Merge tag 'sched-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / char / hpet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *      Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *      Bob Picco <robert.picco@hp.com>
9  */
10
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define HPET_USER_FREQ  (64)
47 #define HPET_DRIFT      (500)
48
49 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
50
51
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define write_counter(V, MC)    writeq(V, MC)
58 #define read_counter(MC)        readq(MC)
59 #else
60 #define write_counter(V, MC)    writel(V, MC)
61 #define read_counter(MC)        readl(MC)
62 #endif
63
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66
67 /* A lock for concurrent access by app and isr hpet activity. */
68 static DEFINE_SPINLOCK(hpet_lock);
69
70 #define HPET_DEV_NAME   (7)
71
72 struct hpet_dev {
73         struct hpets *hd_hpets;
74         struct hpet __iomem *hd_hpet;
75         struct hpet_timer __iomem *hd_timer;
76         unsigned long hd_ireqfreq;
77         unsigned long hd_irqdata;
78         wait_queue_head_t hd_waitqueue;
79         struct fasync_struct *hd_async_queue;
80         unsigned int hd_flags;
81         unsigned int hd_irq;
82         unsigned int hd_hdwirq;
83         char hd_name[HPET_DEV_NAME];
84 };
85
86 struct hpets {
87         struct hpets *hp_next;
88         struct hpet __iomem *hp_hpet;
89         unsigned long hp_hpet_phys;
90         unsigned long long hp_tick_freq;
91         unsigned long hp_delta;
92         unsigned int hp_ntimer;
93         unsigned int hp_which;
94         struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
95 };
96
97 static struct hpets *hpets;
98
99 #define HPET_OPEN               0x0001
100 #define HPET_IE                 0x0002  /* interrupt enabled */
101 #define HPET_PERIODIC           0x0004
102 #define HPET_SHARED_IRQ         0x0008
103
104 static irqreturn_t hpet_interrupt(int irq, void *data)
105 {
106         struct hpet_dev *devp;
107         unsigned long isr;
108
109         devp = data;
110         isr = 1 << (devp - devp->hd_hpets->hp_dev);
111
112         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
113             !(isr & readl(&devp->hd_hpet->hpet_isr)))
114                 return IRQ_NONE;
115
116         spin_lock(&hpet_lock);
117         devp->hd_irqdata++;
118
119         /*
120          * For non-periodic timers, increment the accumulator.
121          * This has the effect of treating non-periodic like periodic.
122          */
123         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
124                 unsigned long t, mc, base, k;
125                 struct hpet __iomem *hpet = devp->hd_hpet;
126                 struct hpets *hpetp = devp->hd_hpets;
127
128                 t = devp->hd_ireqfreq;
129                 read_counter(&devp->hd_timer->hpet_compare);
130                 mc = read_counter(&hpet->hpet_mc);
131                 /* The time for the next interrupt would logically be t + m,
132                  * however, if we are very unlucky and the interrupt is delayed
133                  * for longer than t then we will completely miss the next
134                  * interrupt if we set t + m and an application will hang.
135                  * Therefore we need to make a more complex computation assuming
136                  * that there exists a k for which the following is true:
137                  * k * t + base < mc + delta
138                  * (k + 1) * t + base > mc + delta
139                  * where t is the interval in hpet ticks for the given freq,
140                  * base is the theoretical start value 0 < base < t,
141                  * mc is the main counter value at the time of the interrupt,
142                  * delta is the time it takes to write the a value to the
143                  * comparator.
144                  * k may then be computed as (mc - base + delta) / t .
145                  */
146                 base = mc % t;
147                 k = (mc - base + hpetp->hp_delta) / t;
148                 write_counter(t * (k + 1) + base,
149                               &devp->hd_timer->hpet_compare);
150         }
151
152         if (devp->hd_flags & HPET_SHARED_IRQ)
153                 writel(isr, &devp->hd_hpet->hpet_isr);
154         spin_unlock(&hpet_lock);
155
156         wake_up_interruptible(&devp->hd_waitqueue);
157
158         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
159
160         return IRQ_HANDLED;
161 }
162
163 static void hpet_timer_set_irq(struct hpet_dev *devp)
164 {
165         unsigned long v;
166         int irq, gsi;
167         struct hpet_timer __iomem *timer;
168
169         spin_lock_irq(&hpet_lock);
170         if (devp->hd_hdwirq) {
171                 spin_unlock_irq(&hpet_lock);
172                 return;
173         }
174
175         timer = devp->hd_timer;
176
177         /* we prefer level triggered mode */
178         v = readl(&timer->hpet_config);
179         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
180                 v |= Tn_INT_TYPE_CNF_MASK;
181                 writel(v, &timer->hpet_config);
182         }
183         spin_unlock_irq(&hpet_lock);
184
185         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
186                                  Tn_INT_ROUTE_CAP_SHIFT;
187
188         /*
189          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
190          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
191          */
192         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
193                 v &= ~0xf3df;
194         else
195                 v &= ~0xffff;
196
197         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
198                 if (irq >= nr_irqs) {
199                         irq = HPET_MAX_IRQ;
200                         break;
201                 }
202
203                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
204                                         ACPI_ACTIVE_LOW);
205                 if (gsi > 0)
206                         break;
207
208                 /* FIXME: Setup interrupt source table */
209         }
210
211         if (irq < HPET_MAX_IRQ) {
212                 spin_lock_irq(&hpet_lock);
213                 v = readl(&timer->hpet_config);
214                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
215                 writel(v, &timer->hpet_config);
216                 devp->hd_hdwirq = gsi;
217                 spin_unlock_irq(&hpet_lock);
218         }
219         return;
220 }
221
222 static int hpet_open(struct inode *inode, struct file *file)
223 {
224         struct hpet_dev *devp;
225         struct hpets *hpetp;
226         int i;
227
228         if (file->f_mode & FMODE_WRITE)
229                 return -EINVAL;
230
231         mutex_lock(&hpet_mutex);
232         spin_lock_irq(&hpet_lock);
233
234         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
235                 for (i = 0; i < hpetp->hp_ntimer; i++)
236                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
237                                 continue;
238                         } else {
239                                 devp = &hpetp->hp_dev[i];
240                                 break;
241                         }
242
243         if (!devp) {
244                 spin_unlock_irq(&hpet_lock);
245                 mutex_unlock(&hpet_mutex);
246                 return -EBUSY;
247         }
248
249         file->private_data = devp;
250         devp->hd_irqdata = 0;
251         devp->hd_flags |= HPET_OPEN;
252         spin_unlock_irq(&hpet_lock);
253         mutex_unlock(&hpet_mutex);
254
255         hpet_timer_set_irq(devp);
256
257         return 0;
258 }
259
260 static ssize_t
261 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
262 {
263         DECLARE_WAITQUEUE(wait, current);
264         unsigned long data;
265         ssize_t retval;
266         struct hpet_dev *devp;
267
268         devp = file->private_data;
269         if (!devp->hd_ireqfreq)
270                 return -EIO;
271
272         if (count < sizeof(unsigned long))
273                 return -EINVAL;
274
275         add_wait_queue(&devp->hd_waitqueue, &wait);
276
277         for ( ; ; ) {
278                 set_current_state(TASK_INTERRUPTIBLE);
279
280                 spin_lock_irq(&hpet_lock);
281                 data = devp->hd_irqdata;
282                 devp->hd_irqdata = 0;
283                 spin_unlock_irq(&hpet_lock);
284
285                 if (data) {
286                         break;
287                 } else if (file->f_flags & O_NONBLOCK) {
288                         retval = -EAGAIN;
289                         goto out;
290                 } else if (signal_pending(current)) {
291                         retval = -ERESTARTSYS;
292                         goto out;
293                 }
294                 schedule();
295         }
296
297         retval = put_user(data, (unsigned long __user *)buf);
298         if (!retval)
299                 retval = sizeof(unsigned long);
300 out:
301         __set_current_state(TASK_RUNNING);
302         remove_wait_queue(&devp->hd_waitqueue, &wait);
303
304         return retval;
305 }
306
307 static __poll_t hpet_poll(struct file *file, poll_table * wait)
308 {
309         unsigned long v;
310         struct hpet_dev *devp;
311
312         devp = file->private_data;
313
314         if (!devp->hd_ireqfreq)
315                 return 0;
316
317         poll_wait(file, &devp->hd_waitqueue, wait);
318
319         spin_lock_irq(&hpet_lock);
320         v = devp->hd_irqdata;
321         spin_unlock_irq(&hpet_lock);
322
323         if (v != 0)
324                 return EPOLLIN | EPOLLRDNORM;
325
326         return 0;
327 }
328
329 #ifdef CONFIG_HPET_MMAP
330 #ifdef CONFIG_HPET_MMAP_DEFAULT
331 static int hpet_mmap_enabled = 1;
332 #else
333 static int hpet_mmap_enabled = 0;
334 #endif
335
336 static __init int hpet_mmap_enable(char *str)
337 {
338         get_option(&str, &hpet_mmap_enabled);
339         pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
340         return 1;
341 }
342 __setup("hpet_mmap=", hpet_mmap_enable);
343
344 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
345 {
346         struct hpet_dev *devp;
347         unsigned long addr;
348
349         if (!hpet_mmap_enabled)
350                 return -EACCES;
351
352         devp = file->private_data;
353         addr = devp->hd_hpets->hp_hpet_phys;
354
355         if (addr & (PAGE_SIZE - 1))
356                 return -ENOSYS;
357
358         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
359         return vm_iomap_memory(vma, addr, PAGE_SIZE);
360 }
361 #else
362 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
363 {
364         return -ENOSYS;
365 }
366 #endif
367
368 static int hpet_fasync(int fd, struct file *file, int on)
369 {
370         struct hpet_dev *devp;
371
372         devp = file->private_data;
373
374         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
375                 return 0;
376         else
377                 return -EIO;
378 }
379
380 static int hpet_release(struct inode *inode, struct file *file)
381 {
382         struct hpet_dev *devp;
383         struct hpet_timer __iomem *timer;
384         int irq = 0;
385
386         devp = file->private_data;
387         timer = devp->hd_timer;
388
389         spin_lock_irq(&hpet_lock);
390
391         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
392                &timer->hpet_config);
393
394         irq = devp->hd_irq;
395         devp->hd_irq = 0;
396
397         devp->hd_ireqfreq = 0;
398
399         if (devp->hd_flags & HPET_PERIODIC
400             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
401                 unsigned long v;
402
403                 v = readq(&timer->hpet_config);
404                 v ^= Tn_TYPE_CNF_MASK;
405                 writeq(v, &timer->hpet_config);
406         }
407
408         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
409         spin_unlock_irq(&hpet_lock);
410
411         if (irq)
412                 free_irq(irq, devp);
413
414         file->private_data = NULL;
415         return 0;
416 }
417
418 static int hpet_ioctl_ieon(struct hpet_dev *devp)
419 {
420         struct hpet_timer __iomem *timer;
421         struct hpet __iomem *hpet;
422         struct hpets *hpetp;
423         int irq;
424         unsigned long g, v, t, m;
425         unsigned long flags, isr;
426
427         timer = devp->hd_timer;
428         hpet = devp->hd_hpet;
429         hpetp = devp->hd_hpets;
430
431         if (!devp->hd_ireqfreq)
432                 return -EIO;
433
434         spin_lock_irq(&hpet_lock);
435
436         if (devp->hd_flags & HPET_IE) {
437                 spin_unlock_irq(&hpet_lock);
438                 return -EBUSY;
439         }
440
441         devp->hd_flags |= HPET_IE;
442
443         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
444                 devp->hd_flags |= HPET_SHARED_IRQ;
445         spin_unlock_irq(&hpet_lock);
446
447         irq = devp->hd_hdwirq;
448
449         if (irq) {
450                 unsigned long irq_flags;
451
452                 if (devp->hd_flags & HPET_SHARED_IRQ) {
453                         /*
454                          * To prevent the interrupt handler from seeing an
455                          * unwanted interrupt status bit, program the timer
456                          * so that it will not fire in the near future ...
457                          */
458                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
459                                &timer->hpet_config);
460                         write_counter(read_counter(&hpet->hpet_mc),
461                                       &timer->hpet_compare);
462                         /* ... and clear any left-over status. */
463                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
464                         writel(isr, &hpet->hpet_isr);
465                 }
466
467                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
468                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
469                 if (request_irq(irq, hpet_interrupt, irq_flags,
470                                 devp->hd_name, (void *)devp)) {
471                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
472                         irq = 0;
473                 }
474         }
475
476         if (irq == 0) {
477                 spin_lock_irq(&hpet_lock);
478                 devp->hd_flags ^= HPET_IE;
479                 spin_unlock_irq(&hpet_lock);
480                 return -EIO;
481         }
482
483         devp->hd_irq = irq;
484         t = devp->hd_ireqfreq;
485         v = readq(&timer->hpet_config);
486
487         /* 64-bit comparators are not yet supported through the ioctls,
488          * so force this into 32-bit mode if it supports both modes
489          */
490         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
491
492         if (devp->hd_flags & HPET_PERIODIC) {
493                 g |= Tn_TYPE_CNF_MASK;
494                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
495                 writeq(v, &timer->hpet_config);
496                 local_irq_save(flags);
497
498                 /*
499                  * NOTE: First we modify the hidden accumulator
500                  * register supported by periodic-capable comparators.
501                  * We never want to modify the (single) counter; that
502                  * would affect all the comparators. The value written
503                  * is the counter value when the first interrupt is due.
504                  */
505                 m = read_counter(&hpet->hpet_mc);
506                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
507                 /*
508                  * Then we modify the comparator, indicating the period
509                  * for subsequent interrupt.
510                  */
511                 write_counter(t, &timer->hpet_compare);
512         } else {
513                 local_irq_save(flags);
514                 m = read_counter(&hpet->hpet_mc);
515                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
516         }
517
518         if (devp->hd_flags & HPET_SHARED_IRQ) {
519                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
520                 writel(isr, &hpet->hpet_isr);
521         }
522         writeq(g, &timer->hpet_config);
523         local_irq_restore(flags);
524
525         return 0;
526 }
527
528 /* converts Hz to number of timer ticks */
529 static inline unsigned long hpet_time_div(struct hpets *hpets,
530                                           unsigned long dis)
531 {
532         unsigned long long m;
533
534         m = hpets->hp_tick_freq + (dis >> 1);
535         return div64_ul(m, dis);
536 }
537
538 static int
539 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
540                   struct hpet_info *info)
541 {
542         struct hpet_timer __iomem *timer;
543         struct hpets *hpetp;
544         int err;
545         unsigned long v;
546
547         switch (cmd) {
548         case HPET_IE_OFF:
549         case HPET_INFO:
550         case HPET_EPI:
551         case HPET_DPI:
552         case HPET_IRQFREQ:
553                 timer = devp->hd_timer;
554                 hpetp = devp->hd_hpets;
555                 break;
556         case HPET_IE_ON:
557                 return hpet_ioctl_ieon(devp);
558         default:
559                 return -EINVAL;
560         }
561
562         err = 0;
563
564         switch (cmd) {
565         case HPET_IE_OFF:
566                 if ((devp->hd_flags & HPET_IE) == 0)
567                         break;
568                 v = readq(&timer->hpet_config);
569                 v &= ~Tn_INT_ENB_CNF_MASK;
570                 writeq(v, &timer->hpet_config);
571                 if (devp->hd_irq) {
572                         free_irq(devp->hd_irq, devp);
573                         devp->hd_irq = 0;
574                 }
575                 devp->hd_flags ^= HPET_IE;
576                 break;
577         case HPET_INFO:
578                 {
579                         memset(info, 0, sizeof(*info));
580                         if (devp->hd_ireqfreq)
581                                 info->hi_ireqfreq =
582                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
583                         info->hi_flags =
584                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
585                         info->hi_hpet = hpetp->hp_which;
586                         info->hi_timer = devp - hpetp->hp_dev;
587                         break;
588                 }
589         case HPET_EPI:
590                 v = readq(&timer->hpet_config);
591                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
592                         err = -ENXIO;
593                         break;
594                 }
595                 devp->hd_flags |= HPET_PERIODIC;
596                 break;
597         case HPET_DPI:
598                 v = readq(&timer->hpet_config);
599                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
600                         err = -ENXIO;
601                         break;
602                 }
603                 if (devp->hd_flags & HPET_PERIODIC &&
604                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
605                         v = readq(&timer->hpet_config);
606                         v ^= Tn_TYPE_CNF_MASK;
607                         writeq(v, &timer->hpet_config);
608                 }
609                 devp->hd_flags &= ~HPET_PERIODIC;
610                 break;
611         case HPET_IRQFREQ:
612                 if ((arg > hpet_max_freq) &&
613                     !capable(CAP_SYS_RESOURCE)) {
614                         err = -EACCES;
615                         break;
616                 }
617
618                 if (!arg) {
619                         err = -EINVAL;
620                         break;
621                 }
622
623                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
624         }
625
626         return err;
627 }
628
629 static long
630 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
631 {
632         struct hpet_info info;
633         int err;
634
635         mutex_lock(&hpet_mutex);
636         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
637         mutex_unlock(&hpet_mutex);
638
639         if ((cmd == HPET_INFO) && !err &&
640             (copy_to_user((void __user *)arg, &info, sizeof(info))))
641                 err = -EFAULT;
642
643         return err;
644 }
645
646 #ifdef CONFIG_COMPAT
647 struct compat_hpet_info {
648         compat_ulong_t hi_ireqfreq;     /* Hz */
649         compat_ulong_t hi_flags;        /* information */
650         unsigned short hi_hpet;
651         unsigned short hi_timer;
652 };
653
654 static long
655 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656 {
657         struct hpet_info info;
658         int err;
659
660         mutex_lock(&hpet_mutex);
661         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
662         mutex_unlock(&hpet_mutex);
663
664         if ((cmd == HPET_INFO) && !err) {
665                 struct compat_hpet_info __user *u = compat_ptr(arg);
666                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
667                     put_user(info.hi_flags, &u->hi_flags) ||
668                     put_user(info.hi_hpet, &u->hi_hpet) ||
669                     put_user(info.hi_timer, &u->hi_timer))
670                         err = -EFAULT;
671         }
672
673         return err;
674 }
675 #endif
676
677 static const struct file_operations hpet_fops = {
678         .owner = THIS_MODULE,
679         .llseek = no_llseek,
680         .read = hpet_read,
681         .poll = hpet_poll,
682         .unlocked_ioctl = hpet_ioctl,
683 #ifdef CONFIG_COMPAT
684         .compat_ioctl = hpet_compat_ioctl,
685 #endif
686         .open = hpet_open,
687         .release = hpet_release,
688         .fasync = hpet_fasync,
689         .mmap = hpet_mmap,
690 };
691
692 static int hpet_is_known(struct hpet_data *hdp)
693 {
694         struct hpets *hpetp;
695
696         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
697                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
698                         return 1;
699
700         return 0;
701 }
702
703 static struct ctl_table hpet_table[] = {
704         {
705          .procname = "max-user-freq",
706          .data = &hpet_max_freq,
707          .maxlen = sizeof(int),
708          .mode = 0644,
709          .proc_handler = proc_dointvec,
710          },
711 };
712
713 static struct ctl_table_header *sysctl_header;
714
715 /*
716  * Adjustment for when arming the timer with
717  * initial conditions.  That is, main counter
718  * ticks expired before interrupts are enabled.
719  */
720 #define TICK_CALIBRATE  (1000UL)
721
722 static unsigned long __hpet_calibrate(struct hpets *hpetp)
723 {
724         struct hpet_timer __iomem *timer = NULL;
725         unsigned long t, m, count, i, flags, start;
726         struct hpet_dev *devp;
727         int j;
728         struct hpet __iomem *hpet;
729
730         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
731                 if ((devp->hd_flags & HPET_OPEN) == 0) {
732                         timer = devp->hd_timer;
733                         break;
734                 }
735
736         if (!timer)
737                 return 0;
738
739         hpet = hpetp->hp_hpet;
740         t = read_counter(&timer->hpet_compare);
741
742         i = 0;
743         count = hpet_time_div(hpetp, TICK_CALIBRATE);
744
745         local_irq_save(flags);
746
747         start = read_counter(&hpet->hpet_mc);
748
749         do {
750                 m = read_counter(&hpet->hpet_mc);
751                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
752         } while (i++, (m - start) < count);
753
754         local_irq_restore(flags);
755
756         return (m - start) / i;
757 }
758
759 static unsigned long hpet_calibrate(struct hpets *hpetp)
760 {
761         unsigned long ret = ~0UL;
762         unsigned long tmp;
763
764         /*
765          * Try to calibrate until return value becomes stable small value.
766          * If SMI interruption occurs in calibration loop, the return value
767          * will be big. This avoids its impact.
768          */
769         for ( ; ; ) {
770                 tmp = __hpet_calibrate(hpetp);
771                 if (ret <= tmp)
772                         break;
773                 ret = tmp;
774         }
775
776         return ret;
777 }
778
779 int hpet_alloc(struct hpet_data *hdp)
780 {
781         u64 cap, mcfg;
782         struct hpet_dev *devp;
783         u32 i, ntimer;
784         struct hpets *hpetp;
785         struct hpet __iomem *hpet;
786         static struct hpets *last;
787         unsigned long period;
788         unsigned long long temp;
789         u32 remainder;
790
791         /*
792          * hpet_alloc can be called by platform dependent code.
793          * If platform dependent code has allocated the hpet that
794          * ACPI has also reported, then we catch it here.
795          */
796         if (hpet_is_known(hdp)) {
797                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
798                         __func__);
799                 return 0;
800         }
801
802         hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
803                         GFP_KERNEL);
804
805         if (!hpetp)
806                 return -ENOMEM;
807
808         hpetp->hp_which = hpet_nhpet++;
809         hpetp->hp_hpet = hdp->hd_address;
810         hpetp->hp_hpet_phys = hdp->hd_phys_address;
811
812         hpetp->hp_ntimer = hdp->hd_nirqs;
813
814         for (i = 0; i < hdp->hd_nirqs; i++)
815                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
816
817         hpet = hpetp->hp_hpet;
818
819         cap = readq(&hpet->hpet_cap);
820
821         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
822
823         if (hpetp->hp_ntimer != ntimer) {
824                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
825                        " with number of timers\n");
826                 kfree(hpetp);
827                 return -ENODEV;
828         }
829
830         if (last)
831                 last->hp_next = hpetp;
832         else
833                 hpets = hpetp;
834
835         last = hpetp;
836
837         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
838                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
839         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
840         temp += period >> 1; /* round */
841         do_div(temp, period);
842         hpetp->hp_tick_freq = temp; /* ticks per second */
843
844         printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
845                 hpetp->hp_which, hdp->hd_phys_address,
846                 hpetp->hp_ntimer > 1 ? "s" : "");
847         for (i = 0; i < hpetp->hp_ntimer; i++)
848                 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
849         printk(KERN_CONT "\n");
850
851         temp = hpetp->hp_tick_freq;
852         remainder = do_div(temp, 1000000);
853         printk(KERN_INFO
854                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
855                 hpetp->hp_which, hpetp->hp_ntimer,
856                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
857                 (unsigned) temp, remainder);
858
859         mcfg = readq(&hpet->hpet_config);
860         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
861                 write_counter(0L, &hpet->hpet_mc);
862                 mcfg |= HPET_ENABLE_CNF_MASK;
863                 writeq(mcfg, &hpet->hpet_config);
864         }
865
866         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
867                 struct hpet_timer __iomem *timer;
868
869                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
870
871                 devp->hd_hpets = hpetp;
872                 devp->hd_hpet = hpet;
873                 devp->hd_timer = timer;
874
875                 /*
876                  * If the timer was reserved by platform code,
877                  * then make timer unavailable for opens.
878                  */
879                 if (hdp->hd_state & (1 << i)) {
880                         devp->hd_flags = HPET_OPEN;
881                         continue;
882                 }
883
884                 init_waitqueue_head(&devp->hd_waitqueue);
885         }
886
887         hpetp->hp_delta = hpet_calibrate(hpetp);
888
889         return 0;
890 }
891
892 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
893 {
894         struct hpet_data *hdp;
895         acpi_status status;
896         struct acpi_resource_address64 addr;
897
898         hdp = data;
899
900         status = acpi_resource_to_address64(res, &addr);
901
902         if (ACPI_SUCCESS(status)) {
903                 hdp->hd_phys_address = addr.address.minimum;
904                 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
905                 if (!hdp->hd_address)
906                         return AE_ERROR;
907
908                 if (hpet_is_known(hdp)) {
909                         iounmap(hdp->hd_address);
910                         return AE_ALREADY_EXISTS;
911                 }
912         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
913                 struct acpi_resource_fixed_memory32 *fixmem32;
914
915                 fixmem32 = &res->data.fixed_memory32;
916
917                 hdp->hd_phys_address = fixmem32->address;
918                 hdp->hd_address = ioremap(fixmem32->address,
919                                                 HPET_RANGE_SIZE);
920                 if (!hdp->hd_address)
921                         return AE_ERROR;
922
923                 if (hpet_is_known(hdp)) {
924                         iounmap(hdp->hd_address);
925                         return AE_ALREADY_EXISTS;
926                 }
927         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
928                 struct acpi_resource_extended_irq *irqp;
929                 int i, irq;
930
931                 irqp = &res->data.extended_irq;
932
933                 for (i = 0; i < irqp->interrupt_count; i++) {
934                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
935                                 break;
936
937                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
938                                                 irqp->triggering,
939                                                 irqp->polarity);
940                         if (irq < 0)
941                                 return AE_ERROR;
942
943                         hdp->hd_irq[hdp->hd_nirqs] = irq;
944                         hdp->hd_nirqs++;
945                 }
946         }
947
948         return AE_OK;
949 }
950
951 static int hpet_acpi_add(struct acpi_device *device)
952 {
953         acpi_status result;
954         struct hpet_data data;
955
956         memset(&data, 0, sizeof(data));
957
958         result =
959             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
960                                 hpet_resources, &data);
961
962         if (ACPI_FAILURE(result))
963                 return -ENODEV;
964
965         if (!data.hd_address || !data.hd_nirqs) {
966                 if (data.hd_address)
967                         iounmap(data.hd_address);
968                 printk("%s: no address or irqs in _CRS\n", __func__);
969                 return -ENODEV;
970         }
971
972         return hpet_alloc(&data);
973 }
974
975 static const struct acpi_device_id hpet_device_ids[] = {
976         {"PNP0103", 0},
977         {"", 0},
978 };
979
980 static struct acpi_driver hpet_acpi_driver = {
981         .name = "hpet",
982         .ids = hpet_device_ids,
983         .ops = {
984                 .add = hpet_acpi_add,
985                 },
986 };
987
988 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
989
990 static int __init hpet_init(void)
991 {
992         int result;
993
994         result = misc_register(&hpet_misc);
995         if (result < 0)
996                 return -ENODEV;
997
998         sysctl_header = register_sysctl("dev/hpet", hpet_table);
999
1000         result = acpi_bus_register_driver(&hpet_acpi_driver);
1001         if (result < 0) {
1002                 if (sysctl_header)
1003                         unregister_sysctl_table(sysctl_header);
1004                 misc_deregister(&hpet_misc);
1005                 return result;
1006         }
1007
1008         return 0;
1009 }
1010 device_initcall(hpet_init);
1011
1012 /*
1013 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1014 MODULE_LICENSE("GPL");
1015 */