device *dev, void *res,
631                 void *match_data)
632 {
633         struct fw_name_devm *fwn = res;
634
635         return (fwn->magic == (unsigned long)&fw_cache) &&
636                 !strcmp(fwn->name, match_data);
637 }
638
639 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640                 const char *name)
641 {
642         struct fw_name_devm *fwn;
643
644         fwn = devres_find(dev, fw_name_devm_release,
645                           fw_devm_match, (void *)name);
646         return fwn;
647 }
648
649 static bool fw_cache_is_setup(struct device *dev, const char *name)
650 {
651         struct fw_name_devm *fwn;
652
653         fwn = fw_find_devm_name(dev, name);
654         if (fwn)
655                 return true;
656
657         return false;
658 }
659
660 /* add firmware name into devres list */
661 static int fw_add_devm_name(struct device *dev, const char *name)
662 {
663         struct fw_name_devm *fwn;
664
665         if (fw_cache_is_setup(dev, name))
666                 return 0;
667
668         fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669                            GFP_KERNEL);
670         if (!fwn)
671                 return -ENOMEM;
672         fwn->name = kstrdup_const(name, GFP_KERNEL);
673         if (!fwn->name) {
674                 devres_free(fwn);
675                 return -ENOMEM;
676         }
677
678         fwn->magic = (unsigned long)&fw_cache;
679         devres_add(dev, fwn);
680
681         return 0;
682 }
683 #else
684 static bool fw_cache_is_setup(struct device *dev, const char *name)
685 {
686         return false;
687 }
688
689 static int fw_add_devm_name(struct device *dev, const char *name)
690 {
691         return 0;
692 }
693 #endif
694
695 int assign_fw(struct firmware *fw, struct device *device)
696 {
697         struct fw_priv *fw_priv = fw->priv;
698         int ret;
699
700         mutex_lock(&fw_lock);
701         if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702                 mutex_unlock(&fw_lock);
703                 return -ENOENT;
704         }
705
706         /*
707          * add firmware name into devres list so that we can auto cache
708          * and uncache firmware for device.
709          *
710          * device may has been deleted already, but the problem
711          * should be fixed in devres or driver core.
712          */
713         /* don't cache firmware handled without uevent */
714         if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715             !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716                 ret = fw_add_devm_name(device, fw_priv->fw_name);
717                 if (ret) {
718                         mutex_unlock(&fw_lock);
719                         return ret;
720                 }
721         }
722
723         /*
724          * After caching firmware image is started, let it piggyback
725          * on request firmware.
726          */
727         if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728             fw_priv->fwc->state == FW_LOADER_START_CACHE)
729                 fw_cache_piggyback_on_request(fw_priv);
730
731         /* pass the pages buffer to driver at the last minute */
732         fw_set_page_data(fw_priv, fw);
733         mutex_unlock(&fw_lock);
734         return 0;
735 }
736
737 /* prepare firmware and firmware_buf structs;
738  * return 0 if a firmware is already assigned, 1 if need to load one,
739  * or a negative error code
740  */
741 static int
742 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
743                           struct device *device, void *dbuf, size_t size,
744                           size_t offset, u32 opt_flags)
745 {
746         struct firmware *firmware;
747         struct fw_priv *fw_priv;
748         int ret;
749
750         *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751         if (!firmware) {
752                 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753                         __func__);
754                 return -ENOMEM;
755         }
756
757         if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758                 dev_dbg(device, "using built-in %s\n", name);
759                 return 0; /* assigned */
760         }
761
762         ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763                                    offset, opt_flags);
764
765         /*
766          * bind with 'priv' now to avoid warning in failure path
767          * of requesting firmware.
768          */
769         firmware->priv = fw_priv;
770
771         if (ret > 0) {
772                 ret = fw_state_wait(fw_priv);
773                 if (!ret) {
774                         fw_set_page_data(fw_priv, firmware);
775                         return 0; /* assigned */
776                 }
777         }
778
779         if (ret < 0)
780                 return ret;
781         return 1; /* need to load */
782 }
783
784 /*
785  * Batched requests need only one wake, we need to do this step last due to the
786  * fallback mechanism. The buf is protected with kref_get(), and it won't be
787  * released until the last user calls release_firmware().
788  *
789  * Failed batched requests are possible as well, in such cases we just share
790  * the struct fw_priv and won't release it until all requests are woken
791  * and have gone through this same path.
792  */
793 static void fw_abort_batch_reqs(struct firmware *fw)
794 {
795         struct fw_priv *fw_priv;
796
797         /* Loaded directly? */
798         if (!fw || !fw->priv)
799                 return;
800
801         fw_priv = fw->priv;
802         mutex_lock(&fw_lock);
803         if (!fw_state_is_aborted(fw_priv))
804                 fw_state_aborted(fw_priv);
805         mutex_unlock(&fw_lock);
806 }
807
808 #if defined(CONFIG_FW_LOADER_DEBUG)
809 #include <crypto/hash.h>
810 #include <crypto/sha2.h>
811
812 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
813 {
814         struct shash_desc *shash;
815         struct crypto_shash *alg;
816         u8 *sha256buf;
817         char *outbuf;
818
819         alg = crypto_alloc_shash("sha256", 0, 0);
820         if (IS_ERR(alg))
821                 return;
822
823         sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
824         outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
825         shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
826         if (!sha256buf || !outbuf || !shash)
827                 goto out_free;
828
829         shash->tfm = alg;
830
831         if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
832                 goto out_shash;
833
834         for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
835                 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
836         outbuf[SHA256_BLOCK_SIZE] = 0;
837         dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
838
839 out_shash:
840         crypto_free_shash(alg);
841 out_free:
842         kfree(shash);
843         kfree(outbuf);
844         kfree(sha256buf);
845 }
846 #else
847 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
848                                  struct device *device)
849 {}
850 #endif
851
852 /* called from request_firmware() and request_firmware_work_func() */
853 static int
854 _request_firmware(const struct firmware **firmware_p, const char *name,
855                   struct device *device, void *buf, size_t size,
856                   size_t offset, u32 opt_flags)
857 {
858         struct firmware *fw = NULL;
859         struct cred *kern_cred = NULL;
860         const struct cred *old_cred;
861         bool nondirect = false;
862         int ret;
863
864         if (!firmware_p)
865                 return -EINVAL;
866
867         if (!name || name[0] == '\0') {
868                 ret = -EINVAL;
869                 goto out;
870         }
871
872         ret = _request_firmware_prepare(&fw, name, device, buf, size,
873                                         offset, opt_flags);
874         if (ret <= 0) /* error or already assigned */
875                 goto out;
876
877         /*
878          * We are about to try to access the firmware file. Because we may have been
879          * called by a driver when serving an unrelated request from userland, we use
880          * the kernel credentials to read the file.
881          */
882         kern_cred = prepare_kernel_cred(&init_task);
883         if (!kern_cred) {
884                 ret = -ENOMEM;
885                 goto out;
886         }
887         old_cred = override_creds(kern_cred);
888
889         ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
890
891         /* Only full reads can support decompression, platform, and sysfs. */
892         if (!(opt_flags & FW_OPT_PARTIAL))
893                 nondirect = true;
894
895 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
896         if (ret == -ENOENT && nondirect)
897                 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
898                                                  fw_decompress_zstd);
899 #endif
900 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
901         if (ret == -ENOENT && nondirect)
902                 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
903                                                  fw_decompress_xz);
904 #endif
905         if (ret == -ENOENT && nondirect)
906                 ret = firmware_fallback_platform(fw->priv);
907
908         if (ret) {
909                 if (!(opt_flags & FW_OPT_NO_WARN))
910                         dev_warn(device,
911                                  "Direct firmware load for %s failed with error %d\n",
912                                  name, ret);
913                 if (nondirect)
914                         ret = firmware_fallback_sysfs(fw, name, device,
915                                                       opt_flags, ret);
916         } else
917                 ret = assign_fw(fw, device);
918
919         revert_creds(old_cred);
920         put_cred(kern_cred);
921
922 out:
923         if (ret < 0) {
924                 fw_abort_batch_reqs(fw);
925                 release_firmware(fw);
926                 fw = NULL;
927         } else {
928                 fw_log_firmware_info(fw, name, device);
929         }
930
931         *firmware_p = fw;
932         return ret;
933 }
934
935 /**
936  * request_firmware() - send firmware request and wait for it
937  * @firmware_p: pointer to firmware image
938  * @name: name of firmware file
939  * @device: device for which firmware is being loaded
940  *
941  *      @firmware_p will be used to return a firmware image by the name
942  *      of @name for device @device.
943  *
944  *      Should be called from user context where sleeping is allowed.
945  *
946  *      @name will be used as $FIRMWARE in the uevent environment and
947  *      should be distinctive enough not to be confused with any other
948  *      firmware image for this or any other device.
949  *
950  *      Caller must hold the reference count of @device.
951  *
952  *      The function can be called safely inside device's suspend and
953  *      resume callback.
954  **/
955 int
956 request_firmware(const struct firmware **firmware_p, const char *name,
957                  struct device *device)
958 {
959         int ret;
960
961         /* Need to pin this module until return */
962         __module_get(THIS_MODULE);
963         ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
964                                 FW_OPT_UEVENT);
965         module_put(THIS_MODULE);
966         return ret;
967 }
968 EXPORT_SYMBOL(request_firmware);
969
970 /**
971  * firmware_request_nowarn() - request for an optional fw module
972  * @firmware: pointer to firmware image
973  * @name: name of firmware file
974  * @device: device for which firmware is being loaded
975  *
976  * This function is similar in behaviour to request_firmware(), except it
977  * doesn't produce warning messages when the file is not found. The sysfs
978  * fallback mechanism is enabled if direct filesystem lookup fails. However,
979  * failures to find the firmware file with it are still suppressed. It is
980  * therefore up to the driver to check for the return value of this call and to
981  * decide when to inform the users of errors.
982  **/
983 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
984                             struct device *device)
985 {
986         int ret;
987
988         /* Need to pin this module until return */
989         __module_get(THIS_MODULE);
990         ret = _request_firmware(firmware, name, device, NULL, 0, 0,
991                                 FW_OPT_UEVENT | FW_OPT_NO_WARN);
992         module_put(THIS_MODULE);
993         return ret;
994 }
995 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
996
997 /**
998  * request_firmware_direct() - load firmware directly without usermode helper
999  * @firmware_p: pointer to firmware image
1000  * @name: name of firmware file
1001  * @device: device for which firmware is being loaded
1002  *
1003  * This function works pretty much like request_firmware(), but this doesn't
1004  * fall back to usermode helper even if the firmware couldn't be loaded
1005  * directly from fs.  Hence it's useful for loading optional firmwares, which
1006  * aren't always present, without extra long timeouts of udev.
1007  **/
1008 int request_firmware_direct(const struct firmware **firmware_p,
1009                             const char *name, struct device *device)
1010 {
1011         int ret;
1012
1013         __module_get(THIS_MODULE);
1014         ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1015                                 FW_OPT_UEVENT | FW_OPT_NO_WARN |
1016                                 FW_OPT_NOFALLBACK_SYSFS);
1017         module_put(THIS_MODULE);
1018         return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(request_firmware_direct);
1021
1022 /**
1023  * firmware_request_platform() - request firmware with platform-fw fallback
1024  * @firmware: pointer to firmware image
1025  * @name: name of firmware file
1026  * @device: device for which firmware is being loaded
1027  *
1028  * This function is similar in behaviour to request_firmware, except that if
1029  * direct filesystem lookup fails, it will fallback to looking for a copy of the
1030  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1031  **/
1032 int firmware_request_platform(const struct firmware **firmware,
1033                               const char *name, struct device *device)
1034 {
1035         int ret;
1036
1037         /* Need to pin this module until return */
1038         __module_get(THIS_MODULE);
1039         ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1040                                 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1041         module_put(THIS_MODULE);
1042         return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(firmware_request_platform);
1045
1046 /**
1047  * firmware_request_cache() - cache firmware for suspend so resume can use it
1048  * @name: name of firmware file
1049  * @device: device for which firmware should be cached for
1050  *
1051  * There are some devices with an optimization that enables the device to not
1052  * require loading firmware on system reboot. This optimization may still
1053  * require the firmware present on resume from suspend. This routine can be
1054  * used to ensure the firmware is present on resume from suspend in these
1055  * situations. This helper is not compatible with drivers which use
1056  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1057  **/
1058 int firmware_request_cache(struct device *device, const char *name)
1059 {
1060         int ret;
1061
1062         mutex_lock(&fw_lock);
1063         ret = fw_add_devm_name(device, name);
1064         mutex_unlock(&fw_lock);
1065
1066         return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(firmware_request_cache);
1069
1070 /**
1071  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1072  * @firmware_p: pointer to firmware image
1073  * @name: name of firmware file
1074  * @device: device for which firmware is being loaded and DMA region allocated
1075  * @buf: address of buffer to load firmware into
1076  * @size: size of buffer
1077  *
1078  * This function works pretty much like request_firmware(), but it doesn't
1079  * allocate a buffer to hold the firmware data. Instead, the firmware
1080  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1081  * data member is pointed at @buf.
1082  *
1083  * This function doesn't cache firmware either.
1084  */
1085 int
1086 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1087                           struct device *device, void *buf, size_t size)
1088 {
1089         int ret;
1090
1091         if (fw_cache_is_setup(device, name))
1092                 return -EOPNOTSUPP;
1093
1094         __module_get(THIS_MODULE);
1095         ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1096                                 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1097         module_put(THIS_MODULE);
1098         return ret;
1099 }
1100 EXPORT_SYMBOL(request_firmware_into_buf);
1101
1102 /**
1103  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1104  * @firmware_p: pointer to firmware image
1105  * @name: name of firmware file
1106  * @device: device for which firmware is being loaded and DMA region allocated
1107  * @buf: address of buffer to load firmware into
1108  * @size: size of buffer
1109  * @offset: offset into file to read
1110  *
1111  * This function works pretty much like request_firmware_into_buf except
1112  * it allows a partial read of the file.
1113  */
1114 int
1115 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1116                                   const char *name, struct device *device,
1117                                   void *buf, size_t size, size_t offset)
1118 {
1119         int ret;
1120
1121         if (fw_cache_is_setup(device, name))
1122                 return -EOPNOTSUPP;
1123
1124         __module_get(THIS_MODULE);
1125         ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1126                                 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1127                                 FW_OPT_PARTIAL);
1128         module_put(THIS_MODULE);
1129         return ret;
1130 }
1131 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1132
1133 /**
1134  * release_firmware() - release the resource associated with a firmware image
1135  * @fw: firmware resource to release
1136  **/
1137 void release_firmware(const struct firmware *fw)
1138 {
1139         if (fw) {
1140                 if (!firmware_is_builtin(fw))
1141                         firmware_free_data(fw);
1142                 kfree(fw);
1143         }
1144 }
1145 EXPORT_SYMBOL(release_firmware);
1146
1147 /* Async support */
1148 struct firmware_work {
1149         struct work_struct work;
1150         struct module *module;
1151         const char *name;
1152         struct device *device;
1153         void *context;
1154         void (*cont)(const struct firmware *fw, void *context);
1155         u32 opt_flags;
1156 };
1157
1158 static void request_firmware_work_func(struct work_struct *work)
1159 {
1160         struct firmware_work *fw_work;
1161         const struct firmware *fw;
1162
1163         fw_work = container_of(work, struct firmware_work, work);
1164
1165         _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1166                           fw_work->opt_flags);
1167         fw_work->cont(fw, fw_work->context);
1168         put_device(fw_work->device); /* taken in request_firmware_nowait() */
1169
1170         module_put(fw_work->module);
1171         kfree_const(fw_work->name);
1172         kfree(fw_work);
1173 }
1174
1175 /**
1176  * request_firmware_nowait() - asynchronous version of request_firmware
1177  * @module: module requesting the firmware
1178  * @uevent: sends uevent to copy the firmware image if this flag
1179  *      is non-zero else the firmware copy must be done manually.
1180  * @name: name of firmware file
1181  * @device: device for which firmware is being loaded
1182  * @gfp: allocation flags
1183  * @context: will be passed over to @cont, and
1184  *      @fw may be %NULL if firmware request fails.
1185  * @cont: function will be called asynchronously when the firmware
1186  *      request is over.
1187  *
1188  *      Caller must hold the reference count of @device.
1189  *
1190  *      Asynchronous variant of request_firmware() for user contexts:
1191  *              - sleep for as small periods as possible since it may
1192  *                increase kernel boot time of built-in device drivers
1193  *                requesting firmware in their ->probe() methods, if
1194  *                @gfp is GFP_KERNEL.
1195  *
1196  *              - can't sleep at all if @gfp is GFP_ATOMIC.
1197  **/
1198 int
1199 request_firmware_nowait(
1200         struct module *module, bool uevent,
1201         const char *name, struct device *device, gfp_t gfp, void *context,
1202         void (*cont)(const struct firmware *fw, void *context))
1203 {
1204         struct firmware_work *fw_work;
1205
1206         fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1207         if (!fw_work)
1208                 return -ENOMEM;
1209
1210         fw_work->module = module;
1211         fw_work->name = kstrdup_const(name, gfp);
1212         if (!fw_work->name) {
1213                 kfree(fw_work);
1214                 return -ENOMEM;
1215         }
1216         fw_work->device = device;
1217         fw_work->context = context;
1218         fw_work->cont = cont;
1219         fw_work->opt_flags = FW_OPT_NOWAIT |
1220                 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1221
1222         if (!uevent && fw_cache_is_setup(device, name)) {
1223                 kfree_const(fw_work->name);
1224                 kfree(fw_work);
1225                 return -EOPNOTSUPP;
1226         }
1227
1228         if (!try_module_get(module)) {
1229                 kfree_const(fw_work->name);
1230                 kfree(fw_work);
1231                 return -EFAULT;
1232         }
1233
1234         get_device(fw_work->device);
1235         INIT_WORK(&fw_work->work, request_firmware_work_func);
1236         schedule_work(&fw_work->work);
1237         return 0;
1238 }
1239 EXPORT_SYMBOL(request_firmware_nowait);
1240
1241 #ifdef CONFIG_FW_CACHE
1242 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1243
1244 /**
1245  * cache_firmware() - cache one firmware image in kernel memory space
1246  * @fw_name: the firmware image name
1247  *
1248  * Cache firmware in kernel memory so that drivers can use it when
1249  * system isn't ready for them to request firmware image from userspace.
1250  * Once it returns successfully, driver can use request_firmware or its
1251  * nowait version to get the cached firmware without any interacting
1252  * with userspace
1253  *
1254  * Return 0 if the firmware image has been cached successfully
1255  * Return !0 otherwise
1256  *
1257  */
1258 static int cache_firmware(const char *fw_name)
1259 {
1260         int ret;
1261         const struct firmware *fw;
1262
1263         pr_debug("%s: %s\n", __func__, fw_name);
1264
1265         ret = request_firmware(&fw, fw_name, NULL);
1266         if (!ret)
1267                 kfree(fw);
1268
1269         pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1270
1271         return ret;
1272 }
1273
1274 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1275 {
1276         struct fw_priv *tmp;
1277         struct firmware_cache *fwc = &fw_cache;
1278
1279         spin_lock(&fwc->lock);
1280         tmp = __lookup_fw_priv(fw_name);
1281         spin_unlock(&fwc->lock);
1282
1283         return tmp;
1284 }
1285
1286 /**
1287  * uncache_firmware() - remove one cached firmware image
1288  * @fw_name: the firmware image name
1289  *
1290  * Uncache one firmware image which has been cached successfully
1291  * before.
1292  *
1293  * Return 0 if the firmware cache has been removed successfully
1294  * Return !0 otherwise
1295  *
1296  */
1297 static int uncache_firmware(const char *fw_name)
1298 {
1299         struct fw_priv *fw_priv;
1300         struct firmware fw;
1301
1302         pr_debug("%s: %s\n", __func__, fw_name);
1303
1304         if (firmware_request_builtin(&fw, fw_name))
1305                 return 0;
1306
1307         fw_priv = lookup_fw_priv(fw_name);
1308         if (fw_priv) {
1309                 free_fw_priv(fw_priv);
1310                 return 0;
1311         }
1312
1313         return -EINVAL;
1314 }
1315
1316 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1317 {
1318         struct fw_cache_entry *fce;
1319
1320         fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1321         if (!fce)
1322                 goto exit;
1323
1324         fce->name = kstrdup_const(name, GFP_ATOMIC);
1325         if (!fce->name) {
1326                 kfree(fce);
1327                 fce = NULL;
1328                 goto exit;
1329         }
1330 exit:
1331         return fce;
1332 }
1333
1334 static int __fw_entry_found(const char *name)
1335 {
1336         struct firmware_cache *fwc = &fw_cache;
1337         struct fw_cache_entry *fce;
1338
1339         list_for_each_entry(fce, &fwc->fw_names, list) {
1340                 if (!strcmp(fce->name, name))
1341                         return 1;
1342         }
1343         return 0;
1344 }
1345
1346 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1347 {
1348         const char *name = fw_priv->fw_name;
1349         struct firmware_cache *fwc = fw_priv->fwc;
1350         struct fw_cache_entry *fce;
1351
1352         spin_lock(&fwc->name_lock);
1353         if (__fw_entry_found(name))
1354                 goto found;
1355
1356         fce = alloc_fw_cache_entry(name);
1357         if (fce) {
1358                 list_add(&fce->list, &fwc->fw_names);
1359                 kref_get(&fw_priv->ref);
1360                 pr_debug("%s: fw: %s\n", __func__, name);
1361         }
1362 found:
1363         spin_unlock(&fwc->name_lock);
1364 }
1365
1366 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1367 {
1368         kfree_const(fce->name);
1369         kfree(fce);
1370 }
1371
1372 static void __async_dev_cache_fw_image(void *fw_entry,
1373                                        async_cookie_t cookie)
1374 {
1375         struct fw_cache_entry *fce = fw_entry;
1376         struct firmware_cache *fwc = &fw_cache;
1377         int ret;
1378
1379         ret = cache_firmware(fce->name);
1380         if (ret) {
1381                 spin_lock(&fwc->name_lock);
1382                 list_del(&fce->list);
1383                 spin_unlock(&fwc->name_lock);
1384
1385                 free_fw_cache_entry(fce);
1386         }
1387 }
1388
1389 /* called with dev->devres_lock held */
1390 static void dev_create_fw_entry(struct device *dev, void *res,
1391                                 void *data)
1392 {
1393         struct fw_name_devm *fwn = res;
1394         const char *fw_name = fwn->name;
1395         struct list_head *head = data;
1396         struct fw_cache_entry *fce;
1397
1398         fce = alloc_fw_cache_entry(fw_name);
1399         if (fce)
1400                 list_add(&fce->list, head);
1401 }
1402
1403 static int devm_name_match(struct device *dev, void *res,
1404                            void *match_data)
1405 {
1406         struct fw_name_devm *fwn = res;
1407         return (fwn->magic == (unsigned long)match_data);
1408 }
1409
1410 static void dev_cache_fw_image(struct device *dev, void *data)
1411 {
1412         LIST_HEAD(todo);
1413         struct fw_cache_entry *fce;
1414         struct fw_cache_entry *fce_next;
1415         struct firmware_cache *fwc = &fw_cache;
1416
1417         devres_for_each_res(dev, fw_name_devm_release,
1418                             devm_name_match, &fw_cache,
1419                             dev_create_fw_entry, &todo);
1420
1421         list_for_each_entry_safe(fce, fce_next, &todo, list) {
1422                 list_del(&fce->list);
1423
1424                 spin_lock(&fwc->name_lock);
1425                 /* only one cache entry for one firmware */
1426                 if (!__fw_entry_found(fce->name)) {
1427                         list_add(&fce->list, &fwc->fw_names);
1428                 } else {
1429                         free_fw_cache_entry(fce);
1430                         fce = NULL;
1431                 }
1432                 spin_unlock(&fwc->name_lock);
1433
1434                 if (fce)
1435                         async_schedule_domain(__async_dev_cache_fw_image,
1436                                               (void *)fce,
1437                                               &fw_cache_domain);
1438         }
1439 }
1440
1441 static void __device_uncache_fw_images(void)
1442 {
1443         struct firmware_cache *fwc = &fw_cache;
1444         struct fw_cache_entry *fce;
1445
1446         spin_lock(&fwc->name_lock);
1447         while (!list_empty(&fwc->fw_names)) {
1448                 fce = list_entry(fwc->fw_names.next,
1449                                 struct fw_cache_entry, list);
1450                 list_del(&fce->list);
1451                 spin_unlock(&fwc->name_lock);
1452
1453                 uncache_firmware(fce->name);
1454                 free_fw_cache_entry(fce);
1455
1456                 spin_lock(&fwc->name_lock);
1457         }
1458         spin_unlock(&fwc->name_lock);
1459 }
1460
1461 /**
1462  * device_cache_fw_images() - cache devices' firmware
1463  *
1464  * If one device called request_firmware or its nowait version
1465  * successfully before, the firmware names are recored into the
1466  * device's devres link list, so device_cache_fw_images can call
1467  * cache_firmware() to cache these firmwares for the device,
1468  * then the device driver can load its firmwares easily at
1469  * time when system is not ready to complete loading firmware.
1470  */
1471 static void device_cache_fw_images(void)
1472 {
1473         struct firmware_cache *fwc = &fw_cache;
1474         DEFINE_WAIT(wait);
1475
1476         pr_debug("%s\n", __func__);
1477
1478         /* cancel uncache work */
1479         cancel_delayed_work_sync(&fwc->work);
1480
1481         fw_fallback_set_cache_timeout();
1482
1483         mutex_lock(&fw_lock);
1484         fwc->state = FW_LOADER_START_CACHE;
1485         dpm_for_each_dev(NULL, dev_cache_fw_image);
1486         mutex_unlock(&fw_lock);
1487
1488         /* wait for completion of caching firmware for all devices */
1489         async_synchronize_full_domain(&fw_cache_domain);
1490
1491         fw_fallback_set_default_timeout();
1492 }
1493
1494 /**
1495  * device_uncache_fw_images() - uncache devices' firmware
1496  *
1497  * uncache all firmwares which have been cached successfully
1498  * by device_uncache_fw_images earlier
1499  */
1500 static void device_uncache_fw_images(void)
1501 {
1502         pr_debug("%s\n", __func__);
1503         __device_uncache_fw_images();
1504 }
1505
1506 static void device_uncache_fw_images_work(struct work_struct *work)
1507 {
1508         device_uncache_fw_images();
1509 }
1510
1511 /**
1512  * device_uncache_fw_images_delay() - uncache devices firmwares
1513  * @delay: number of milliseconds to delay uncache device firmwares
1514  *
1515  * uncache all devices's firmwares which has been cached successfully
1516  * by device_cache_fw_images after @delay milliseconds.
1517  */
1518 static void device_uncache_fw_images_delay(unsigned long delay)
1519 {
1520         queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1521                            msecs_to_jiffies(delay));
1522 }
1523
1524 static int fw_pm_notify(struct notifier_block *notify_block,
1525                         unsigned long mode, void *unused)
1526 {
1527         switch (mode) {
1528         case PM_HIBERNATION_PREPARE:
1529         case PM_SUSPEND_PREPARE:
1530         case PM_RESTORE_PREPARE:
1531                 /*
1532                  * Here, kill pending fallback requests will only kill
1533                  * non-uevent firmware request to avoid stalling suspend.
1534                  */
1535                 kill_pending_fw_fallback_reqs(false);
1536                 device_cache_fw_images();
1537                 break;
1538
1539         case PM_POST_SUSPEND:
1540         case PM_POST_HIBERNATION:
1541         case PM_POST_RESTORE:
1542                 /*
1543                  * In case that system sleep failed and syscore_suspend is
1544                  * not called.
1545                  */
1546                 mutex_lock(&fw_lock);
1547                 fw_cache.state = FW_LOADER_NO_CACHE;
1548                 mutex_unlock(&fw_lock);
1549
1550                 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1551                 break;
1552         }
1553
1554         return 0;
1555 }
1556
1557 /* stop caching firmware once syscore_suspend is reached */
1558 static int fw_suspend(void)
1559 {
1560         fw_cache.state = FW_LOADER_NO_CACHE;
1561         return 0;
1562 }
1563
1564 static struct syscore_ops fw_syscore_ops = {
1565         .suspend = fw_suspend,
1566 };
1567
1568 static int __init register_fw_pm_ops(void)
1569 {
1570         int ret;
1571
1572         spin_lock_init(&fw_cache.name_lock);
1573         INIT_LIST_HEAD(&fw_cache.fw_names);
1574
1575         INIT_DELAYED_WORK(&fw_cache.work,
1576                           device_uncache_fw_images_work);
1577
1578         fw_cache.pm_notify.notifier_call = fw_pm_notify;
1579         ret = register_pm_notifier(&fw_cache.pm_notify);
1580         if (ret)
1581                 return ret;
1582
1583         register_syscore_ops(&fw_syscore_ops);
1584
1585         return ret;
1586 }
1587
1588 static inline void unregister_fw_pm_ops(void)
1589 {
1590         unregister_syscore_ops(&fw_syscore_ops);
1591         unregister_pm_notifier(&fw_cache.pm_notify);
1592 }
1593 #else
1594 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1595 {
1596 }
1597 static inline int register_fw_pm_ops(void)
1598 {
1599         return 0;
1600 }
1601 static inline void unregister_fw_pm_ops(void)
1602 {
1603 }
1604 #endif
1605
1606 static void __init fw_cache_init(void)
1607 {
1608         spin_lock_init(&fw_cache.lock);
1609         INIT_LIST_HEAD(&fw_cache.head);
1610         fw_cache.state = FW_LOADER_NO_CACHE;
1611 }
1612
1613 static int fw_shutdown_notify(struct notifier_block *unused1,
1614                               unsigned long unused2, void *unused3)
1615 {
1616         /*
1617          * Kill all pending fallback requests to avoid both stalling shutdown,
1618          * and avoid a deadlock with the usermode_lock.
1619          */
1620         kill_pending_fw_fallback_reqs(true);
1621
1622         return NOTIFY_DONE;
1623 }
1624
1625 static struct notifier_block fw_shutdown_nb = {
1626         .notifier_call = fw_shutdown_notify,
1627 };
1628
1629 static int __init firmware_class_init(void)
1630 {
1631         int ret;
1632
1633         /* No need to unfold these on exit */
1634         fw_cache_init();
1635
1636         ret = register_fw_pm_ops();
1637         if (ret)
1638                 return ret;
1639
1640         ret = register_reboot_notifier(&fw_shutdown_nb);
1641         if (ret)
1642                 goto out;
1643
1644         return register_sysfs_loader();
1645
1646 out:
1647         unregister_fw_pm_ops();
1648         return ret;
1649 }
1650
1651 static void __exit firmware_class_exit(void)
1652 {
1653         unregister_fw_pm_ops();
1654         unregister_reboot_notifier(&fw_shutdown_nb);
1655         unregister_sysfs_loader();
1656 }
1657
1658 fs_initcall(firmware_class_init);
1659 module_exit(firmware_class_exit);