Merge tag '6.9-rc5-cifs-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE          0
49 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
52 #define DESCRIPTOR_STATUS               (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
54 #define DESCRIPTOR_PING                 (1 << 7)
55 #define DESCRIPTOR_YY                   (1 << 6)
56 #define DESCRIPTOR_NO_IRQ               (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
60 #define DESCRIPTOR_WAIT                 (3 << 0)
61
62 #define DESCRIPTOR_CMD                  (0xf << 12)
63
64 struct descriptor {
65         __le16 req_count;
66         __le16 control;
67         __le32 data_address;
68         __le32 branch_address;
69         __le16 res_count;
70         __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 #define AR_BUFFER_SIZE  (32*1024)
79 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD       4096
84 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct page *pages[AR_BUFFERS];
90         void *buffer;
91         struct descriptor *descriptors;
92         dma_addr_t descriptors_bus;
93         void *pointer;
94         unsigned int last_buffer_index;
95         u32 regs;
96         struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102                                      struct descriptor *d,
103                                      struct descriptor *last);
104
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110         struct list_head list;
111         dma_addr_t buffer_bus;
112         size_t buffer_size;
113         size_t used;
114         struct descriptor buffer[];
115 };
116
117 struct context {
118         struct fw_ohci *ohci;
119         u32 regs;
120         int total_allocation;
121         u32 current_bus;
122         bool running;
123         bool flushing;
124
125         /*
126          * List of page-sized buffers for storing DMA descriptors.
127          * Head of list contains buffers in use and tail of list contains
128          * free buffers.
129          */
130         struct list_head buffer_list;
131
132         /*
133          * Pointer to a buffer inside buffer_list that contains the tail
134          * end of the current DMA program.
135          */
136         struct descriptor_buffer *buffer_tail;
137
138         /*
139          * The descriptor containing the branch address of the first
140          * descriptor that has not yet been filled by the device.
141          */
142         struct descriptor *last;
143
144         /*
145          * The last descriptor block in the DMA program. It contains the branch
146          * address that must be updated upon appending a new descriptor.
147          */
148         struct descriptor *prev;
149         int prev_z;
150
151         descriptor_callback_t callback;
152
153         struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164         struct fw_iso_context base;
165         struct context context;
166         void *header;
167         size_t header_length;
168         unsigned long flushing_completions;
169         u32 mc_buffer_bus;
170         u16 mc_completed;
171         u16 last_timestamp;
172         u8 sync;
173         u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179         struct fw_card card;
180
181         __iomem char *registers;
182         int node_id;
183         int generation;
184         int request_generation; /* for timestamping incoming requests */
185         unsigned quirks;
186         unsigned int pri_req_max;
187         u32 bus_time;
188         bool bus_time_running;
189         bool is_root;
190         bool csr_state_setclear_abdicate;
191         int n_ir;
192         int n_it;
193         /*
194          * Spinlock for accessing fw_ohci data.  Never call out of
195          * this driver with this lock held.
196          */
197         spinlock_t lock;
198
199         struct mutex phy_reg_mutex;
200
201         void *misc_buffer;
202         dma_addr_t misc_buffer_bus;
203
204         struct ar_context ar_request_ctx;
205         struct ar_context ar_response_ctx;
206         struct context at_request_ctx;
207         struct context at_response_ctx;
208
209         u32 it_context_support;
210         u32 it_context_mask;     /* unoccupied IT contexts */
211         struct iso_context *it_context_list;
212         u64 ir_context_channels; /* unoccupied channels */
213         u32 ir_context_support;
214         u32 ir_context_mask;     /* unoccupied IR contexts */
215         struct iso_context *ir_context_list;
216         u64 mc_channels; /* channels in use by the multichannel IR context */
217         bool mc_allocated;
218
219         __be32    *config_rom;
220         dma_addr_t config_rom_bus;
221         __be32    *next_config_rom;
222         dma_addr_t next_config_rom_bus;
223         __be32     next_header;
224
225         __le32    *self_id;
226         dma_addr_t self_id_bus;
227         struct work_struct bus_reset_work;
228
229         u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI1394_PCI_HCI_Control        0x40
257 #define SELF_ID_BUF_SIZE                0x800
258 #define OHCI_TCODE_PHY_PACKET           0x0e
259 #define OHCI_VERSION_1_1                0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
271 #define PCI_REV_ID_VIA_VT6306           0x46
272 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
273
274 #define QUIRK_CYCLE_TIMER               0x1
275 #define QUIRK_RESET_PACKET              0x2
276 #define QUIRK_BE_HEADERS                0x4
277 #define QUIRK_NO_1394A                  0x8
278 #define QUIRK_NO_MSI                    0x10
279 #define QUIRK_TI_SLLZ059                0x20
280 #define QUIRK_IR_WAKE                   0x40
281
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ        0x80000000
288
289 #if IS_ENABLED(CONFIG_X86)
290
291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293         return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X   0x1080
297
298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300         const struct pci_dev *pcie_to_pci_bridge;
301
302         // Detect any type of AMD Ryzen machine.
303         if (!static_cpu_has(X86_FEATURE_ZEN))
304                 return false;
305
306         // Detect VIA VT6306/6307/6308.
307         if (pdev->vendor != PCI_VENDOR_ID_VIA)
308                 return false;
309         if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310                 return false;
311
312         // Detect Asmedia ASM1083/1085.
313         pcie_to_pci_bridge = pdev->bus->self;
314         if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315                 return false;
316         if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317                 return false;
318
319         return true;
320 }
321
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)   false
325 #endif
326
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329         unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332                 QUIRK_CYCLE_TIMER},
333
334         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335                 QUIRK_BE_HEADERS},
336
337         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338                 QUIRK_NO_MSI},
339
340         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341                 QUIRK_RESET_PACKET},
342
343         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344                 QUIRK_NO_MSI},
345
346         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347                 QUIRK_CYCLE_TIMER},
348
349         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350                 QUIRK_NO_MSI},
351
352         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365                 QUIRK_RESET_PACKET},
366
367         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374                 QUIRK_NO_MSI},
375
376         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
385         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
386         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
387         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
388         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
389         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
390         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
391         ")");
392
393 #define OHCI_PARAM_DEBUG_AT_AR          1
394 #define OHCI_PARAM_DEBUG_SELFIDS        2
395 #define OHCI_PARAM_DEBUG_IRQS           4
396 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
397
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
402         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
403         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
404         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405         ", or a combination, or all = -1)");
406
407 static bool param_remote_dma;
408 module_param_named(remote_dma, param_remote_dma, bool, 0444);
409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410
411 static void log_irqs(struct fw_ohci *ohci, u32 evt)
412 {
413         if (likely(!(param_debug &
414                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415                 return;
416
417         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418             !(evt & OHCI1394_busReset))
419                 return;
420
421         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
423             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
424             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
425             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
426             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
427             evt & OHCI1394_isochRx              ? " IR"                 : "",
428             evt & OHCI1394_isochTx              ? " IT"                 : "",
429             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
430             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
431             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
432             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
433             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
434             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
435             evt & OHCI1394_busReset             ? " busReset"           : "",
436             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438                     OHCI1394_respTxComplete | OHCI1394_isochRx |
439                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
440                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441                     OHCI1394_cycleInconsistent |
442                     OHCI1394_regAccessFail | OHCI1394_busReset)
443                                                 ? " ?"                  : "");
444 }
445
446 static const char *speed[] = {
447         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448 };
449 static const char *power[] = {
450         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452 };
453 static const char port[] = { '.', '-', 'p', 'c', };
454
455 static char _p(u32 *s, int shift)
456 {
457         return port[*s >> shift & 3];
458 }
459
460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461 {
462         u32 *s;
463
464         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465                 return;
466
467         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468                     self_id_count, generation, ohci->node_id);
469
470         for (s = ohci->self_id_buffer; self_id_count--; ++s)
471                 if ((*s & 1 << 23) == 0)
472                         ohci_notice(ohci,
473                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475                             speed[*s >> 14 & 3], *s >> 16 & 63,
476                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478                 else
479                         ohci_notice(ohci,
480                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481                             *s, *s >> 24 & 63,
482                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484 }
485
486 static const char *evts[] = {
487         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
488         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
489         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
490         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
491         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
492         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
493         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
494         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
495         [0x10] = "-reserved-",          [0x11] = "ack_complete",
496         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
497         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
498         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
499         [0x18] = "-reserved-",          [0x19] = "-reserved-",
500         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
501         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
502         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
503         [0x20] = "pending/cancelled",
504 };
505 static const char *tcodes[] = {
506         [0x0] = "QW req",               [0x1] = "BW req",
507         [0x2] = "W resp",               [0x3] = "-reserved-",
508         [0x4] = "QR req",               [0x5] = "BR req",
509         [0x6] = "QR resp",              [0x7] = "BR resp",
510         [0x8] = "cycle start",          [0x9] = "Lk req",
511         [0xa] = "async stream packet",  [0xb] = "Lk resp",
512         [0xc] = "-reserved-",           [0xd] = "-reserved-",
513         [0xe] = "link internal",        [0xf] = "-reserved-",
514 };
515
516 static void log_ar_at_event(struct fw_ohci *ohci,
517                             char dir, int speed, u32 *header, int evt)
518 {
519         int tcode = header[0] >> 4 & 0xf;
520         char specific[12];
521
522         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523                 return;
524
525         if (unlikely(evt >= ARRAY_SIZE(evts)))
526                         evt = 0x1f;
527
528         if (evt == OHCI1394_evt_bus_reset) {
529                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530                             dir, (header[2] >> 16) & 0xff);
531                 return;
532         }
533
534         switch (tcode) {
535         case 0x0: case 0x6: case 0x8:
536                 snprintf(specific, sizeof(specific), " = %08x",
537                          be32_to_cpu((__force __be32)header[3]));
538                 break;
539         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540                 snprintf(specific, sizeof(specific), " %x,%x",
541                          header[3] >> 16, header[3] & 0xffff);
542                 break;
543         default:
544                 specific[0] = '\0';
545         }
546
547         switch (tcode) {
548         case 0xa:
549                 ohci_notice(ohci, "A%c %s, %s\n",
550                             dir, evts[evt], tcodes[tcode]);
551                 break;
552         case 0xe:
553                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554                             dir, evts[evt], header[1], header[2]);
555                 break;
556         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557                 ohci_notice(ohci,
558                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559                             dir, speed, header[0] >> 10 & 0x3f,
560                             header[1] >> 16, header[0] >> 16, evts[evt],
561                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
562                 break;
563         default:
564                 ohci_notice(ohci,
565                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566                             dir, speed, header[0] >> 10 & 0x3f,
567                             header[1] >> 16, header[0] >> 16, evts[evt],
568                             tcodes[tcode], specific);
569         }
570 }
571
572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573 {
574         writel(data, ohci->registers + offset);
575 }
576
577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578 {
579         return readl(ohci->registers + offset);
580 }
581
582 static inline void flush_writes(const struct fw_ohci *ohci)
583 {
584         /* Do a dummy read to flush writes. */
585         reg_read(ohci, OHCI1394_Version);
586 }
587
588 /*
589  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593  */
594 static int read_phy_reg(struct fw_ohci *ohci, int addr)
595 {
596         u32 val;
597         int i;
598
599         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600         for (i = 0; i < 3 + 100; i++) {
601                 val = reg_read(ohci, OHCI1394_PhyControl);
602                 if (!~val)
603                         return -ENODEV; /* Card was ejected. */
604
605                 if (val & OHCI1394_PhyControl_ReadDone)
606                         return OHCI1394_PhyControl_ReadData(val);
607
608                 /*
609                  * Try a few times without waiting.  Sleeping is necessary
610                  * only when the link/PHY interface is busy.
611                  */
612                 if (i >= 3)
613                         msleep(1);
614         }
615         ohci_err(ohci, "failed to read phy reg %d\n", addr);
616         dump_stack();
617
618         return -EBUSY;
619 }
620
621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622 {
623         int i;
624
625         reg_write(ohci, OHCI1394_PhyControl,
626                   OHCI1394_PhyControl_Write(addr, val));
627         for (i = 0; i < 3 + 100; i++) {
628                 val = reg_read(ohci, OHCI1394_PhyControl);
629                 if (!~val)
630                         return -ENODEV; /* Card was ejected. */
631
632                 if (!(val & OHCI1394_PhyControl_WritePending))
633                         return 0;
634
635                 if (i >= 3)
636                         msleep(1);
637         }
638         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639         dump_stack();
640
641         return -EBUSY;
642 }
643
644 static int update_phy_reg(struct fw_ohci *ohci, int addr,
645                           int clear_bits, int set_bits)
646 {
647         int ret = read_phy_reg(ohci, addr);
648         if (ret < 0)
649                 return ret;
650
651         /*
652          * The interrupt status bits are cleared by writing a one bit.
653          * Avoid clearing them unless explicitly requested in set_bits.
654          */
655         if (addr == 5)
656                 clear_bits |= PHY_INT_STATUS_BITS;
657
658         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659 }
660
661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662 {
663         int ret;
664
665         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666         if (ret < 0)
667                 return ret;
668
669         return read_phy_reg(ohci, addr);
670 }
671
672 static int ohci_read_phy_reg(struct fw_card *card, int addr)
673 {
674         struct fw_ohci *ohci = fw_ohci(card);
675         int ret;
676
677         mutex_lock(&ohci->phy_reg_mutex);
678         ret = read_phy_reg(ohci, addr);
679         mutex_unlock(&ohci->phy_reg_mutex);
680
681         return ret;
682 }
683
684 static int ohci_update_phy_reg(struct fw_card *card, int addr,
685                                int clear_bits, int set_bits)
686 {
687         struct fw_ohci *ohci = fw_ohci(card);
688         int ret;
689
690         mutex_lock(&ohci->phy_reg_mutex);
691         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692         mutex_unlock(&ohci->phy_reg_mutex);
693
694         return ret;
695 }
696
697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698 {
699         return page_private(ctx->pages[i]);
700 }
701
702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703 {
704         struct descriptor *d;
705
706         d = &ctx->descriptors[index];
707         d->branch_address  &= cpu_to_le32(~0xf);
708         d->res_count       =  cpu_to_le16(PAGE_SIZE);
709         d->transfer_status =  0;
710
711         wmb(); /* finish init of new descriptors before branch_address update */
712         d = &ctx->descriptors[ctx->last_buffer_index];
713         d->branch_address  |= cpu_to_le32(1);
714
715         ctx->last_buffer_index = index;
716
717         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718 }
719
720 static void ar_context_release(struct ar_context *ctx)
721 {
722         struct device *dev = ctx->ohci->card.device;
723         unsigned int i;
724
725         if (!ctx->buffer)
726                 return;
727
728         vunmap(ctx->buffer);
729
730         for (i = 0; i < AR_BUFFERS; i++) {
731                 if (ctx->pages[i])
732                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
733                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
734         }
735 }
736
737 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
738 {
739         struct fw_ohci *ohci = ctx->ohci;
740
741         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
742                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
743                 flush_writes(ohci);
744
745                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
746         }
747         /* FIXME: restart? */
748 }
749
750 static inline unsigned int ar_next_buffer_index(unsigned int index)
751 {
752         return (index + 1) % AR_BUFFERS;
753 }
754
755 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
756 {
757         return ar_next_buffer_index(ctx->last_buffer_index);
758 }
759
760 /*
761  * We search for the buffer that contains the last AR packet DMA data written
762  * by the controller.
763  */
764 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
765                                                  unsigned int *buffer_offset)
766 {
767         unsigned int i, next_i, last = ctx->last_buffer_index;
768         __le16 res_count, next_res_count;
769
770         i = ar_first_buffer_index(ctx);
771         res_count = READ_ONCE(ctx->descriptors[i].res_count);
772
773         /* A buffer that is not yet completely filled must be the last one. */
774         while (i != last && res_count == 0) {
775
776                 /* Peek at the next descriptor. */
777                 next_i = ar_next_buffer_index(i);
778                 rmb(); /* read descriptors in order */
779                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
780                 /*
781                  * If the next descriptor is still empty, we must stop at this
782                  * descriptor.
783                  */
784                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
785                         /*
786                          * The exception is when the DMA data for one packet is
787                          * split over three buffers; in this case, the middle
788                          * buffer's descriptor might be never updated by the
789                          * controller and look still empty, and we have to peek
790                          * at the third one.
791                          */
792                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
793                                 next_i = ar_next_buffer_index(next_i);
794                                 rmb();
795                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
796                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
797                                         goto next_buffer_is_active;
798                         }
799
800                         break;
801                 }
802
803 next_buffer_is_active:
804                 i = next_i;
805                 res_count = next_res_count;
806         }
807
808         rmb(); /* read res_count before the DMA data */
809
810         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
811         if (*buffer_offset > PAGE_SIZE) {
812                 *buffer_offset = 0;
813                 ar_context_abort(ctx, "corrupted descriptor");
814         }
815
816         return i;
817 }
818
819 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
820                                     unsigned int end_buffer_index,
821                                     unsigned int end_buffer_offset)
822 {
823         unsigned int i;
824
825         i = ar_first_buffer_index(ctx);
826         while (i != end_buffer_index) {
827                 dma_sync_single_for_cpu(ctx->ohci->card.device,
828                                         ar_buffer_bus(ctx, i),
829                                         PAGE_SIZE, DMA_FROM_DEVICE);
830                 i = ar_next_buffer_index(i);
831         }
832         if (end_buffer_offset > 0)
833                 dma_sync_single_for_cpu(ctx->ohci->card.device,
834                                         ar_buffer_bus(ctx, i),
835                                         end_buffer_offset, DMA_FROM_DEVICE);
836 }
837
838 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
839 #define cond_le32_to_cpu(v) \
840         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
841 #else
842 #define cond_le32_to_cpu(v) le32_to_cpu(v)
843 #endif
844
845 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
846 {
847         struct fw_ohci *ohci = ctx->ohci;
848         struct fw_packet p;
849         u32 status, length, tcode;
850         int evt;
851
852         p.header[0] = cond_le32_to_cpu(buffer[0]);
853         p.header[1] = cond_le32_to_cpu(buffer[1]);
854         p.header[2] = cond_le32_to_cpu(buffer[2]);
855
856         tcode = (p.header[0] >> 4) & 0x0f;
857         switch (tcode) {
858         case TCODE_WRITE_QUADLET_REQUEST:
859         case TCODE_READ_QUADLET_RESPONSE:
860                 p.header[3] = (__force __u32) buffer[3];
861                 p.header_length = 16;
862                 p.payload_length = 0;
863                 break;
864
865         case TCODE_READ_BLOCK_REQUEST :
866                 p.header[3] = cond_le32_to_cpu(buffer[3]);
867                 p.header_length = 16;
868                 p.payload_length = 0;
869                 break;
870
871         case TCODE_WRITE_BLOCK_REQUEST:
872         case TCODE_READ_BLOCK_RESPONSE:
873         case TCODE_LOCK_REQUEST:
874         case TCODE_LOCK_RESPONSE:
875                 p.header[3] = cond_le32_to_cpu(buffer[3]);
876                 p.header_length = 16;
877                 p.payload_length = p.header[3] >> 16;
878                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
879                         ar_context_abort(ctx, "invalid packet length");
880                         return NULL;
881                 }
882                 break;
883
884         case TCODE_WRITE_RESPONSE:
885         case TCODE_READ_QUADLET_REQUEST:
886         case OHCI_TCODE_PHY_PACKET:
887                 p.header_length = 12;
888                 p.payload_length = 0;
889                 break;
890
891         default:
892                 ar_context_abort(ctx, "invalid tcode");
893                 return NULL;
894         }
895
896         p.payload = (void *) buffer + p.header_length;
897
898         /* FIXME: What to do about evt_* errors? */
899         length = (p.header_length + p.payload_length + 3) / 4;
900         status = cond_le32_to_cpu(buffer[length]);
901         evt    = (status >> 16) & 0x1f;
902
903         p.ack        = evt - 16;
904         p.speed      = (status >> 21) & 0x7;
905         p.timestamp  = status & 0xffff;
906         p.generation = ohci->request_generation;
907
908         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
909
910         /*
911          * Several controllers, notably from NEC and VIA, forget to
912          * write ack_complete status at PHY packet reception.
913          */
914         if (evt == OHCI1394_evt_no_status &&
915             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
916                 p.ack = ACK_COMPLETE;
917
918         /*
919          * The OHCI bus reset handler synthesizes a PHY packet with
920          * the new generation number when a bus reset happens (see
921          * section 8.4.2.3).  This helps us determine when a request
922          * was received and make sure we send the response in the same
923          * generation.  We only need this for requests; for responses
924          * we use the unique tlabel for finding the matching
925          * request.
926          *
927          * Alas some chips sometimes emit bus reset packets with a
928          * wrong generation.  We set the correct generation for these
929          * at a slightly incorrect time (in bus_reset_work).
930          */
931         if (evt == OHCI1394_evt_bus_reset) {
932                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
933                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
934         } else if (ctx == &ohci->ar_request_ctx) {
935                 fw_core_handle_request(&ohci->card, &p);
936         } else {
937                 fw_core_handle_response(&ohci->card, &p);
938         }
939
940         return buffer + length + 1;
941 }
942
943 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
944 {
945         void *next;
946
947         while (p < end) {
948                 next = handle_ar_packet(ctx, p);
949                 if (!next)
950                         return p;
951                 p = next;
952         }
953
954         return p;
955 }
956
957 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
958 {
959         unsigned int i;
960
961         i = ar_first_buffer_index(ctx);
962         while (i != end_buffer) {
963                 dma_sync_single_for_device(ctx->ohci->card.device,
964                                            ar_buffer_bus(ctx, i),
965                                            PAGE_SIZE, DMA_FROM_DEVICE);
966                 ar_context_link_page(ctx, i);
967                 i = ar_next_buffer_index(i);
968         }
969 }
970
971 static void ar_context_tasklet(unsigned long data)
972 {
973         struct ar_context *ctx = (struct ar_context *)data;
974         unsigned int end_buffer_index, end_buffer_offset;
975         void *p, *end;
976
977         p = ctx->pointer;
978         if (!p)
979                 return;
980
981         end_buffer_index = ar_search_last_active_buffer(ctx,
982                                                         &end_buffer_offset);
983         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
984         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
985
986         if (end_buffer_index < ar_first_buffer_index(ctx)) {
987                 /*
988                  * The filled part of the overall buffer wraps around; handle
989                  * all packets up to the buffer end here.  If the last packet
990                  * wraps around, its tail will be visible after the buffer end
991                  * because the buffer start pages are mapped there again.
992                  */
993                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
994                 p = handle_ar_packets(ctx, p, buffer_end);
995                 if (p < buffer_end)
996                         goto error;
997                 /* adjust p to point back into the actual buffer */
998                 p -= AR_BUFFERS * PAGE_SIZE;
999         }
1000
1001         p = handle_ar_packets(ctx, p, end);
1002         if (p != end) {
1003                 if (p > end)
1004                         ar_context_abort(ctx, "inconsistent descriptor");
1005                 goto error;
1006         }
1007
1008         ctx->pointer = p;
1009         ar_recycle_buffers(ctx, end_buffer_index);
1010
1011         return;
1012
1013 error:
1014         ctx->pointer = NULL;
1015 }
1016
1017 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018                            unsigned int descriptors_offset, u32 regs)
1019 {
1020         struct device *dev = ohci->card.device;
1021         unsigned int i;
1022         dma_addr_t dma_addr;
1023         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024         struct descriptor *d;
1025
1026         ctx->regs        = regs;
1027         ctx->ohci        = ohci;
1028         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030         for (i = 0; i < AR_BUFFERS; i++) {
1031                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032                                                 DMA_FROM_DEVICE, GFP_KERNEL);
1033                 if (!ctx->pages[i])
1034                         goto out_of_memory;
1035                 set_page_private(ctx->pages[i], dma_addr);
1036                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037                                            DMA_FROM_DEVICE);
1038         }
1039
1040         for (i = 0; i < AR_BUFFERS; i++)
1041                 pages[i]              = ctx->pages[i];
1042         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043                 pages[AR_BUFFERS + i] = ctx->pages[i];
1044         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045         if (!ctx->buffer)
1046                 goto out_of_memory;
1047
1048         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051         for (i = 0; i < AR_BUFFERS; i++) {
1052                 d = &ctx->descriptors[i];
1053                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1054                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055                                                 DESCRIPTOR_STATUS |
1056                                                 DESCRIPTOR_BRANCH_ALWAYS);
1057                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1060         }
1061
1062         return 0;
1063
1064 out_of_memory:
1065         ar_context_release(ctx);
1066
1067         return -ENOMEM;
1068 }
1069
1070 static void ar_context_run(struct ar_context *ctx)
1071 {
1072         unsigned int i;
1073
1074         for (i = 0; i < AR_BUFFERS; i++)
1075                 ar_context_link_page(ctx, i);
1076
1077         ctx->pointer = ctx->buffer;
1078
1079         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081 }
1082
1083 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084 {
1085         __le16 branch;
1086
1087         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089         /* figure out which descriptor the branch address goes in */
1090         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091                 return d;
1092         else
1093                 return d + z - 1;
1094 }
1095
1096 static void context_tasklet(unsigned long data)
1097 {
1098         struct context *ctx = (struct context *) data;
1099         struct descriptor *d, *last;
1100         u32 address;
1101         int z;
1102         struct descriptor_buffer *desc;
1103
1104         desc = list_entry(ctx->buffer_list.next,
1105                         struct descriptor_buffer, list);
1106         last = ctx->last;
1107         while (last->branch_address != 0) {
1108                 struct descriptor_buffer *old_desc = desc;
1109                 address = le32_to_cpu(last->branch_address);
1110                 z = address & 0xf;
1111                 address &= ~0xf;
1112                 ctx->current_bus = address;
1113
1114                 /* If the branch address points to a buffer outside of the
1115                  * current buffer, advance to the next buffer. */
1116                 if (address < desc->buffer_bus ||
1117                                 address >= desc->buffer_bus + desc->used)
1118                         desc = list_entry(desc->list.next,
1119                                         struct descriptor_buffer, list);
1120                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121                 last = find_branch_descriptor(d, z);
1122
1123                 if (!ctx->callback(ctx, d, last))
1124                         break;
1125
1126                 if (old_desc != desc) {
1127                         /* If we've advanced to the next buffer, move the
1128                          * previous buffer to the free list. */
1129                         unsigned long flags;
1130                         old_desc->used = 0;
1131                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1132                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1133                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134                 }
1135                 ctx->last = last;
1136         }
1137 }
1138
1139 /*
1140  * Allocate a new buffer and add it to the list of free buffers for this
1141  * context.  Must be called with ohci->lock held.
1142  */
1143 static int context_add_buffer(struct context *ctx)
1144 {
1145         struct descriptor_buffer *desc;
1146         dma_addr_t bus_addr;
1147         int offset;
1148
1149         /*
1150          * 16MB of descriptors should be far more than enough for any DMA
1151          * program.  This will catch run-away userspace or DoS attacks.
1152          */
1153         if (ctx->total_allocation >= 16*1024*1024)
1154                 return -ENOMEM;
1155
1156         desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157         if (!desc)
1158                 return -ENOMEM;
1159
1160         offset = (void *)&desc->buffer - (void *)desc;
1161         /*
1162          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163          * for descriptors, even 0x10-byte ones. This can cause page faults when
1164          * an IOMMU is in use and the oversized read crosses a page boundary.
1165          * Work around this by always leaving at least 0x10 bytes of padding.
1166          */
1167         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168         desc->buffer_bus = bus_addr + offset;
1169         desc->used = 0;
1170
1171         list_add_tail(&desc->list, &ctx->buffer_list);
1172         ctx->total_allocation += PAGE_SIZE;
1173
1174         return 0;
1175 }
1176
1177 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178                         u32 regs, descriptor_callback_t callback)
1179 {
1180         ctx->ohci = ohci;
1181         ctx->regs = regs;
1182         ctx->total_allocation = 0;
1183
1184         INIT_LIST_HEAD(&ctx->buffer_list);
1185         if (context_add_buffer(ctx) < 0)
1186                 return -ENOMEM;
1187
1188         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189                         struct descriptor_buffer, list);
1190
1191         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192         ctx->callback = callback;
1193
1194         /*
1195          * We put a dummy descriptor in the buffer that has a NULL
1196          * branch address and looks like it's been sent.  That way we
1197          * have a descriptor to append DMA programs to.
1198          */
1199         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203         ctx->last = ctx->buffer_tail->buffer;
1204         ctx->prev = ctx->buffer_tail->buffer;
1205         ctx->prev_z = 1;
1206
1207         return 0;
1208 }
1209
1210 static void context_release(struct context *ctx)
1211 {
1212         struct fw_card *card = &ctx->ohci->card;
1213         struct descriptor_buffer *desc, *tmp;
1214
1215         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216                 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217                                    desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218         }
1219 }
1220
1221 /* Must be called with ohci->lock held */
1222 static struct descriptor *context_get_descriptors(struct context *ctx,
1223                                                   int z, dma_addr_t *d_bus)
1224 {
1225         struct descriptor *d = NULL;
1226         struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228         if (z * sizeof(*d) > desc->buffer_size)
1229                 return NULL;
1230
1231         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232                 /* No room for the descriptor in this buffer, so advance to the
1233                  * next one. */
1234
1235                 if (desc->list.next == &ctx->buffer_list) {
1236                         /* If there is no free buffer next in the list,
1237                          * allocate one. */
1238                         if (context_add_buffer(ctx) < 0)
1239                                 return NULL;
1240                 }
1241                 desc = list_entry(desc->list.next,
1242                                 struct descriptor_buffer, list);
1243                 ctx->buffer_tail = desc;
1244         }
1245
1246         d = desc->buffer + desc->used / sizeof(*d);
1247         memset(d, 0, z * sizeof(*d));
1248         *d_bus = desc->buffer_bus + desc->used;
1249
1250         return d;
1251 }
1252
1253 static void context_run(struct context *ctx, u32 extra)
1254 {
1255         struct fw_ohci *ohci = ctx->ohci;
1256
1257         reg_write(ohci, COMMAND_PTR(ctx->regs),
1258                   le32_to_cpu(ctx->last->branch_address));
1259         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261         ctx->running = true;
1262         flush_writes(ohci);
1263 }
1264
1265 static void context_append(struct context *ctx,
1266                            struct descriptor *d, int z, int extra)
1267 {
1268         dma_addr_t d_bus;
1269         struct descriptor_buffer *desc = ctx->buffer_tail;
1270         struct descriptor *d_branch;
1271
1272         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274         desc->used += (z + extra) * sizeof(*d);
1275
1276         wmb(); /* finish init of new descriptors before branch_address update */
1277
1278         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279         d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281         /*
1282          * VT6306 incorrectly checks only the single descriptor at the
1283          * CommandPtr when the wake bit is written, so if it's a
1284          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285          * the branch address in the first descriptor.
1286          *
1287          * Not doing this for transmit contexts since not sure how it interacts
1288          * with skip addresses.
1289          */
1290         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291             d_branch != ctx->prev &&
1292             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295         }
1296
1297         ctx->prev = d;
1298         ctx->prev_z = z;
1299 }
1300
1301 static void context_stop(struct context *ctx)
1302 {
1303         struct fw_ohci *ohci = ctx->ohci;
1304         u32 reg;
1305         int i;
1306
1307         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308         ctx->running = false;
1309
1310         for (i = 0; i < 1000; i++) {
1311                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312                 if ((reg & CONTEXT_ACTIVE) == 0)
1313                         return;
1314
1315                 if (i)
1316                         udelay(10);
1317         }
1318         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319 }
1320
1321 struct driver_data {
1322         u8 inline_data[8];
1323         struct fw_packet *packet;
1324 };
1325
1326 /*
1327  * This function apppends a packet to the DMA queue for transmission.
1328  * Must always be called with the ochi->lock held to ensure proper
1329  * generation handling and locking around packet queue manipulation.
1330  */
1331 static int at_context_queue_packet(struct context *ctx,
1332                                    struct fw_packet *packet)
1333 {
1334         struct fw_ohci *ohci = ctx->ohci;
1335         dma_addr_t d_bus, payload_bus;
1336         struct driver_data *driver_data;
1337         struct descriptor *d, *last;
1338         __le32 *header;
1339         int z, tcode;
1340
1341         d = context_get_descriptors(ctx, 4, &d_bus);
1342         if (d == NULL) {
1343                 packet->ack = RCODE_SEND_ERROR;
1344                 return -1;
1345         }
1346
1347         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348         d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350         /*
1351          * The DMA format for asynchronous link packets is different
1352          * from the IEEE1394 layout, so shift the fields around
1353          * accordingly.
1354          */
1355
1356         tcode = (packet->header[0] >> 4) & 0x0f;
1357         header = (__le32 *) &d[1];
1358         switch (tcode) {
1359         case TCODE_WRITE_QUADLET_REQUEST:
1360         case TCODE_WRITE_BLOCK_REQUEST:
1361         case TCODE_WRITE_RESPONSE:
1362         case TCODE_READ_QUADLET_REQUEST:
1363         case TCODE_READ_BLOCK_REQUEST:
1364         case TCODE_READ_QUADLET_RESPONSE:
1365         case TCODE_READ_BLOCK_RESPONSE:
1366         case TCODE_LOCK_REQUEST:
1367         case TCODE_LOCK_RESPONSE:
1368                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369                                         (packet->speed << 16));
1370                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371                                         (packet->header[0] & 0xffff0000));
1372                 header[2] = cpu_to_le32(packet->header[2]);
1373
1374                 if (TCODE_IS_BLOCK_PACKET(tcode))
1375                         header[3] = cpu_to_le32(packet->header[3]);
1376                 else
1377                         header[3] = (__force __le32) packet->header[3];
1378
1379                 d[0].req_count = cpu_to_le16(packet->header_length);
1380                 break;
1381
1382         case TCODE_LINK_INTERNAL:
1383                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384                                         (packet->speed << 16));
1385                 header[1] = cpu_to_le32(packet->header[1]);
1386                 header[2] = cpu_to_le32(packet->header[2]);
1387                 d[0].req_count = cpu_to_le16(12);
1388
1389                 if (is_ping_packet(&packet->header[1]))
1390                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391                 break;
1392
1393         case TCODE_STREAM_DATA:
1394                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395                                         (packet->speed << 16));
1396                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397                 d[0].req_count = cpu_to_le16(8);
1398                 break;
1399
1400         default:
1401                 /* BUG(); */
1402                 packet->ack = RCODE_SEND_ERROR;
1403                 return -1;
1404         }
1405
1406         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407         driver_data = (struct driver_data *) &d[3];
1408         driver_data->packet = packet;
1409         packet->driver_data = driver_data;
1410
1411         if (packet->payload_length > 0) {
1412                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413                         payload_bus = dma_map_single(ohci->card.device,
1414                                                      packet->payload,
1415                                                      packet->payload_length,
1416                                                      DMA_TO_DEVICE);
1417                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418                                 packet->ack = RCODE_SEND_ERROR;
1419                                 return -1;
1420                         }
1421                         packet->payload_bus     = payload_bus;
1422                         packet->payload_mapped  = true;
1423                 } else {
1424                         memcpy(driver_data->inline_data, packet->payload,
1425                                packet->payload_length);
1426                         payload_bus = d_bus + 3 * sizeof(*d);
1427                 }
1428
1429                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1430                 d[2].data_address = cpu_to_le32(payload_bus);
1431                 last = &d[2];
1432                 z = 3;
1433         } else {
1434                 last = &d[0];
1435                 z = 2;
1436         }
1437
1438         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439                                      DESCRIPTOR_IRQ_ALWAYS |
1440                                      DESCRIPTOR_BRANCH_ALWAYS);
1441
1442         /* FIXME: Document how the locking works. */
1443         if (ohci->generation != packet->generation) {
1444                 if (packet->payload_mapped)
1445                         dma_unmap_single(ohci->card.device, payload_bus,
1446                                          packet->payload_length, DMA_TO_DEVICE);
1447                 packet->ack = RCODE_GENERATION;
1448                 return -1;
1449         }
1450
1451         context_append(ctx, d, z, 4 - z);
1452
1453         if (ctx->running)
1454                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455         else
1456                 context_run(ctx, 0);
1457
1458         return 0;
1459 }
1460
1461 static void at_context_flush(struct context *ctx)
1462 {
1463         tasklet_disable(&ctx->tasklet);
1464
1465         ctx->flushing = true;
1466         context_tasklet((unsigned long)ctx);
1467         ctx->flushing = false;
1468
1469         tasklet_enable(&ctx->tasklet);
1470 }
1471
1472 static int handle_at_packet(struct context *context,
1473                             struct descriptor *d,
1474                             struct descriptor *last)
1475 {
1476         struct driver_data *driver_data;
1477         struct fw_packet *packet;
1478         struct fw_ohci *ohci = context->ohci;
1479         int evt;
1480
1481         if (last->transfer_status == 0 && !context->flushing)
1482                 /* This descriptor isn't done yet, stop iteration. */
1483                 return 0;
1484
1485         driver_data = (struct driver_data *) &d[3];
1486         packet = driver_data->packet;
1487         if (packet == NULL)
1488                 /* This packet was cancelled, just continue. */
1489                 return 1;
1490
1491         if (packet->payload_mapped)
1492                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1493                                  packet->payload_length, DMA_TO_DEVICE);
1494
1495         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496         packet->timestamp = le16_to_cpu(last->res_count);
1497
1498         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500         switch (evt) {
1501         case OHCI1394_evt_timeout:
1502                 /* Async response transmit timed out. */
1503                 packet->ack = RCODE_CANCELLED;
1504                 break;
1505
1506         case OHCI1394_evt_flushed:
1507                 /*
1508                  * The packet was flushed should give same error as
1509                  * when we try to use a stale generation count.
1510                  */
1511                 packet->ack = RCODE_GENERATION;
1512                 break;
1513
1514         case OHCI1394_evt_missing_ack:
1515                 if (context->flushing)
1516                         packet->ack = RCODE_GENERATION;
1517                 else {
1518                         /*
1519                          * Using a valid (current) generation count, but the
1520                          * node is not on the bus or not sending acks.
1521                          */
1522                         packet->ack = RCODE_NO_ACK;
1523                 }
1524                 break;
1525
1526         case ACK_COMPLETE + 0x10:
1527         case ACK_PENDING + 0x10:
1528         case ACK_BUSY_X + 0x10:
1529         case ACK_BUSY_A + 0x10:
1530         case ACK_BUSY_B + 0x10:
1531         case ACK_DATA_ERROR + 0x10:
1532         case ACK_TYPE_ERROR + 0x10:
1533                 packet->ack = evt - 0x10;
1534                 break;
1535
1536         case OHCI1394_evt_no_status:
1537                 if (context->flushing) {
1538                         packet->ack = RCODE_GENERATION;
1539                         break;
1540                 }
1541                 fallthrough;
1542
1543         default:
1544                 packet->ack = RCODE_SEND_ERROR;
1545                 break;
1546         }
1547
1548         packet->callback(packet, &ohci->card, packet->ack);
1549
1550         return 1;
1551 }
1552
1553 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1554 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1555 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1556 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1557 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1558
1559 static void handle_local_rom(struct fw_ohci *ohci,
1560                              struct fw_packet *packet, u32 csr)
1561 {
1562         struct fw_packet response;
1563         int tcode, length, i;
1564
1565         tcode = HEADER_GET_TCODE(packet->header[0]);
1566         if (TCODE_IS_BLOCK_PACKET(tcode))
1567                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568         else
1569                 length = 4;
1570
1571         i = csr - CSR_CONFIG_ROM;
1572         if (i + length > CONFIG_ROM_SIZE) {
1573                 fw_fill_response(&response, packet->header,
1574                                  RCODE_ADDRESS_ERROR, NULL, 0);
1575         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1576                 fw_fill_response(&response, packet->header,
1577                                  RCODE_TYPE_ERROR, NULL, 0);
1578         } else {
1579                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580                                  (void *) ohci->config_rom + i, length);
1581         }
1582
1583         fw_core_handle_response(&ohci->card, &response);
1584 }
1585
1586 static void handle_local_lock(struct fw_ohci *ohci,
1587                               struct fw_packet *packet, u32 csr)
1588 {
1589         struct fw_packet response;
1590         int tcode, length, ext_tcode, sel, try;
1591         __be32 *payload, lock_old;
1592         u32 lock_arg, lock_data;
1593
1594         tcode = HEADER_GET_TCODE(packet->header[0]);
1595         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1596         payload = packet->payload;
1597         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1598
1599         if (tcode == TCODE_LOCK_REQUEST &&
1600             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1601                 lock_arg = be32_to_cpu(payload[0]);
1602                 lock_data = be32_to_cpu(payload[1]);
1603         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1604                 lock_arg = 0;
1605                 lock_data = 0;
1606         } else {
1607                 fw_fill_response(&response, packet->header,
1608                                  RCODE_TYPE_ERROR, NULL, 0);
1609                 goto out;
1610         }
1611
1612         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1613         reg_write(ohci, OHCI1394_CSRData, lock_data);
1614         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1615         reg_write(ohci, OHCI1394_CSRControl, sel);
1616
1617         for (try = 0; try < 20; try++)
1618                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1619                         lock_old = cpu_to_be32(reg_read(ohci,
1620                                                         OHCI1394_CSRData));
1621                         fw_fill_response(&response, packet->header,
1622                                          RCODE_COMPLETE,
1623                                          &lock_old, sizeof(lock_old));
1624                         goto out;
1625                 }
1626
1627         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1628         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1629
1630  out:
1631         fw_core_handle_response(&ohci->card, &response);
1632 }
1633
1634 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1635 {
1636         u64 offset, csr;
1637
1638         if (ctx == &ctx->ohci->at_request_ctx) {
1639                 packet->ack = ACK_PENDING;
1640                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1641         }
1642
1643         offset =
1644                 ((unsigned long long)
1645                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1646                 packet->header[2];
1647         csr = offset - CSR_REGISTER_BASE;
1648
1649         /* Handle config rom reads. */
1650         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1651                 handle_local_rom(ctx->ohci, packet, csr);
1652         else switch (csr) {
1653         case CSR_BUS_MANAGER_ID:
1654         case CSR_BANDWIDTH_AVAILABLE:
1655         case CSR_CHANNELS_AVAILABLE_HI:
1656         case CSR_CHANNELS_AVAILABLE_LO:
1657                 handle_local_lock(ctx->ohci, packet, csr);
1658                 break;
1659         default:
1660                 if (ctx == &ctx->ohci->at_request_ctx)
1661                         fw_core_handle_request(&ctx->ohci->card, packet);
1662                 else
1663                         fw_core_handle_response(&ctx->ohci->card, packet);
1664                 break;
1665         }
1666
1667         if (ctx == &ctx->ohci->at_response_ctx) {
1668                 packet->ack = ACK_COMPLETE;
1669                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1670         }
1671 }
1672
1673 static u32 get_cycle_time(struct fw_ohci *ohci);
1674
1675 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676 {
1677         unsigned long flags;
1678         int ret;
1679
1680         spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683             ctx->ohci->generation == packet->generation) {
1684                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685
1686                 // Timestamping on behalf of the hardware.
1687                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1688
1689                 handle_local_request(ctx, packet);
1690                 return;
1691         }
1692
1693         ret = at_context_queue_packet(ctx, packet);
1694         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1695
1696         if (ret < 0) {
1697                 // Timestamping on behalf of the hardware.
1698                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1699
1700                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1701         }
1702 }
1703
1704 static void detect_dead_context(struct fw_ohci *ohci,
1705                                 const char *name, unsigned int regs)
1706 {
1707         u32 ctl;
1708
1709         ctl = reg_read(ohci, CONTROL_SET(regs));
1710         if (ctl & CONTEXT_DEAD)
1711                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1712                         name, evts[ctl & 0x1f]);
1713 }
1714
1715 static void handle_dead_contexts(struct fw_ohci *ohci)
1716 {
1717         unsigned int i;
1718         char name[8];
1719
1720         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1721         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1722         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1723         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1724         for (i = 0; i < 32; ++i) {
1725                 if (!(ohci->it_context_support & (1 << i)))
1726                         continue;
1727                 sprintf(name, "IT%u", i);
1728                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1729         }
1730         for (i = 0; i < 32; ++i) {
1731                 if (!(ohci->ir_context_support & (1 << i)))
1732                         continue;
1733                 sprintf(name, "IR%u", i);
1734                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1735         }
1736         /* TODO: maybe try to flush and restart the dead contexts */
1737 }
1738
1739 static u32 cycle_timer_ticks(u32 cycle_timer)
1740 {
1741         u32 ticks;
1742
1743         ticks = cycle_timer & 0xfff;
1744         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1745         ticks += (3072 * 8000) * (cycle_timer >> 25);
1746
1747         return ticks;
1748 }
1749
1750 /*
1751  * Some controllers exhibit one or more of the following bugs when updating the
1752  * iso cycle timer register:
1753  *  - When the lowest six bits are wrapping around to zero, a read that happens
1754  *    at the same time will return garbage in the lowest ten bits.
1755  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1756  *    not incremented for about 60 ns.
1757  *  - Occasionally, the entire register reads zero.
1758  *
1759  * To catch these, we read the register three times and ensure that the
1760  * difference between each two consecutive reads is approximately the same, i.e.
1761  * less than twice the other.  Furthermore, any negative difference indicates an
1762  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1763  * execute, so we have enough precision to compute the ratio of the differences.)
1764  */
1765 static u32 get_cycle_time(struct fw_ohci *ohci)
1766 {
1767         u32 c0, c1, c2;
1768         u32 t0, t1, t2;
1769         s32 diff01, diff12;
1770         int i;
1771
1772         if (has_reboot_by_cycle_timer_read_quirk(ohci))
1773                 return 0;
1774
1775         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1776
1777         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1778                 i = 0;
1779                 c1 = c2;
1780                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781                 do {
1782                         c0 = c1;
1783                         c1 = c2;
1784                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785                         t0 = cycle_timer_ticks(c0);
1786                         t1 = cycle_timer_ticks(c1);
1787                         t2 = cycle_timer_ticks(c2);
1788                         diff01 = t1 - t0;
1789                         diff12 = t2 - t1;
1790                 } while ((diff01 <= 0 || diff12 <= 0 ||
1791                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1792                          && i++ < 20);
1793         }
1794
1795         return c2;
1796 }
1797
1798 /*
1799  * This function has to be called at least every 64 seconds.  The bus_time
1800  * field stores not only the upper 25 bits of the BUS_TIME register but also
1801  * the most significant bit of the cycle timer in bit 6 so that we can detect
1802  * changes in this bit.
1803  */
1804 static u32 update_bus_time(struct fw_ohci *ohci)
1805 {
1806         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1807
1808         if (unlikely(!ohci->bus_time_running)) {
1809                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1810                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1811                                  (cycle_time_seconds & 0x40);
1812                 ohci->bus_time_running = true;
1813         }
1814
1815         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1816                 ohci->bus_time += 0x40;
1817
1818         return ohci->bus_time | cycle_time_seconds;
1819 }
1820
1821 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1822 {
1823         int reg;
1824
1825         mutex_lock(&ohci->phy_reg_mutex);
1826         reg = write_phy_reg(ohci, 7, port_index);
1827         if (reg >= 0)
1828                 reg = read_phy_reg(ohci, 8);
1829         mutex_unlock(&ohci->phy_reg_mutex);
1830         if (reg < 0)
1831                 return reg;
1832
1833         switch (reg & 0x0f) {
1834         case 0x06:
1835                 return 2;       /* is child node (connected to parent node) */
1836         case 0x0e:
1837                 return 3;       /* is parent node (connected to child node) */
1838         }
1839         return 1;               /* not connected */
1840 }
1841
1842 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1843         int self_id_count)
1844 {
1845         int i;
1846         u32 entry;
1847
1848         for (i = 0; i < self_id_count; i++) {
1849                 entry = ohci->self_id_buffer[i];
1850                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1851                         return -1;
1852                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1853                         return i;
1854         }
1855         return i;
1856 }
1857
1858 static int initiated_reset(struct fw_ohci *ohci)
1859 {
1860         int reg;
1861         int ret = 0;
1862
1863         mutex_lock(&ohci->phy_reg_mutex);
1864         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1865         if (reg >= 0) {
1866                 reg = read_phy_reg(ohci, 8);
1867                 reg |= 0x40;
1868                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1869                 if (reg >= 0) {
1870                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1871                         if (reg >= 0) {
1872                                 if ((reg & 0x08) == 0x08) {
1873                                         /* bit 3 indicates "initiated reset" */
1874                                         ret = 0x2;
1875                                 }
1876                         }
1877                 }
1878         }
1879         mutex_unlock(&ohci->phy_reg_mutex);
1880         return ret;
1881 }
1882
1883 /*
1884  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1885  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1886  * Construct the selfID from phy register contents.
1887  */
1888 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1889 {
1890         int reg, i, pos, status;
1891         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1892         u32 self_id = 0x8040c800;
1893
1894         reg = reg_read(ohci, OHCI1394_NodeID);
1895         if (!(reg & OHCI1394_NodeID_idValid)) {
1896                 ohci_notice(ohci,
1897                             "node ID not valid, new bus reset in progress\n");
1898                 return -EBUSY;
1899         }
1900         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1901
1902         reg = ohci_read_phy_reg(&ohci->card, 4);
1903         if (reg < 0)
1904                 return reg;
1905         self_id |= ((reg & 0x07) << 8); /* power class */
1906
1907         reg = ohci_read_phy_reg(&ohci->card, 1);
1908         if (reg < 0)
1909                 return reg;
1910         self_id |= ((reg & 0x3f) << 16); /* gap count */
1911
1912         for (i = 0; i < 3; i++) {
1913                 status = get_status_for_port(ohci, i);
1914                 if (status < 0)
1915                         return status;
1916                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1917         }
1918
1919         self_id |= initiated_reset(ohci);
1920
1921         pos = get_self_id_pos(ohci, self_id, self_id_count);
1922         if (pos >= 0) {
1923                 memmove(&(ohci->self_id_buffer[pos+1]),
1924                         &(ohci->self_id_buffer[pos]),
1925                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1926                 ohci->self_id_buffer[pos] = self_id;
1927                 self_id_count++;
1928         }
1929         return self_id_count;
1930 }
1931
1932 static void bus_reset_work(struct work_struct *work)
1933 {
1934         struct fw_ohci *ohci =
1935                 container_of(work, struct fw_ohci, bus_reset_work);
1936         int self_id_count, generation, new_generation, i, j;
1937         u32 reg;
1938         void *free_rom = NULL;
1939         dma_addr_t free_rom_bus = 0;
1940         bool is_new_root;
1941
1942         reg = reg_read(ohci, OHCI1394_NodeID);
1943         if (!(reg & OHCI1394_NodeID_idValid)) {
1944                 ohci_notice(ohci,
1945                             "node ID not valid, new bus reset in progress\n");
1946                 return;
1947         }
1948         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1949                 ohci_notice(ohci, "malconfigured bus\n");
1950                 return;
1951         }
1952         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1953                                OHCI1394_NodeID_nodeNumber);
1954
1955         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1956         if (!(ohci->is_root && is_new_root))
1957                 reg_write(ohci, OHCI1394_LinkControlSet,
1958                           OHCI1394_LinkControl_cycleMaster);
1959         ohci->is_root = is_new_root;
1960
1961         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1962         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1963                 ohci_notice(ohci, "self ID receive error\n");
1964                 return;
1965         }
1966         /*
1967          * The count in the SelfIDCount register is the number of
1968          * bytes in the self ID receive buffer.  Since we also receive
1969          * the inverted quadlets and a header quadlet, we shift one
1970          * bit extra to get the actual number of self IDs.
1971          */
1972         self_id_count = (reg >> 3) & 0xff;
1973
1974         if (self_id_count > 252) {
1975                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1976                 return;
1977         }
1978
1979         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1980         rmb();
1981
1982         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1983                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1984                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1985
1986                 if (id != ~id2) {
1987                         /*
1988                          * If the invalid data looks like a cycle start packet,
1989                          * it's likely to be the result of the cycle master
1990                          * having a wrong gap count.  In this case, the self IDs
1991                          * so far are valid and should be processed so that the
1992                          * bus manager can then correct the gap count.
1993                          */
1994                         if (id == 0xffff008f) {
1995                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1996                                 self_id_count = j;
1997                                 break;
1998                         }
1999
2000                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2001                                     j, self_id_count, id, id2);
2002                         return;
2003                 }
2004                 ohci->self_id_buffer[j] = id;
2005         }
2006
2007         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2008                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2009                 if (self_id_count < 0) {
2010                         ohci_notice(ohci,
2011                                     "could not construct local self ID\n");
2012                         return;
2013                 }
2014         }
2015
2016         if (self_id_count == 0) {
2017                 ohci_notice(ohci, "no self IDs\n");
2018                 return;
2019         }
2020         rmb();
2021
2022         /*
2023          * Check the consistency of the self IDs we just read.  The
2024          * problem we face is that a new bus reset can start while we
2025          * read out the self IDs from the DMA buffer. If this happens,
2026          * the DMA buffer will be overwritten with new self IDs and we
2027          * will read out inconsistent data.  The OHCI specification
2028          * (section 11.2) recommends a technique similar to
2029          * linux/seqlock.h, where we remember the generation of the
2030          * self IDs in the buffer before reading them out and compare
2031          * it to the current generation after reading them out.  If
2032          * the two generations match we know we have a consistent set
2033          * of self IDs.
2034          */
2035
2036         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2037         if (new_generation != generation) {
2038                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2039                 return;
2040         }
2041
2042         /* FIXME: Document how the locking works. */
2043         spin_lock_irq(&ohci->lock);
2044
2045         ohci->generation = -1; /* prevent AT packet queueing */
2046         context_stop(&ohci->at_request_ctx);
2047         context_stop(&ohci->at_response_ctx);
2048
2049         spin_unlock_irq(&ohci->lock);
2050
2051         /*
2052          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2053          * packets in the AT queues and software needs to drain them.
2054          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2055          */
2056         at_context_flush(&ohci->at_request_ctx);
2057         at_context_flush(&ohci->at_response_ctx);
2058
2059         spin_lock_irq(&ohci->lock);
2060
2061         ohci->generation = generation;
2062         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2063         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2064                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2065
2066         if (ohci->quirks & QUIRK_RESET_PACKET)
2067                 ohci->request_generation = generation;
2068
2069         /*
2070          * This next bit is unrelated to the AT context stuff but we
2071          * have to do it under the spinlock also.  If a new config rom
2072          * was set up before this reset, the old one is now no longer
2073          * in use and we can free it. Update the config rom pointers
2074          * to point to the current config rom and clear the
2075          * next_config_rom pointer so a new update can take place.
2076          */
2077
2078         if (ohci->next_config_rom != NULL) {
2079                 if (ohci->next_config_rom != ohci->config_rom) {
2080                         free_rom      = ohci->config_rom;
2081                         free_rom_bus  = ohci->config_rom_bus;
2082                 }
2083                 ohci->config_rom      = ohci->next_config_rom;
2084                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2085                 ohci->next_config_rom = NULL;
2086
2087                 /*
2088                  * Restore config_rom image and manually update
2089                  * config_rom registers.  Writing the header quadlet
2090                  * will indicate that the config rom is ready, so we
2091                  * do that last.
2092                  */
2093                 reg_write(ohci, OHCI1394_BusOptions,
2094                           be32_to_cpu(ohci->config_rom[2]));
2095                 ohci->config_rom[0] = ohci->next_header;
2096                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2097                           be32_to_cpu(ohci->next_header));
2098         }
2099
2100         if (param_remote_dma) {
2101                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2102                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2103         }
2104
2105         spin_unlock_irq(&ohci->lock);
2106
2107         if (free_rom)
2108                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2109
2110         log_selfids(ohci, generation, self_id_count);
2111
2112         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2113                                  self_id_count, ohci->self_id_buffer,
2114                                  ohci->csr_state_setclear_abdicate);
2115         ohci->csr_state_setclear_abdicate = false;
2116 }
2117
2118 static irqreturn_t irq_handler(int irq, void *data)
2119 {
2120         struct fw_ohci *ohci = data;
2121         u32 event, iso_event;
2122         int i;
2123
2124         event = reg_read(ohci, OHCI1394_IntEventClear);
2125
2126         if (!event || !~event)
2127                 return IRQ_NONE;
2128
2129         /*
2130          * busReset and postedWriteErr events must not be cleared yet
2131          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2132          */
2133         reg_write(ohci, OHCI1394_IntEventClear,
2134                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2135         log_irqs(ohci, event);
2136         if (event & OHCI1394_busReset)
2137                 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2138
2139         if (event & OHCI1394_selfIDComplete)
2140                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2141
2142         if (event & OHCI1394_RQPkt)
2143                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2144
2145         if (event & OHCI1394_RSPkt)
2146                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2147
2148         if (event & OHCI1394_reqTxComplete)
2149                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2150
2151         if (event & OHCI1394_respTxComplete)
2152                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2153
2154         if (event & OHCI1394_isochRx) {
2155                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2156                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2157
2158                 while (iso_event) {
2159                         i = ffs(iso_event) - 1;
2160                         tasklet_schedule(
2161                                 &ohci->ir_context_list[i].context.tasklet);
2162                         iso_event &= ~(1 << i);
2163                 }
2164         }
2165
2166         if (event & OHCI1394_isochTx) {
2167                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2168                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2169
2170                 while (iso_event) {
2171                         i = ffs(iso_event) - 1;
2172                         tasklet_schedule(
2173                                 &ohci->it_context_list[i].context.tasklet);
2174                         iso_event &= ~(1 << i);
2175                 }
2176         }
2177
2178         if (unlikely(event & OHCI1394_regAccessFail))
2179                 ohci_err(ohci, "register access failure\n");
2180
2181         if (unlikely(event & OHCI1394_postedWriteErr)) {
2182                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2183                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2184                 reg_write(ohci, OHCI1394_IntEventClear,
2185                           OHCI1394_postedWriteErr);
2186                 if (printk_ratelimit())
2187                         ohci_err(ohci, "PCI posted write error\n");
2188         }
2189
2190         if (unlikely(event & OHCI1394_cycleTooLong)) {
2191                 if (printk_ratelimit())
2192                         ohci_notice(ohci, "isochronous cycle too long\n");
2193                 reg_write(ohci, OHCI1394_LinkControlSet,
2194                           OHCI1394_LinkControl_cycleMaster);
2195         }
2196
2197         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2198                 /*
2199                  * We need to clear this event bit in order to make
2200                  * cycleMatch isochronous I/O work.  In theory we should
2201                  * stop active cycleMatch iso contexts now and restart
2202                  * them at least two cycles later.  (FIXME?)
2203                  */
2204                 if (printk_ratelimit())
2205                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2206         }
2207
2208         if (unlikely(event & OHCI1394_unrecoverableError))
2209                 handle_dead_contexts(ohci);
2210
2211         if (event & OHCI1394_cycle64Seconds) {
2212                 spin_lock(&ohci->lock);
2213                 update_bus_time(ohci);
2214                 spin_unlock(&ohci->lock);
2215         } else
2216                 flush_writes(ohci);
2217
2218         return IRQ_HANDLED;
2219 }
2220
2221 static int software_reset(struct fw_ohci *ohci)
2222 {
2223         u32 val;
2224         int i;
2225
2226         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2227         for (i = 0; i < 500; i++) {
2228                 val = reg_read(ohci, OHCI1394_HCControlSet);
2229                 if (!~val)
2230                         return -ENODEV; /* Card was ejected. */
2231
2232                 if (!(val & OHCI1394_HCControl_softReset))
2233                         return 0;
2234
2235                 msleep(1);
2236         }
2237
2238         return -EBUSY;
2239 }
2240
2241 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2242 {
2243         size_t size = length * 4;
2244
2245         memcpy(dest, src, size);
2246         if (size < CONFIG_ROM_SIZE)
2247                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2248 }
2249
2250 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2251 {
2252         bool enable_1394a;
2253         int ret, clear, set, offset;
2254
2255         /* Check if the driver should configure link and PHY. */
2256         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2257               OHCI1394_HCControl_programPhyEnable))
2258                 return 0;
2259
2260         /* Paranoia: check whether the PHY supports 1394a, too. */
2261         enable_1394a = false;
2262         ret = read_phy_reg(ohci, 2);
2263         if (ret < 0)
2264                 return ret;
2265         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2266                 ret = read_paged_phy_reg(ohci, 1, 8);
2267                 if (ret < 0)
2268                         return ret;
2269                 if (ret >= 1)
2270                         enable_1394a = true;
2271         }
2272
2273         if (ohci->quirks & QUIRK_NO_1394A)
2274                 enable_1394a = false;
2275
2276         /* Configure PHY and link consistently. */
2277         if (enable_1394a) {
2278                 clear = 0;
2279                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2280         } else {
2281                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2282                 set = 0;
2283         }
2284         ret = update_phy_reg(ohci, 5, clear, set);
2285         if (ret < 0)
2286                 return ret;
2287
2288         if (enable_1394a)
2289                 offset = OHCI1394_HCControlSet;
2290         else
2291                 offset = OHCI1394_HCControlClear;
2292         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2293
2294         /* Clean up: configuration has been taken care of. */
2295         reg_write(ohci, OHCI1394_HCControlClear,
2296                   OHCI1394_HCControl_programPhyEnable);
2297
2298         return 0;
2299 }
2300
2301 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2302 {
2303         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2304         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2305         int reg, i;
2306
2307         reg = read_phy_reg(ohci, 2);
2308         if (reg < 0)
2309                 return reg;
2310         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2311                 return 0;
2312
2313         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2314                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2315                 if (reg < 0)
2316                         return reg;
2317                 if (reg != id[i])
2318                         return 0;
2319         }
2320         return 1;
2321 }
2322
2323 static int ohci_enable(struct fw_card *card,
2324                        const __be32 *config_rom, size_t length)
2325 {
2326         struct fw_ohci *ohci = fw_ohci(card);
2327         u32 lps, version, irqs;
2328         int i, ret;
2329
2330         ret = software_reset(ohci);
2331         if (ret < 0) {
2332                 ohci_err(ohci, "failed to reset ohci card\n");
2333                 return ret;
2334         }
2335
2336         /*
2337          * Now enable LPS, which we need in order to start accessing
2338          * most of the registers.  In fact, on some cards (ALI M5251),
2339          * accessing registers in the SClk domain without LPS enabled
2340          * will lock up the machine.  Wait 50msec to make sure we have
2341          * full link enabled.  However, with some cards (well, at least
2342          * a JMicron PCIe card), we have to try again sometimes.
2343          *
2344          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2345          * cannot actually use the phy at that time.  These need tens of
2346          * millisecods pause between LPS write and first phy access too.
2347          */
2348
2349         reg_write(ohci, OHCI1394_HCControlSet,
2350                   OHCI1394_HCControl_LPS |
2351                   OHCI1394_HCControl_postedWriteEnable);
2352         flush_writes(ohci);
2353
2354         for (lps = 0, i = 0; !lps && i < 3; i++) {
2355                 msleep(50);
2356                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2357                       OHCI1394_HCControl_LPS;
2358         }
2359
2360         if (!lps) {
2361                 ohci_err(ohci, "failed to set Link Power Status\n");
2362                 return -EIO;
2363         }
2364
2365         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2366                 ret = probe_tsb41ba3d(ohci);
2367                 if (ret < 0)
2368                         return ret;
2369                 if (ret)
2370                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2371                 else
2372                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2373         }
2374
2375         reg_write(ohci, OHCI1394_HCControlClear,
2376                   OHCI1394_HCControl_noByteSwapData);
2377
2378         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2379         reg_write(ohci, OHCI1394_LinkControlSet,
2380                   OHCI1394_LinkControl_cycleTimerEnable |
2381                   OHCI1394_LinkControl_cycleMaster);
2382
2383         reg_write(ohci, OHCI1394_ATRetries,
2384                   OHCI1394_MAX_AT_REQ_RETRIES |
2385                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2386                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2387                   (200 << 16));
2388
2389         ohci->bus_time_running = false;
2390
2391         for (i = 0; i < 32; i++)
2392                 if (ohci->ir_context_support & (1 << i))
2393                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2394                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2395
2396         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2397         if (version >= OHCI_VERSION_1_1) {
2398                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2399                           0xfffffffe);
2400                 card->broadcast_channel_auto_allocated = true;
2401         }
2402
2403         /* Get implemented bits of the priority arbitration request counter. */
2404         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2405         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2406         reg_write(ohci, OHCI1394_FairnessControl, 0);
2407         card->priority_budget_implemented = ohci->pri_req_max != 0;
2408
2409         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2410         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2411         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2412
2413         ret = configure_1394a_enhancements(ohci);
2414         if (ret < 0)
2415                 return ret;
2416
2417         /* Activate link_on bit and contender bit in our self ID packets.*/
2418         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2419         if (ret < 0)
2420                 return ret;
2421
2422         /*
2423          * When the link is not yet enabled, the atomic config rom
2424          * update mechanism described below in ohci_set_config_rom()
2425          * is not active.  We have to update ConfigRomHeader and
2426          * BusOptions manually, and the write to ConfigROMmap takes
2427          * effect immediately.  We tie this to the enabling of the
2428          * link, so we have a valid config rom before enabling - the
2429          * OHCI requires that ConfigROMhdr and BusOptions have valid
2430          * values before enabling.
2431          *
2432          * However, when the ConfigROMmap is written, some controllers
2433          * always read back quadlets 0 and 2 from the config rom to
2434          * the ConfigRomHeader and BusOptions registers on bus reset.
2435          * They shouldn't do that in this initial case where the link
2436          * isn't enabled.  This means we have to use the same
2437          * workaround here, setting the bus header to 0 and then write
2438          * the right values in the bus reset tasklet.
2439          */
2440
2441         if (config_rom) {
2442                 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2443                                                             &ohci->next_config_rom_bus, GFP_KERNEL);
2444                 if (ohci->next_config_rom == NULL)
2445                         return -ENOMEM;
2446
2447                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2448         } else {
2449                 /*
2450                  * In the suspend case, config_rom is NULL, which
2451                  * means that we just reuse the old config rom.
2452                  */
2453                 ohci->next_config_rom = ohci->config_rom;
2454                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2455         }
2456
2457         ohci->next_header = ohci->next_config_rom[0];
2458         ohci->next_config_rom[0] = 0;
2459         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2460         reg_write(ohci, OHCI1394_BusOptions,
2461                   be32_to_cpu(ohci->next_config_rom[2]));
2462         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2463
2464         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2465
2466         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2467                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2468                 OHCI1394_isochTx | OHCI1394_isochRx |
2469                 OHCI1394_postedWriteErr |
2470                 OHCI1394_selfIDComplete |
2471                 OHCI1394_regAccessFail |
2472                 OHCI1394_cycleInconsistent |
2473                 OHCI1394_unrecoverableError |
2474                 OHCI1394_cycleTooLong |
2475                 OHCI1394_masterIntEnable;
2476         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2477                 irqs |= OHCI1394_busReset;
2478         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2479
2480         reg_write(ohci, OHCI1394_HCControlSet,
2481                   OHCI1394_HCControl_linkEnable |
2482                   OHCI1394_HCControl_BIBimageValid);
2483
2484         reg_write(ohci, OHCI1394_LinkControlSet,
2485                   OHCI1394_LinkControl_rcvSelfID |
2486                   OHCI1394_LinkControl_rcvPhyPkt);
2487
2488         ar_context_run(&ohci->ar_request_ctx);
2489         ar_context_run(&ohci->ar_response_ctx);
2490
2491         flush_writes(ohci);
2492
2493         /* We are ready to go, reset bus to finish initialization. */
2494         fw_schedule_bus_reset(&ohci->card, false, true);
2495
2496         return 0;
2497 }
2498
2499 static int ohci_set_config_rom(struct fw_card *card,
2500                                const __be32 *config_rom, size_t length)
2501 {
2502         struct fw_ohci *ohci;
2503         __be32 *next_config_rom;
2504         dma_addr_t next_config_rom_bus;
2505
2506         ohci = fw_ohci(card);
2507
2508         /*
2509          * When the OHCI controller is enabled, the config rom update
2510          * mechanism is a bit tricky, but easy enough to use.  See
2511          * section 5.5.6 in the OHCI specification.
2512          *
2513          * The OHCI controller caches the new config rom address in a
2514          * shadow register (ConfigROMmapNext) and needs a bus reset
2515          * for the changes to take place.  When the bus reset is
2516          * detected, the controller loads the new values for the
2517          * ConfigRomHeader and BusOptions registers from the specified
2518          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2519          * shadow register. All automatically and atomically.
2520          *
2521          * Now, there's a twist to this story.  The automatic load of
2522          * ConfigRomHeader and BusOptions doesn't honor the
2523          * noByteSwapData bit, so with a be32 config rom, the
2524          * controller will load be32 values in to these registers
2525          * during the atomic update, even on litte endian
2526          * architectures.  The workaround we use is to put a 0 in the
2527          * header quadlet; 0 is endian agnostic and means that the
2528          * config rom isn't ready yet.  In the bus reset tasklet we
2529          * then set up the real values for the two registers.
2530          *
2531          * We use ohci->lock to avoid racing with the code that sets
2532          * ohci->next_config_rom to NULL (see bus_reset_work).
2533          */
2534
2535         next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2536                                               &next_config_rom_bus, GFP_KERNEL);
2537         if (next_config_rom == NULL)
2538                 return -ENOMEM;
2539
2540         spin_lock_irq(&ohci->lock);
2541
2542         /*
2543          * If there is not an already pending config_rom update,
2544          * push our new allocation into the ohci->next_config_rom
2545          * and then mark the local variable as null so that we
2546          * won't deallocate the new buffer.
2547          *
2548          * OTOH, if there is a pending config_rom update, just
2549          * use that buffer with the new config_rom data, and
2550          * let this routine free the unused DMA allocation.
2551          */
2552
2553         if (ohci->next_config_rom == NULL) {
2554                 ohci->next_config_rom = next_config_rom;
2555                 ohci->next_config_rom_bus = next_config_rom_bus;
2556                 next_config_rom = NULL;
2557         }
2558
2559         copy_config_rom(ohci->next_config_rom, config_rom, length);
2560
2561         ohci->next_header = config_rom[0];
2562         ohci->next_config_rom[0] = 0;
2563
2564         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2565
2566         spin_unlock_irq(&ohci->lock);
2567
2568         /* If we didn't use the DMA allocation, delete it. */
2569         if (next_config_rom != NULL) {
2570                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2571                                    next_config_rom_bus);
2572         }
2573
2574         /*
2575          * Now initiate a bus reset to have the changes take
2576          * effect. We clean up the old config rom memory and DMA
2577          * mappings in the bus reset tasklet, since the OHCI
2578          * controller could need to access it before the bus reset
2579          * takes effect.
2580          */
2581
2582         fw_schedule_bus_reset(&ohci->card, true, true);
2583
2584         return 0;
2585 }
2586
2587 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2588 {
2589         struct fw_ohci *ohci = fw_ohci(card);
2590
2591         at_context_transmit(&ohci->at_request_ctx, packet);
2592 }
2593
2594 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2595 {
2596         struct fw_ohci *ohci = fw_ohci(card);
2597
2598         at_context_transmit(&ohci->at_response_ctx, packet);
2599 }
2600
2601 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2602 {
2603         struct fw_ohci *ohci = fw_ohci(card);
2604         struct context *ctx = &ohci->at_request_ctx;
2605         struct driver_data *driver_data = packet->driver_data;
2606         int ret = -ENOENT;
2607
2608         tasklet_disable_in_atomic(&ctx->tasklet);
2609
2610         if (packet->ack != 0)
2611                 goto out;
2612
2613         if (packet->payload_mapped)
2614                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2615                                  packet->payload_length, DMA_TO_DEVICE);
2616
2617         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2618         driver_data->packet = NULL;
2619         packet->ack = RCODE_CANCELLED;
2620
2621         // Timestamping on behalf of the hardware.
2622         packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2623
2624         packet->callback(packet, &ohci->card, packet->ack);
2625         ret = 0;
2626  out:
2627         tasklet_enable(&ctx->tasklet);
2628
2629         return ret;
2630 }
2631
2632 static int ohci_enable_phys_dma(struct fw_card *card,
2633                                 int node_id, int generation)
2634 {
2635         struct fw_ohci *ohci = fw_ohci(card);
2636         unsigned long flags;
2637         int n, ret = 0;
2638
2639         if (param_remote_dma)
2640                 return 0;
2641
2642         /*
2643          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2644          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2645          */
2646
2647         spin_lock_irqsave(&ohci->lock, flags);
2648
2649         if (ohci->generation != generation) {
2650                 ret = -ESTALE;
2651                 goto out;
2652         }
2653
2654         /*
2655          * Note, if the node ID contains a non-local bus ID, physical DMA is
2656          * enabled for _all_ nodes on remote buses.
2657          */
2658
2659         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2660         if (n < 32)
2661                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2662         else
2663                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2664
2665         flush_writes(ohci);
2666  out:
2667         spin_unlock_irqrestore(&ohci->lock, flags);
2668
2669         return ret;
2670 }
2671
2672 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2673 {
2674         struct fw_ohci *ohci = fw_ohci(card);
2675         unsigned long flags;
2676         u32 value;
2677
2678         switch (csr_offset) {
2679         case CSR_STATE_CLEAR:
2680         case CSR_STATE_SET:
2681                 if (ohci->is_root &&
2682                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2683                      OHCI1394_LinkControl_cycleMaster))
2684                         value = CSR_STATE_BIT_CMSTR;
2685                 else
2686                         value = 0;
2687                 if (ohci->csr_state_setclear_abdicate)
2688                         value |= CSR_STATE_BIT_ABDICATE;
2689
2690                 return value;
2691
2692         case CSR_NODE_IDS:
2693                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2694
2695         case CSR_CYCLE_TIME:
2696                 return get_cycle_time(ohci);
2697
2698         case CSR_BUS_TIME:
2699                 /*
2700                  * We might be called just after the cycle timer has wrapped
2701                  * around but just before the cycle64Seconds handler, so we
2702                  * better check here, too, if the bus time needs to be updated.
2703                  */
2704                 spin_lock_irqsave(&ohci->lock, flags);
2705                 value = update_bus_time(ohci);
2706                 spin_unlock_irqrestore(&ohci->lock, flags);
2707                 return value;
2708
2709         case CSR_BUSY_TIMEOUT:
2710                 value = reg_read(ohci, OHCI1394_ATRetries);
2711                 return (value >> 4) & 0x0ffff00f;
2712
2713         case CSR_PRIORITY_BUDGET:
2714                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2715                         (ohci->pri_req_max << 8);
2716
2717         default:
2718                 WARN_ON(1);
2719                 return 0;
2720         }
2721 }
2722
2723 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2724 {
2725         struct fw_ohci *ohci = fw_ohci(card);
2726         unsigned long flags;
2727
2728         switch (csr_offset) {
2729         case CSR_STATE_CLEAR:
2730                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2731                         reg_write(ohci, OHCI1394_LinkControlClear,
2732                                   OHCI1394_LinkControl_cycleMaster);
2733                         flush_writes(ohci);
2734                 }
2735                 if (value & CSR_STATE_BIT_ABDICATE)
2736                         ohci->csr_state_setclear_abdicate = false;
2737                 break;
2738
2739         case CSR_STATE_SET:
2740                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2741                         reg_write(ohci, OHCI1394_LinkControlSet,
2742                                   OHCI1394_LinkControl_cycleMaster);
2743                         flush_writes(ohci);
2744                 }
2745                 if (value & CSR_STATE_BIT_ABDICATE)
2746                         ohci->csr_state_setclear_abdicate = true;
2747                 break;
2748
2749         case CSR_NODE_IDS:
2750                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2751                 flush_writes(ohci);
2752                 break;
2753
2754         case CSR_CYCLE_TIME:
2755                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2756                 reg_write(ohci, OHCI1394_IntEventSet,
2757                           OHCI1394_cycleInconsistent);
2758                 flush_writes(ohci);
2759                 break;
2760
2761         case CSR_BUS_TIME:
2762                 spin_lock_irqsave(&ohci->lock, flags);
2763                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2764                                  (value & ~0x7f);
2765                 spin_unlock_irqrestore(&ohci->lock, flags);
2766                 break;
2767
2768         case CSR_BUSY_TIMEOUT:
2769                 value = (value & 0xf) | ((value & 0xf) << 4) |
2770                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2771                 reg_write(ohci, OHCI1394_ATRetries, value);
2772                 flush_writes(ohci);
2773                 break;
2774
2775         case CSR_PRIORITY_BUDGET:
2776                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2777                 flush_writes(ohci);
2778                 break;
2779
2780         default:
2781                 WARN_ON(1);
2782                 break;
2783         }
2784 }
2785
2786 static void flush_iso_completions(struct iso_context *ctx)
2787 {
2788         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2789                               ctx->header_length, ctx->header,
2790                               ctx->base.callback_data);
2791         ctx->header_length = 0;
2792 }
2793
2794 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2795 {
2796         u32 *ctx_hdr;
2797
2798         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2799                 if (ctx->base.drop_overflow_headers)
2800                         return;
2801                 flush_iso_completions(ctx);
2802         }
2803
2804         ctx_hdr = ctx->header + ctx->header_length;
2805         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2806
2807         /*
2808          * The two iso header quadlets are byteswapped to little
2809          * endian by the controller, but we want to present them
2810          * as big endian for consistency with the bus endianness.
2811          */
2812         if (ctx->base.header_size > 0)
2813                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2814         if (ctx->base.header_size > 4)
2815                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2816         if (ctx->base.header_size > 8)
2817                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2818         ctx->header_length += ctx->base.header_size;
2819 }
2820
2821 static int handle_ir_packet_per_buffer(struct context *context,
2822                                        struct descriptor *d,
2823                                        struct descriptor *last)
2824 {
2825         struct iso_context *ctx =
2826                 container_of(context, struct iso_context, context);
2827         struct descriptor *pd;
2828         u32 buffer_dma;
2829
2830         for (pd = d; pd <= last; pd++)
2831                 if (pd->transfer_status)
2832                         break;
2833         if (pd > last)
2834                 /* Descriptor(s) not done yet, stop iteration */
2835                 return 0;
2836
2837         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2838                 d++;
2839                 buffer_dma = le32_to_cpu(d->data_address);
2840                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2841                                               buffer_dma & PAGE_MASK,
2842                                               buffer_dma & ~PAGE_MASK,
2843                                               le16_to_cpu(d->req_count),
2844                                               DMA_FROM_DEVICE);
2845         }
2846
2847         copy_iso_headers(ctx, (u32 *) (last + 1));
2848
2849         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2850                 flush_iso_completions(ctx);
2851
2852         return 1;
2853 }
2854
2855 /* d == last because each descriptor block is only a single descriptor. */
2856 static int handle_ir_buffer_fill(struct context *context,
2857                                  struct descriptor *d,
2858                                  struct descriptor *last)
2859 {
2860         struct iso_context *ctx =
2861                 container_of(context, struct iso_context, context);
2862         unsigned int req_count, res_count, completed;
2863         u32 buffer_dma;
2864
2865         req_count = le16_to_cpu(last->req_count);
2866         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2867         completed = req_count - res_count;
2868         buffer_dma = le32_to_cpu(last->data_address);
2869
2870         if (completed > 0) {
2871                 ctx->mc_buffer_bus = buffer_dma;
2872                 ctx->mc_completed = completed;
2873         }
2874
2875         if (res_count != 0)
2876                 /* Descriptor(s) not done yet, stop iteration */
2877                 return 0;
2878
2879         dma_sync_single_range_for_cpu(context->ohci->card.device,
2880                                       buffer_dma & PAGE_MASK,
2881                                       buffer_dma & ~PAGE_MASK,
2882                                       completed, DMA_FROM_DEVICE);
2883
2884         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2885                 ctx->base.callback.mc(&ctx->base,
2886                                       buffer_dma + completed,
2887                                       ctx->base.callback_data);
2888                 ctx->mc_completed = 0;
2889         }
2890
2891         return 1;
2892 }
2893
2894 static void flush_ir_buffer_fill(struct iso_context *ctx)
2895 {
2896         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2897                                       ctx->mc_buffer_bus & PAGE_MASK,
2898                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2899                                       ctx->mc_completed, DMA_FROM_DEVICE);
2900
2901         ctx->base.callback.mc(&ctx->base,
2902                               ctx->mc_buffer_bus + ctx->mc_completed,
2903                               ctx->base.callback_data);
2904         ctx->mc_completed = 0;
2905 }
2906
2907 static inline void sync_it_packet_for_cpu(struct context *context,
2908                                           struct descriptor *pd)
2909 {
2910         __le16 control;
2911         u32 buffer_dma;
2912
2913         /* only packets beginning with OUTPUT_MORE* have data buffers */
2914         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2915                 return;
2916
2917         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2918         pd += 2;
2919
2920         /*
2921          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2922          * data buffer is in the context program's coherent page and must not
2923          * be synced.
2924          */
2925         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2926             (context->current_bus          & PAGE_MASK)) {
2927                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2928                         return;
2929                 pd++;
2930         }
2931
2932         do {
2933                 buffer_dma = le32_to_cpu(pd->data_address);
2934                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2935                                               buffer_dma & PAGE_MASK,
2936                                               buffer_dma & ~PAGE_MASK,
2937                                               le16_to_cpu(pd->req_count),
2938                                               DMA_TO_DEVICE);
2939                 control = pd->control;
2940                 pd++;
2941         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2942 }
2943
2944 static int handle_it_packet(struct context *context,
2945                             struct descriptor *d,
2946                             struct descriptor *last)
2947 {
2948         struct iso_context *ctx =
2949                 container_of(context, struct iso_context, context);
2950         struct descriptor *pd;
2951         __be32 *ctx_hdr;
2952
2953         for (pd = d; pd <= last; pd++)
2954                 if (pd->transfer_status)
2955                         break;
2956         if (pd > last)
2957                 /* Descriptor(s) not done yet, stop iteration */
2958                 return 0;
2959
2960         sync_it_packet_for_cpu(context, d);
2961
2962         if (ctx->header_length + 4 > PAGE_SIZE) {
2963                 if (ctx->base.drop_overflow_headers)
2964                         return 1;
2965                 flush_iso_completions(ctx);
2966         }
2967
2968         ctx_hdr = ctx->header + ctx->header_length;
2969         ctx->last_timestamp = le16_to_cpu(last->res_count);
2970         /* Present this value as big-endian to match the receive code */
2971         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2972                                le16_to_cpu(pd->res_count));
2973         ctx->header_length += 4;
2974
2975         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2976                 flush_iso_completions(ctx);
2977
2978         return 1;
2979 }
2980
2981 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2982 {
2983         u32 hi = channels >> 32, lo = channels;
2984
2985         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2986         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2987         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2988         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2989         ohci->mc_channels = channels;
2990 }
2991
2992 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2993                                 int type, int channel, size_t header_size)
2994 {
2995         struct fw_ohci *ohci = fw_ohci(card);
2996         struct iso_context *ctx;
2997         descriptor_callback_t callback;
2998         u64 *channels;
2999         u32 *mask, regs;
3000         int index, ret = -EBUSY;
3001
3002         spin_lock_irq(&ohci->lock);
3003
3004         switch (type) {
3005         case FW_ISO_CONTEXT_TRANSMIT:
3006                 mask     = &ohci->it_context_mask;
3007                 callback = handle_it_packet;
3008                 index    = ffs(*mask) - 1;
3009                 if (index >= 0) {
3010                         *mask &= ~(1 << index);
3011                         regs = OHCI1394_IsoXmitContextBase(index);
3012                         ctx  = &ohci->it_context_list[index];
3013                 }
3014                 break;
3015
3016         case FW_ISO_CONTEXT_RECEIVE:
3017                 channels = &ohci->ir_context_channels;
3018                 mask     = &ohci->ir_context_mask;
3019                 callback = handle_ir_packet_per_buffer;
3020                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3021                 if (index >= 0) {
3022                         *channels &= ~(1ULL << channel);
3023                         *mask     &= ~(1 << index);
3024                         regs = OHCI1394_IsoRcvContextBase(index);
3025                         ctx  = &ohci->ir_context_list[index];
3026                 }
3027                 break;
3028
3029         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3030                 mask     = &ohci->ir_context_mask;
3031                 callback = handle_ir_buffer_fill;
3032                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3033                 if (index >= 0) {
3034                         ohci->mc_allocated = true;
3035                         *mask &= ~(1 << index);
3036                         regs = OHCI1394_IsoRcvContextBase(index);
3037                         ctx  = &ohci->ir_context_list[index];
3038                 }
3039                 break;
3040
3041         default:
3042                 index = -1;
3043                 ret = -ENOSYS;
3044         }
3045
3046         spin_unlock_irq(&ohci->lock);
3047
3048         if (index < 0)
3049                 return ERR_PTR(ret);
3050
3051         memset(ctx, 0, sizeof(*ctx));
3052         ctx->header_length = 0;
3053         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3054         if (ctx->header == NULL) {
3055                 ret = -ENOMEM;
3056                 goto out;
3057         }
3058         ret = context_init(&ctx->context, ohci, regs, callback);
3059         if (ret < 0)
3060                 goto out_with_header;
3061
3062         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3063                 set_multichannel_mask(ohci, 0);
3064                 ctx->mc_completed = 0;
3065         }
3066
3067         return &ctx->base;
3068
3069  out_with_header:
3070         free_page((unsigned long)ctx->header);
3071  out:
3072         spin_lock_irq(&ohci->lock);
3073
3074         switch (type) {
3075         case FW_ISO_CONTEXT_RECEIVE:
3076                 *channels |= 1ULL << channel;
3077                 break;
3078
3079         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3080                 ohci->mc_allocated = false;
3081                 break;
3082         }
3083         *mask |= 1 << index;
3084
3085         spin_unlock_irq(&ohci->lock);
3086
3087         return ERR_PTR(ret);
3088 }
3089
3090 static int ohci_start_iso(struct fw_iso_context *base,
3091                           s32 cycle, u32 sync, u32 tags)
3092 {
3093         struct iso_context *ctx = container_of(base, struct iso_context, base);
3094         struct fw_ohci *ohci = ctx->context.ohci;
3095         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3096         int index;
3097
3098         /* the controller cannot start without any queued packets */
3099         if (ctx->context.last->branch_address == 0)
3100                 return -ENODATA;
3101
3102         switch (ctx->base.type) {
3103         case FW_ISO_CONTEXT_TRANSMIT:
3104                 index = ctx - ohci->it_context_list;
3105                 match = 0;
3106                 if (cycle >= 0)
3107                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3108                                 (cycle & 0x7fff) << 16;
3109
3110                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3111                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3112                 context_run(&ctx->context, match);
3113                 break;
3114
3115         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3116                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3117                 fallthrough;
3118         case FW_ISO_CONTEXT_RECEIVE:
3119                 index = ctx - ohci->ir_context_list;
3120                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3121                 if (cycle >= 0) {
3122                         match |= (cycle & 0x07fff) << 12;
3123                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3124                 }
3125
3126                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3127                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3128                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3129                 context_run(&ctx->context, control);
3130
3131                 ctx->sync = sync;
3132                 ctx->tags = tags;
3133
3134                 break;
3135         }
3136
3137         return 0;
3138 }
3139
3140 static int ohci_stop_iso(struct fw_iso_context *base)
3141 {
3142         struct fw_ohci *ohci = fw_ohci(base->card);
3143         struct iso_context *ctx = container_of(base, struct iso_context, base);
3144         int index;
3145
3146         switch (ctx->base.type) {
3147         case FW_ISO_CONTEXT_TRANSMIT:
3148                 index = ctx - ohci->it_context_list;
3149                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3150                 break;
3151
3152         case FW_ISO_CONTEXT_RECEIVE:
3153         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3154                 index = ctx - ohci->ir_context_list;
3155                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3156                 break;
3157         }
3158         flush_writes(ohci);
3159         context_stop(&ctx->context);
3160         tasklet_kill(&ctx->context.tasklet);
3161
3162         return 0;
3163 }
3164
3165 static void ohci_free_iso_context(struct fw_iso_context *base)
3166 {
3167         struct fw_ohci *ohci = fw_ohci(base->card);
3168         struct iso_context *ctx = container_of(base, struct iso_context, base);
3169         unsigned long flags;
3170         int index;
3171
3172         ohci_stop_iso(base);
3173         context_release(&ctx->context);
3174         free_page((unsigned long)ctx->header);
3175
3176         spin_lock_irqsave(&ohci->lock, flags);
3177
3178         switch (base->type) {
3179         case FW_ISO_CONTEXT_TRANSMIT:
3180                 index = ctx - ohci->it_context_list;
3181                 ohci->it_context_mask |= 1 << index;
3182                 break;
3183
3184         case FW_ISO_CONTEXT_RECEIVE:
3185                 index = ctx - ohci->ir_context_list;
3186                 ohci->ir_context_mask |= 1 << index;
3187                 ohci->ir_context_channels |= 1ULL << base->channel;
3188                 break;
3189
3190         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3191                 index = ctx - ohci->ir_context_list;
3192                 ohci->ir_context_mask |= 1 << index;
3193                 ohci->ir_context_channels |= ohci->mc_channels;
3194                 ohci->mc_channels = 0;
3195                 ohci->mc_allocated = false;
3196                 break;
3197         }
3198
3199         spin_unlock_irqrestore(&ohci->lock, flags);
3200 }
3201
3202 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3203 {
3204         struct fw_ohci *ohci = fw_ohci(base->card);
3205         unsigned long flags;
3206         int ret;
3207
3208         switch (base->type) {
3209         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3210
3211                 spin_lock_irqsave(&ohci->lock, flags);
3212
3213                 /* Don't allow multichannel to grab other contexts' channels. */
3214                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3215                         *channels = ohci->ir_context_channels;
3216                         ret = -EBUSY;
3217                 } else {
3218                         set_multichannel_mask(ohci, *channels);
3219                         ret = 0;
3220                 }
3221
3222                 spin_unlock_irqrestore(&ohci->lock, flags);
3223
3224                 break;
3225         default:
3226                 ret = -EINVAL;
3227         }
3228
3229         return ret;
3230 }
3231
3232 #ifdef CONFIG_PM
3233 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3234 {
3235         int i;
3236         struct iso_context *ctx;
3237
3238         for (i = 0 ; i < ohci->n_ir ; i++) {
3239                 ctx = &ohci->ir_context_list[i];
3240                 if (ctx->context.running)
3241                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3242         }
3243
3244         for (i = 0 ; i < ohci->n_it ; i++) {
3245                 ctx = &ohci->it_context_list[i];
3246                 if (ctx->context.running)
3247                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3248         }
3249 }
3250 #endif
3251
3252 static int queue_iso_transmit(struct iso_context *ctx,
3253                               struct fw_iso_packet *packet,
3254                               struct fw_iso_buffer *buffer,
3255                               unsigned long payload)
3256 {
3257         struct descriptor *d, *last, *pd;
3258         struct fw_iso_packet *p;
3259         __le32 *header;
3260         dma_addr_t d_bus, page_bus;
3261         u32 z, header_z, payload_z, irq;
3262         u32 payload_index, payload_end_index, next_page_index;
3263         int page, end_page, i, length, offset;
3264
3265         p = packet;
3266         payload_index = payload;
3267
3268         if (p->skip)
3269                 z = 1;
3270         else
3271                 z = 2;
3272         if (p->header_length > 0)
3273                 z++;
3274
3275         /* Determine the first page the payload isn't contained in. */
3276         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3277         if (p->payload_length > 0)
3278                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3279         else
3280                 payload_z = 0;
3281
3282         z += payload_z;
3283
3284         /* Get header size in number of descriptors. */
3285         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3286
3287         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3288         if (d == NULL)
3289                 return -ENOMEM;
3290
3291         if (!p->skip) {
3292                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3293                 d[0].req_count = cpu_to_le16(8);
3294                 /*
3295                  * Link the skip address to this descriptor itself.  This causes
3296                  * a context to skip a cycle whenever lost cycles or FIFO
3297                  * overruns occur, without dropping the data.  The application
3298                  * should then decide whether this is an error condition or not.
3299                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3300                  */
3301                 d[0].branch_address = cpu_to_le32(d_bus | z);
3302
3303                 header = (__le32 *) &d[1];
3304                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3305                                         IT_HEADER_TAG(p->tag) |
3306                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3307                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3308                                         IT_HEADER_SPEED(ctx->base.speed));
3309                 header[1] =
3310                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3311                                                           p->payload_length));
3312         }
3313
3314         if (p->header_length > 0) {
3315                 d[2].req_count    = cpu_to_le16(p->header_length);
3316                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3317                 memcpy(&d[z], p->header, p->header_length);
3318         }
3319
3320         pd = d + z - payload_z;
3321         payload_end_index = payload_index + p->payload_length;
3322         for (i = 0; i < payload_z; i++) {
3323                 page               = payload_index >> PAGE_SHIFT;
3324                 offset             = payload_index & ~PAGE_MASK;
3325                 next_page_index    = (page + 1) << PAGE_SHIFT;
3326                 length             =
3327                         min(next_page_index, payload_end_index) - payload_index;
3328                 pd[i].req_count    = cpu_to_le16(length);
3329
3330                 page_bus = page_private(buffer->pages[page]);
3331                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3332
3333                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3334                                                  page_bus, offset, length,
3335                                                  DMA_TO_DEVICE);
3336
3337                 payload_index += length;
3338         }
3339
3340         if (p->interrupt)
3341                 irq = DESCRIPTOR_IRQ_ALWAYS;
3342         else
3343                 irq = DESCRIPTOR_NO_IRQ;
3344
3345         last = z == 2 ? d : d + z - 1;
3346         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3347                                      DESCRIPTOR_STATUS |
3348                                      DESCRIPTOR_BRANCH_ALWAYS |
3349                                      irq);
3350
3351         context_append(&ctx->context, d, z, header_z);
3352
3353         return 0;
3354 }
3355
3356 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3357                                        struct fw_iso_packet *packet,
3358                                        struct fw_iso_buffer *buffer,
3359                                        unsigned long payload)
3360 {
3361         struct device *device = ctx->context.ohci->card.device;
3362         struct descriptor *d, *pd;
3363         dma_addr_t d_bus, page_bus;
3364         u32 z, header_z, rest;
3365         int i, j, length;
3366         int page, offset, packet_count, header_size, payload_per_buffer;
3367
3368         /*
3369          * The OHCI controller puts the isochronous header and trailer in the
3370          * buffer, so we need at least 8 bytes.
3371          */
3372         packet_count = packet->header_length / ctx->base.header_size;
3373         header_size  = max(ctx->base.header_size, (size_t)8);
3374
3375         /* Get header size in number of descriptors. */
3376         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3377         page     = payload >> PAGE_SHIFT;
3378         offset   = payload & ~PAGE_MASK;
3379         payload_per_buffer = packet->payload_length / packet_count;
3380
3381         for (i = 0; i < packet_count; i++) {
3382                 /* d points to the header descriptor */
3383                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3384                 d = context_get_descriptors(&ctx->context,
3385                                 z + header_z, &d_bus);
3386                 if (d == NULL)
3387                         return -ENOMEM;
3388
3389                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3390                                               DESCRIPTOR_INPUT_MORE);
3391                 if (packet->skip && i == 0)
3392                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3393                 d->req_count    = cpu_to_le16(header_size);
3394                 d->res_count    = d->req_count;
3395                 d->transfer_status = 0;
3396                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3397
3398                 rest = payload_per_buffer;
3399                 pd = d;
3400                 for (j = 1; j < z; j++) {
3401                         pd++;
3402                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3403                                                   DESCRIPTOR_INPUT_MORE);
3404
3405                         if (offset + rest < PAGE_SIZE)
3406                                 length = rest;
3407                         else
3408                                 length = PAGE_SIZE - offset;
3409                         pd->req_count = cpu_to_le16(length);
3410                         pd->res_count = pd->req_count;
3411                         pd->transfer_status = 0;
3412
3413                         page_bus = page_private(buffer->pages[page]);
3414                         pd->data_address = cpu_to_le32(page_bus + offset);
3415
3416                         dma_sync_single_range_for_device(device, page_bus,
3417                                                          offset, length,
3418                                                          DMA_FROM_DEVICE);
3419
3420                         offset = (offset + length) & ~PAGE_MASK;
3421                         rest -= length;
3422                         if (offset == 0)
3423                                 page++;
3424                 }
3425                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3426                                           DESCRIPTOR_INPUT_LAST |
3427                                           DESCRIPTOR_BRANCH_ALWAYS);
3428                 if (packet->interrupt && i == packet_count - 1)
3429                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3430
3431                 context_append(&ctx->context, d, z, header_z);
3432         }
3433
3434         return 0;
3435 }
3436
3437 static int queue_iso_buffer_fill(struct iso_context *ctx,
3438                                  struct fw_iso_packet *packet,
3439                                  struct fw_iso_buffer *buffer,
3440                                  unsigned long payload)
3441 {
3442         struct descriptor *d;
3443         dma_addr_t d_bus, page_bus;
3444         int page, offset, rest, z, i, length;
3445
3446         page   = payload >> PAGE_SHIFT;
3447         offset = payload & ~PAGE_MASK;
3448         rest   = packet->payload_length;
3449
3450         /* We need one descriptor for each page in the buffer. */
3451         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3452
3453         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3454                 return -EFAULT;
3455
3456         for (i = 0; i < z; i++) {
3457                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3458                 if (d == NULL)
3459                         return -ENOMEM;
3460
3461                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3462                                          DESCRIPTOR_BRANCH_ALWAYS);
3463                 if (packet->skip && i == 0)
3464                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3465                 if (packet->interrupt && i == z - 1)
3466                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3467
3468                 if (offset + rest < PAGE_SIZE)
3469                         length = rest;
3470                 else
3471                         length = PAGE_SIZE - offset;
3472                 d->req_count = cpu_to_le16(length);
3473                 d->res_count = d->req_count;
3474                 d->transfer_status = 0;
3475
3476                 page_bus = page_private(buffer->pages[page]);
3477                 d->data_address = cpu_to_le32(page_bus + offset);
3478
3479                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3480                                                  page_bus, offset, length,
3481                                                  DMA_FROM_DEVICE);
3482
3483                 rest -= length;
3484                 offset = 0;
3485                 page++;
3486
3487                 context_append(&ctx->context, d, 1, 0);
3488         }
3489
3490         return 0;
3491 }
3492
3493 static int ohci_queue_iso(struct fw_iso_context *base,
3494                           struct fw_iso_packet *packet,
3495                           struct fw_iso_buffer *buffer,
3496                           unsigned long payload)
3497 {
3498         struct iso_context *ctx = container_of(base, struct iso_context, base);
3499         unsigned long flags;
3500         int ret = -ENOSYS;
3501
3502         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3503         switch (base->type) {
3504         case FW_ISO_CONTEXT_TRANSMIT:
3505                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3506                 break;
3507         case FW_ISO_CONTEXT_RECEIVE:
3508                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3509                 break;
3510         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3511                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3512                 break;
3513         }
3514         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3515
3516         return ret;
3517 }
3518
3519 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3520 {
3521         struct context *ctx =
3522                         &container_of(base, struct iso_context, base)->context;
3523
3524         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3525 }
3526
3527 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3528 {
3529         struct iso_context *ctx = container_of(base, struct iso_context, base);
3530         int ret = 0;
3531
3532         tasklet_disable_in_atomic(&ctx->context.tasklet);
3533
3534         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3535                 context_tasklet((unsigned long)&ctx->context);
3536
3537                 switch (base->type) {
3538                 case FW_ISO_CONTEXT_TRANSMIT:
3539                 case FW_ISO_CONTEXT_RECEIVE:
3540                         if (ctx->header_length != 0)
3541                                 flush_iso_completions(ctx);
3542                         break;
3543                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3544                         if (ctx->mc_completed != 0)
3545                                 flush_ir_buffer_fill(ctx);
3546                         break;
3547                 default:
3548                         ret = -ENOSYS;
3549                 }
3550
3551                 clear_bit_unlock(0, &ctx->flushing_completions);
3552                 smp_mb__after_atomic();
3553         }
3554
3555         tasklet_enable(&ctx->context.tasklet);
3556
3557         return ret;
3558 }
3559
3560 static const struct fw_card_driver ohci_driver = {
3561         .enable                 = ohci_enable,
3562         .read_phy_reg           = ohci_read_phy_reg,
3563         .update_phy_reg         = ohci_update_phy_reg,
3564         .set_config_rom         = ohci_set_config_rom,
3565         .send_request           = ohci_send_request,
3566         .send_response          = ohci_send_response,
3567         .cancel_packet          = ohci_cancel_packet,
3568         .enable_phys_dma        = ohci_enable_phys_dma,
3569         .read_csr               = ohci_read_csr,
3570         .write_csr              = ohci_write_csr,
3571
3572         .allocate_iso_context   = ohci_allocate_iso_context,
3573         .free_iso_context       = ohci_free_iso_context,
3574         .set_iso_channels       = ohci_set_iso_channels,
3575         .queue_iso              = ohci_queue_iso,
3576         .flush_queue_iso        = ohci_flush_queue_iso,
3577         .flush_iso_completions  = ohci_flush_iso_completions,
3578         .start_iso              = ohci_start_iso,
3579         .stop_iso               = ohci_stop_iso,
3580 };
3581
3582 #ifdef CONFIG_PPC_PMAC
3583 static void pmac_ohci_on(struct pci_dev *dev)
3584 {
3585         if (machine_is(powermac)) {
3586                 struct device_node *ofn = pci_device_to_OF_node(dev);
3587
3588                 if (ofn) {
3589                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3590                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3591                 }
3592         }
3593 }
3594
3595 static void pmac_ohci_off(struct pci_dev *dev)
3596 {
3597         if (machine_is(powermac)) {
3598                 struct device_node *ofn = pci_device_to_OF_node(dev);
3599
3600                 if (ofn) {
3601                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3602                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3603                 }
3604         }
3605 }
3606 #else
3607 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3608 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3609 #endif /* CONFIG_PPC_PMAC */
3610
3611 static void release_ohci(struct device *dev, void *data)
3612 {
3613         struct pci_dev *pdev = to_pci_dev(dev);
3614         struct fw_ohci *ohci = pci_get_drvdata(pdev);
3615
3616         pmac_ohci_off(pdev);
3617
3618         ar_context_release(&ohci->ar_response_ctx);
3619         ar_context_release(&ohci->ar_request_ctx);
3620
3621         dev_notice(dev, "removed fw-ohci device\n");
3622 }
3623
3624 static int pci_probe(struct pci_dev *dev,
3625                                const struct pci_device_id *ent)
3626 {
3627         struct fw_ohci *ohci;
3628         u32 bus_options, max_receive, link_speed, version;
3629         u64 guid;
3630         int i, err;
3631         size_t size;
3632
3633         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3634                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3635                 return -ENOSYS;
3636         }
3637
3638         ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3639         if (ohci == NULL)
3640                 return -ENOMEM;
3641         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3642         pci_set_drvdata(dev, ohci);
3643         pmac_ohci_on(dev);
3644         devres_add(&dev->dev, ohci);
3645
3646         err = pcim_enable_device(dev);
3647         if (err) {
3648                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3649                 return err;
3650         }
3651
3652         pci_set_master(dev);
3653         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3654
3655         spin_lock_init(&ohci->lock);
3656         mutex_init(&ohci->phy_reg_mutex);
3657
3658         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3659
3660         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3661             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3662                 ohci_err(ohci, "invalid MMIO resource\n");
3663                 return -ENXIO;
3664         }
3665
3666         err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3667         if (err) {
3668                 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3669                 return -ENXIO;
3670         }
3671         ohci->registers = pcim_iomap_table(dev)[0];
3672
3673         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3674                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3675                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3676                      ohci_quirks[i].device == dev->device) &&
3677                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3678                      ohci_quirks[i].revision >= dev->revision)) {
3679                         ohci->quirks = ohci_quirks[i].flags;
3680                         break;
3681                 }
3682         if (param_quirks)
3683                 ohci->quirks = param_quirks;
3684
3685         if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3686                 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3687
3688         /*
3689          * Because dma_alloc_coherent() allocates at least one page,
3690          * we save space by using a common buffer for the AR request/
3691          * response descriptors and the self IDs buffer.
3692          */
3693         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3694         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3695         ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3696                                                 GFP_KERNEL);
3697         if (!ohci->misc_buffer)
3698                 return -ENOMEM;
3699
3700         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3701                               OHCI1394_AsReqRcvContextControlSet);
3702         if (err < 0)
3703                 return err;
3704
3705         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3706                               OHCI1394_AsRspRcvContextControlSet);
3707         if (err < 0)
3708                 return err;
3709
3710         err = context_init(&ohci->at_request_ctx, ohci,
3711                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3712         if (err < 0)
3713                 return err;
3714
3715         err = context_init(&ohci->at_response_ctx, ohci,
3716                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3717         if (err < 0)
3718                 return err;
3719
3720         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3721         ohci->ir_context_channels = ~0ULL;
3722         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3723         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3724         ohci->ir_context_mask = ohci->ir_context_support;
3725         ohci->n_ir = hweight32(ohci->ir_context_mask);
3726         size = sizeof(struct iso_context) * ohci->n_ir;
3727         ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3728         if (!ohci->ir_context_list)
3729                 return -ENOMEM;
3730
3731         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3732         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3733         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3734         if (!ohci->it_context_support) {
3735                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3736                 ohci->it_context_support = 0xf;
3737         }
3738         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3739         ohci->it_context_mask = ohci->it_context_support;
3740         ohci->n_it = hweight32(ohci->it_context_mask);
3741         size = sizeof(struct iso_context) * ohci->n_it;
3742         ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3743         if (!ohci->it_context_list)
3744                 return -ENOMEM;
3745
3746         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3747         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3748
3749         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3750         max_receive = (bus_options >> 12) & 0xf;
3751         link_speed = bus_options & 0x7;
3752         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3753                 reg_read(ohci, OHCI1394_GUIDLo);
3754
3755         if (!(ohci->quirks & QUIRK_NO_MSI))
3756                 pci_enable_msi(dev);
3757         err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3758                                pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3759         if (err < 0) {
3760                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3761                 goto fail_msi;
3762         }
3763
3764         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3765         if (err)
3766                 goto fail_msi;
3767
3768         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3769         ohci_notice(ohci,
3770                     "added OHCI v%x.%x device as card %d, "
3771                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3772                     version >> 16, version & 0xff, ohci->card.index,
3773                     ohci->n_ir, ohci->n_it, ohci->quirks,
3774                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3775                         ", physUB" : "");
3776
3777         return 0;
3778
3779  fail_msi:
3780         devm_free_irq(&dev->dev, dev->irq, ohci);
3781         pci_disable_msi(dev);
3782
3783         return err;
3784 }
3785
3786 static void pci_remove(struct pci_dev *dev)
3787 {
3788         struct fw_ohci *ohci = pci_get_drvdata(dev);
3789
3790         /*
3791          * If the removal is happening from the suspend state, LPS won't be
3792          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3793          */
3794         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3795                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3796                 flush_writes(ohci);
3797         }
3798         cancel_work_sync(&ohci->bus_reset_work);
3799         fw_core_remove_card(&ohci->card);
3800
3801         /*
3802          * FIXME: Fail all pending packets here, now that the upper
3803          * layers can't queue any more.
3804          */
3805
3806         software_reset(ohci);
3807
3808         devm_free_irq(&dev->dev, dev->irq, ohci);
3809         pci_disable_msi(dev);
3810
3811         dev_notice(&dev->dev, "removing fw-ohci device\n");
3812 }
3813
3814 #ifdef CONFIG_PM
3815 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3816 {
3817         struct fw_ohci *ohci = pci_get_drvdata(dev);
3818         int err;
3819
3820         software_reset(ohci);
3821         err = pci_save_state(dev);
3822         if (err) {
3823                 ohci_err(ohci, "pci_save_state failed\n");
3824                 return err;
3825         }
3826         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3827         if (err)
3828                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3829         pmac_ohci_off(dev);
3830
3831         return 0;
3832 }
3833
3834 static int pci_resume(struct pci_dev *dev)
3835 {
3836         struct fw_ohci *ohci = pci_get_drvdata(dev);
3837         int err;
3838
3839         pmac_ohci_on(dev);
3840         pci_set_power_state(dev, PCI_D0);
3841         pci_restore_state(dev);
3842         err = pci_enable_device(dev);
3843         if (err) {
3844                 ohci_err(ohci, "pci_enable_device failed\n");
3845                 return err;
3846         }
3847
3848         /* Some systems don't setup GUID register on resume from ram  */
3849         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3850                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3851                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3852                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3853         }
3854
3855         err = ohci_enable(&ohci->card, NULL, 0);
3856         if (err)
3857                 return err;
3858
3859         ohci_resume_iso_dma(ohci);
3860
3861         return 0;
3862 }
3863 #endif
3864
3865 static const struct pci_device_id pci_table[] = {
3866         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3867         { }
3868 };
3869
3870 MODULE_DEVICE_TABLE(pci, pci_table);
3871
3872 static struct pci_driver fw_ohci_pci_driver = {
3873         .name           = ohci_driver_name,
3874         .id_table       = pci_table,
3875         .probe          = pci_probe,
3876         .remove         = pci_remove,
3877 #ifdef CONFIG_PM
3878         .resume         = pci_resume,
3879         .suspend        = pci_suspend,
3880 #endif
3881 };
3882
3883 static int __init fw_ohci_init(void)
3884 {
3885         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3886         if (!selfid_workqueue)
3887                 return -ENOMEM;
3888
3889         return pci_register_driver(&fw_ohci_pci_driver);
3890 }
3891
3892 static void __exit fw_ohci_cleanup(void)
3893 {
3894         pci_unregister_driver(&fw_ohci_pci_driver);
3895         destroy_workqueue(selfid_workqueue);
3896 }
3897
3898 module_init(fw_ohci_init);
3899 module_exit(fw_ohci_cleanup);
3900
3901 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3902 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3903 MODULE_LICENSE("GPL");
3904
3905 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3906 MODULE_ALIAS("ohci1394");