cifs: fix creating sockets when using sfu mount options
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68                                         bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78         struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87         struct work_struct sdma_activity_work;
88         struct kfd_process_device *pdd;
89         uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93         uint64_t __user *rptr;
94         uint64_t sdma_val;
95         unsigned int queue_id;
96         struct list_head list;
97 };
98
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101         struct kfd_sdma_activity_handler_workarea *workarea;
102         struct kfd_process_device *pdd;
103         uint64_t val;
104         struct mm_struct *mm;
105         struct queue *q;
106         struct qcm_process_device *qpd;
107         struct device_queue_manager *dqm;
108         int ret = 0;
109         struct temp_sdma_queue_list sdma_q_list;
110         struct temp_sdma_queue_list *sdma_q, *next;
111
112         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113                                 sdma_activity_work);
114
115         pdd = workarea->pdd;
116         if (!pdd)
117                 return;
118         dqm = pdd->dev->dqm;
119         qpd = &pdd->qpd;
120         if (!dqm || !qpd)
121                 return;
122         /*
123          * Total SDMA activity is current SDMA activity + past SDMA activity
124          * Past SDMA count is stored in pdd.
125          * To get the current activity counters for all active SDMA queues,
126          * we loop over all SDMA queues and get their counts from user-space.
127          *
128          * We cannot call get_user() with dqm_lock held as it can cause
129          * a circular lock dependency situation. To read the SDMA stats,
130          * we need to do the following:
131          *
132          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133          *    with dqm_lock/dqm_unlock().
134          * 2. Call get_user() for each node in temporary list without dqm_lock.
135          *    Save the SDMA count for each node and also add the count to the total
136          *    SDMA count counter.
137          *    Its possible, during this step, a few SDMA queue nodes got deleted
138          *    from the qpd->queues_list.
139          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140          *    If any node got deleted, its SDMA count would be captured in the sdma
141          *    past activity counter. So subtract the SDMA counter stored in step 2
142          *    for this node from the total SDMA count.
143          */
144         INIT_LIST_HEAD(&sdma_q_list.list);
145
146         /*
147          * Create the temp list of all SDMA queues
148          */
149         dqm_lock(dqm);
150
151         list_for_each_entry(q, &qpd->queues_list, list) {
152                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154                         continue;
155
156                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157                 if (!sdma_q) {
158                         dqm_unlock(dqm);
159                         goto cleanup;
160                 }
161
162                 INIT_LIST_HEAD(&sdma_q->list);
163                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164                 sdma_q->queue_id = q->properties.queue_id;
165                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166         }
167
168         /*
169          * If the temp list is empty, then no SDMA queues nodes were found in
170          * qpd->queues_list. Return the past activity count as the total sdma
171          * count
172          */
173         if (list_empty(&sdma_q_list.list)) {
174                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175                 dqm_unlock(dqm);
176                 return;
177         }
178
179         dqm_unlock(dqm);
180
181         /*
182          * Get the usage count for each SDMA queue in temp_list.
183          */
184         mm = get_task_mm(pdd->process->lead_thread);
185         if (!mm)
186                 goto cleanup;
187
188         kthread_use_mm(mm);
189
190         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191                 val = 0;
192                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193                 if (ret) {
194                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195                                  sdma_q->queue_id);
196                 } else {
197                         sdma_q->sdma_val = val;
198                         workarea->sdma_activity_counter += val;
199                 }
200         }
201
202         kthread_unuse_mm(mm);
203         mmput(mm);
204
205         /*
206          * Do a second iteration over qpd_queues_list to check if any SDMA
207          * nodes got deleted while fetching SDMA counter.
208          */
209         dqm_lock(dqm);
210
211         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213         list_for_each_entry(q, &qpd->queues_list, list) {
214                 if (list_empty(&sdma_q_list.list))
215                         break;
216
217                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219                         continue;
220
221                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223                              (sdma_q->queue_id == q->properties.queue_id)) {
224                                 list_del(&sdma_q->list);
225                                 kfree(sdma_q);
226                                 break;
227                         }
228                 }
229         }
230
231         dqm_unlock(dqm);
232
233         /*
234          * If temp list is not empty, it implies some queues got deleted
235          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236          * count for each node from the total SDMA count.
237          */
238         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240                 list_del(&sdma_q->list);
241                 kfree(sdma_q);
242         }
243
244         return;
245
246 cleanup:
247         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248                 list_del(&sdma_q->list);
249                 kfree(sdma_q);
250         }
251 }
252
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267         int cu_cnt;
268         int wave_cnt;
269         int max_waves_per_cu;
270         struct kfd_node *dev = NULL;
271         struct kfd_process *proc = NULL;
272         struct kfd_process_device *pdd = NULL;
273
274         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275         dev = pdd->dev;
276         if (dev->kfd2kgd->get_cu_occupancy == NULL)
277                 return -EINVAL;
278
279         cu_cnt = 0;
280         proc = pdd->process;
281         if (pdd->qpd.queue_count == 0) {
282                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283                          dev->id, proc->pasid);
284                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285         }
286
287         /* Collect wave count from device if it supports */
288         wave_cnt = 0;
289         max_waves_per_cu = 0;
290         dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291                         &max_waves_per_cu, 0);
292
293         /* Translate wave count to number of compute units */
294         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299                                char *buffer)
300 {
301         if (strcmp(attr->name, "pasid") == 0) {
302                 struct kfd_process *p = container_of(attr, struct kfd_process,
303                                                      attr_pasid);
304
305                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306         } else if (strncmp(attr->name, "vram_", 5) == 0) {
307                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308                                                               attr_vram);
309                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312                                                               attr_sdma);
313                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316                                         kfd_sdma_activity_worker);
317
318                 sdma_activity_work_handler.pdd = pdd;
319                 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326                                 (sdma_activity_work_handler.sdma_activity_counter)/
327                                  SDMA_ACTIVITY_DIVISOR);
328         } else {
329                 pr_err("Invalid attribute");
330                 return -EINVAL;
331         }
332
333         return 0;
334 }
335
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338         kfree(kobj);
339 }
340
341 static const struct sysfs_ops kfd_procfs_ops = {
342         .show = kfd_procfs_show,
343 };
344
345 static const struct kobj_type procfs_type = {
346         .release = kfd_procfs_kobj_release,
347         .sysfs_ops = &kfd_procfs_ops,
348 };
349
350 void kfd_procfs_init(void)
351 {
352         int ret = 0;
353
354         procfs.kobj = kfd_alloc_struct(procfs.kobj);
355         if (!procfs.kobj)
356                 return;
357
358         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359                                    &kfd_device->kobj, "proc");
360         if (ret) {
361                 pr_warn("Could not create procfs proc folder");
362                 /* If we fail to create the procfs, clean up */
363                 kfd_procfs_shutdown();
364         }
365 }
366
367 void kfd_procfs_shutdown(void)
368 {
369         if (procfs.kobj) {
370                 kobject_del(procfs.kobj);
371                 kobject_put(procfs.kobj);
372                 procfs.kobj = NULL;
373         }
374 }
375
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377                                      struct attribute *attr, char *buffer)
378 {
379         struct queue *q = container_of(kobj, struct queue, kobj);
380
381         if (!strcmp(attr->name, "size"))
382                 return snprintf(buffer, PAGE_SIZE, "%llu",
383                                 q->properties.queue_size);
384         else if (!strcmp(attr->name, "type"))
385                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386         else if (!strcmp(attr->name, "gpuid"))
387                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388         else
389                 pr_err("Invalid attribute");
390
391         return 0;
392 }
393
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395                                      struct attribute *attr, char *buffer)
396 {
397         if (strcmp(attr->name, "evicted_ms") == 0) {
398                 struct kfd_process_device *pdd = container_of(attr,
399                                 struct kfd_process_device,
400                                 attr_evict);
401                 uint64_t evict_jiffies;
402
403                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405                 return snprintf(buffer,
406                                 PAGE_SIZE,
407                                 "%llu\n",
408                                 jiffies64_to_msecs(evict_jiffies));
409
410         /* Sysfs handle that gets CU occupancy is per device */
411         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412                 return kfd_get_cu_occupancy(attr, buffer);
413         } else {
414                 pr_err("Invalid attribute");
415         }
416
417         return 0;
418 }
419
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421                                        struct attribute *attr, char *buf)
422 {
423         struct kfd_process_device *pdd;
424
425         if (!strcmp(attr->name, "faults")) {
426                 pdd = container_of(attr, struct kfd_process_device,
427                                    attr_faults);
428                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429         }
430         if (!strcmp(attr->name, "page_in")) {
431                 pdd = container_of(attr, struct kfd_process_device,
432                                    attr_page_in);
433                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434         }
435         if (!strcmp(attr->name, "page_out")) {
436                 pdd = container_of(attr, struct kfd_process_device,
437                                    attr_page_out);
438                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439         }
440         return 0;
441 }
442
443 static struct attribute attr_queue_size = {
444         .name = "size",
445         .mode = KFD_SYSFS_FILE_MODE
446 };
447
448 static struct attribute attr_queue_type = {
449         .name = "type",
450         .mode = KFD_SYSFS_FILE_MODE
451 };
452
453 static struct attribute attr_queue_gpuid = {
454         .name = "gpuid",
455         .mode = KFD_SYSFS_FILE_MODE
456 };
457
458 static struct attribute *procfs_queue_attrs[] = {
459         &attr_queue_size,
460         &attr_queue_type,
461         &attr_queue_gpuid,
462         NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465
466 static const struct sysfs_ops procfs_queue_ops = {
467         .show = kfd_procfs_queue_show,
468 };
469
470 static const struct kobj_type procfs_queue_type = {
471         .sysfs_ops = &procfs_queue_ops,
472         .default_groups = procfs_queue_groups,
473 };
474
475 static const struct sysfs_ops procfs_stats_ops = {
476         .show = kfd_procfs_stats_show,
477 };
478
479 static const struct kobj_type procfs_stats_type = {
480         .sysfs_ops = &procfs_stats_ops,
481         .release = kfd_procfs_kobj_release,
482 };
483
484 static const struct sysfs_ops sysfs_counters_ops = {
485         .show = kfd_sysfs_counters_show,
486 };
487
488 static const struct kobj_type sysfs_counters_type = {
489         .sysfs_ops = &sysfs_counters_ops,
490         .release = kfd_procfs_kobj_release,
491 };
492
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495         struct kfd_process *proc;
496         int ret;
497
498         if (!q || !q->process)
499                 return -EINVAL;
500         proc = q->process;
501
502         /* Create proc/<pid>/queues/<queue id> folder */
503         if (!proc->kobj_queues)
504                 return -EFAULT;
505         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506                         proc->kobj_queues, "%u", q->properties.queue_id);
507         if (ret < 0) {
508                 pr_warn("Creating proc/<pid>/queues/%u failed",
509                         q->properties.queue_id);
510                 kobject_put(&q->kobj);
511                 return ret;
512         }
513
514         return 0;
515 }
516
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518                                  char *name)
519 {
520         int ret;
521
522         if (!kobj || !attr || !name)
523                 return;
524
525         attr->name = name;
526         attr->mode = KFD_SYSFS_FILE_MODE;
527         sysfs_attr_init(attr);
528
529         ret = sysfs_create_file(kobj, attr);
530         if (ret)
531                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536         int ret;
537         int i;
538         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540         if (!p || !p->kobj)
541                 return;
542
543         /*
544          * Create sysfs files for each GPU:
545          * - proc/<pid>/stats_<gpuid>/
546          * - proc/<pid>/stats_<gpuid>/evicted_ms
547          * - proc/<pid>/stats_<gpuid>/cu_occupancy
548          */
549         for (i = 0; i < p->n_pdds; i++) {
550                 struct kfd_process_device *pdd = p->pdds[i];
551
552                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553                                 "stats_%u", pdd->dev->id);
554                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555                 if (!pdd->kobj_stats)
556                         return;
557
558                 ret = kobject_init_and_add(pdd->kobj_stats,
559                                            &procfs_stats_type,
560                                            p->kobj,
561                                            stats_dir_filename);
562
563                 if (ret) {
564                         pr_warn("Creating KFD proc/stats_%s folder failed",
565                                 stats_dir_filename);
566                         kobject_put(pdd->kobj_stats);
567                         pdd->kobj_stats = NULL;
568                         return;
569                 }
570
571                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572                                       "evicted_ms");
573                 /* Add sysfs file to report compute unit occupancy */
574                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575                         kfd_sysfs_create_file(pdd->kobj_stats,
576                                               &pdd->attr_cu_occupancy,
577                                               "cu_occupancy");
578         }
579 }
580
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583         int ret = 0;
584         int i;
585         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587         if (!p || !p->kobj)
588                 return;
589
590         /*
591          * Create sysfs files for each GPU which supports SVM
592          * - proc/<pid>/counters_<gpuid>/
593          * - proc/<pid>/counters_<gpuid>/faults
594          * - proc/<pid>/counters_<gpuid>/page_in
595          * - proc/<pid>/counters_<gpuid>/page_out
596          */
597         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598                 struct kfd_process_device *pdd = p->pdds[i];
599                 struct kobject *kobj_counters;
600
601                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602                         "counters_%u", pdd->dev->id);
603                 kobj_counters = kfd_alloc_struct(kobj_counters);
604                 if (!kobj_counters)
605                         return;
606
607                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608                                            p->kobj, counters_dir_filename);
609                 if (ret) {
610                         pr_warn("Creating KFD proc/%s folder failed",
611                                 counters_dir_filename);
612                         kobject_put(kobj_counters);
613                         return;
614                 }
615
616                 pdd->kobj_counters = kobj_counters;
617                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618                                       "faults");
619                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620                                       "page_in");
621                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622                                       "page_out");
623         }
624 }
625
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628         int i;
629
630         if (!p || !p->kobj)
631                 return;
632
633         /*
634          * Create sysfs files for each GPU:
635          * - proc/<pid>/vram_<gpuid>
636          * - proc/<pid>/sdma_<gpuid>
637          */
638         for (i = 0; i < p->n_pdds; i++) {
639                 struct kfd_process_device *pdd = p->pdds[i];
640
641                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642                          pdd->dev->id);
643                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644                                       pdd->vram_filename);
645
646                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647                          pdd->dev->id);
648                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649                                             pdd->sdma_filename);
650         }
651 }
652
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655         if (!q)
656                 return;
657
658         kobject_del(&q->kobj);
659         kobject_put(&q->kobj);
660 }
661
662 int kfd_process_create_wq(void)
663 {
664         if (!kfd_process_wq)
665                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666         if (!kfd_restore_wq)
667                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668                                                          WQ_FREEZABLE);
669
670         if (!kfd_process_wq || !kfd_restore_wq) {
671                 kfd_process_destroy_wq();
672                 return -ENOMEM;
673         }
674
675         return 0;
676 }
677
678 void kfd_process_destroy_wq(void)
679 {
680         if (kfd_process_wq) {
681                 destroy_workqueue(kfd_process_wq);
682                 kfd_process_wq = NULL;
683         }
684         if (kfd_restore_wq) {
685                 destroy_workqueue(kfd_restore_wq);
686                 kfd_restore_wq = NULL;
687         }
688 }
689
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691                         struct kfd_process_device *pdd, void **kptr)
692 {
693         struct kfd_node *dev = pdd->dev;
694
695         if (kptr && *kptr) {
696                 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697                 *kptr = NULL;
698         }
699
700         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702                                                NULL);
703 }
704
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *      This function should be only called right after the process
707  *      is created and when kfd_processes_mutex is still being held
708  *      to avoid concurrency. Because of that exclusiveness, we do
709  *      not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712                                    uint64_t gpu_va, uint32_t size,
713                                    uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715         struct kfd_node *kdev = pdd->dev;
716         int err;
717
718         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719                                                  pdd->drm_priv, mem, NULL,
720                                                  flags, false);
721         if (err)
722                 goto err_alloc_mem;
723
724         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725                         pdd->drm_priv);
726         if (err)
727                 goto err_map_mem;
728
729         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730         if (err) {
731                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732                 goto sync_memory_failed;
733         }
734
735         if (kptr) {
736                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737                                 (struct kgd_mem *)*mem, kptr, NULL);
738                 if (err) {
739                         pr_debug("Map GTT BO to kernel failed\n");
740                         goto sync_memory_failed;
741                 }
742         }
743
744         return err;
745
746 sync_memory_failed:
747         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749 err_map_mem:
750         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751                                                NULL);
752 err_alloc_mem:
753         *mem = NULL;
754         *kptr = NULL;
755         return err;
756 }
757
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *      process for IB usage The memory reserved is for KFD to submit
760  *      IB to AMDGPU from kernel.  If the memory is reserved
761  *      successfully, ib_kaddr will have the CPU/kernel
762  *      address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766         struct qcm_process_device *qpd = &pdd->qpd;
767         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771         struct kgd_mem *mem;
772         void *kaddr;
773         int ret;
774
775         if (qpd->ib_kaddr || !qpd->ib_base)
776                 return 0;
777
778         /* ib_base is only set for dGPU */
779         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780                                       &mem, &kaddr);
781         if (ret)
782                 return ret;
783
784         qpd->ib_mem = mem;
785         qpd->ib_kaddr = kaddr;
786
787         return 0;
788 }
789
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792         struct qcm_process_device *qpd = &pdd->qpd;
793
794         if (!qpd->ib_kaddr || !qpd->ib_base)
795                 return;
796
797         kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798 }
799
800 struct kfd_process *kfd_create_process(struct task_struct *thread)
801 {
802         struct kfd_process *process;
803         int ret;
804
805         if (!(thread->mm && mmget_not_zero(thread->mm)))
806                 return ERR_PTR(-EINVAL);
807
808         /* Only the pthreads threading model is supported. */
809         if (thread->group_leader->mm != thread->mm) {
810                 mmput(thread->mm);
811                 return ERR_PTR(-EINVAL);
812         }
813
814         /*
815          * take kfd processes mutex before starting of process creation
816          * so there won't be a case where two threads of the same process
817          * create two kfd_process structures
818          */
819         mutex_lock(&kfd_processes_mutex);
820
821         if (kfd_is_locked()) {
822                 pr_debug("KFD is locked! Cannot create process");
823                 process = ERR_PTR(-EINVAL);
824                 goto out;
825         }
826
827         /* A prior open of /dev/kfd could have already created the process. */
828         process = find_process(thread, false);
829         if (process) {
830                 pr_debug("Process already found\n");
831         } else {
832                 /* If the process just called exec(3), it is possible that the
833                  * cleanup of the kfd_process (following the release of the mm
834                  * of the old process image) is still in the cleanup work queue.
835                  * Make sure to drain any job before trying to recreate any
836                  * resource for this process.
837                  */
838                 flush_workqueue(kfd_process_wq);
839
840                 process = create_process(thread);
841                 if (IS_ERR(process))
842                         goto out;
843
844                 if (!procfs.kobj)
845                         goto out;
846
847                 process->kobj = kfd_alloc_struct(process->kobj);
848                 if (!process->kobj) {
849                         pr_warn("Creating procfs kobject failed");
850                         goto out;
851                 }
852                 ret = kobject_init_and_add(process->kobj, &procfs_type,
853                                            procfs.kobj, "%d",
854                                            (int)process->lead_thread->pid);
855                 if (ret) {
856                         pr_warn("Creating procfs pid directory failed");
857                         kobject_put(process->kobj);
858                         goto out;
859                 }
860
861                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
862                                       "pasid");
863
864                 process->kobj_queues = kobject_create_and_add("queues",
865                                                         process->kobj);
866                 if (!process->kobj_queues)
867                         pr_warn("Creating KFD proc/queues folder failed");
868
869                 kfd_procfs_add_sysfs_stats(process);
870                 kfd_procfs_add_sysfs_files(process);
871                 kfd_procfs_add_sysfs_counters(process);
872
873                 init_waitqueue_head(&process->wait_irq_drain);
874         }
875 out:
876         if (!IS_ERR(process))
877                 kref_get(&process->ref);
878         mutex_unlock(&kfd_processes_mutex);
879         mmput(thread->mm);
880
881         return process;
882 }
883
884 struct kfd_process *kfd_get_process(const struct task_struct *thread)
885 {
886         struct kfd_process *process;
887
888         if (!thread->mm)
889                 return ERR_PTR(-EINVAL);
890
891         /* Only the pthreads threading model is supported. */
892         if (thread->group_leader->mm != thread->mm)
893                 return ERR_PTR(-EINVAL);
894
895         process = find_process(thread, false);
896         if (!process)
897                 return ERR_PTR(-EINVAL);
898
899         return process;
900 }
901
902 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
903 {
904         struct kfd_process *process;
905
906         hash_for_each_possible_rcu(kfd_processes_table, process,
907                                         kfd_processes, (uintptr_t)mm)
908                 if (process->mm == mm)
909                         return process;
910
911         return NULL;
912 }
913
914 static struct kfd_process *find_process(const struct task_struct *thread,
915                                         bool ref)
916 {
917         struct kfd_process *p;
918         int idx;
919
920         idx = srcu_read_lock(&kfd_processes_srcu);
921         p = find_process_by_mm(thread->mm);
922         if (p && ref)
923                 kref_get(&p->ref);
924         srcu_read_unlock(&kfd_processes_srcu, idx);
925
926         return p;
927 }
928
929 void kfd_unref_process(struct kfd_process *p)
930 {
931         kref_put(&p->ref, kfd_process_ref_release);
932 }
933
934 /* This increments the process->ref counter. */
935 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
936 {
937         struct task_struct *task = NULL;
938         struct kfd_process *p    = NULL;
939
940         if (!pid) {
941                 task = current;
942                 get_task_struct(task);
943         } else {
944                 task = get_pid_task(pid, PIDTYPE_PID);
945         }
946
947         if (task) {
948                 p = find_process(task, true);
949                 put_task_struct(task);
950         }
951
952         return p;
953 }
954
955 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
956 {
957         struct kfd_process *p = pdd->process;
958         void *mem;
959         int id;
960         int i;
961
962         /*
963          * Remove all handles from idr and release appropriate
964          * local memory object
965          */
966         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
967
968                 for (i = 0; i < p->n_pdds; i++) {
969                         struct kfd_process_device *peer_pdd = p->pdds[i];
970
971                         if (!peer_pdd->drm_priv)
972                                 continue;
973                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
974                                 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
975                 }
976
977                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
978                                                        pdd->drm_priv, NULL);
979                 kfd_process_device_remove_obj_handle(pdd, id);
980         }
981 }
982
983 /*
984  * Just kunmap and unpin signal BO here. It will be freed in
985  * kfd_process_free_outstanding_kfd_bos()
986  */
987 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
988 {
989         struct kfd_process_device *pdd;
990         struct kfd_node *kdev;
991         void *mem;
992
993         kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
994         if (!kdev)
995                 return;
996
997         mutex_lock(&p->mutex);
998
999         pdd = kfd_get_process_device_data(kdev, p);
1000         if (!pdd)
1001                 goto out;
1002
1003         mem = kfd_process_device_translate_handle(
1004                 pdd, GET_IDR_HANDLE(p->signal_handle));
1005         if (!mem)
1006                 goto out;
1007
1008         amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009
1010 out:
1011         mutex_unlock(&p->mutex);
1012 }
1013
1014 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015 {
1016         int i;
1017
1018         for (i = 0; i < p->n_pdds; i++)
1019                 kfd_process_device_free_bos(p->pdds[i]);
1020 }
1021
1022 static void kfd_process_destroy_pdds(struct kfd_process *p)
1023 {
1024         int i;
1025
1026         for (i = 0; i < p->n_pdds; i++) {
1027                 struct kfd_process_device *pdd = p->pdds[i];
1028
1029                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030                                 pdd->dev->id, p->pasid);
1031
1032                 kfd_process_device_destroy_cwsr_dgpu(pdd);
1033                 kfd_process_device_destroy_ib_mem(pdd);
1034
1035                 if (pdd->drm_file) {
1036                         amdgpu_amdkfd_gpuvm_release_process_vm(
1037                                         pdd->dev->adev, pdd->drm_priv);
1038                         fput(pdd->drm_file);
1039                 }
1040
1041                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
1044
1045                 idr_destroy(&pdd->alloc_idr);
1046
1047                 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048
1049                 if (pdd->dev->kfd->shared_resources.enable_mes)
1050                         amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051                                                    pdd->proc_ctx_bo);
1052                 /*
1053                  * before destroying pdd, make sure to report availability
1054                  * for auto suspend
1055                  */
1056                 if (pdd->runtime_inuse) {
1057                         pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058                         pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059                         pdd->runtime_inuse = false;
1060                 }
1061
1062                 kfree(pdd);
1063                 p->pdds[i] = NULL;
1064         }
1065         p->n_pdds = 0;
1066 }
1067
1068 static void kfd_process_remove_sysfs(struct kfd_process *p)
1069 {
1070         struct kfd_process_device *pdd;
1071         int i;
1072
1073         if (!p->kobj)
1074                 return;
1075
1076         sysfs_remove_file(p->kobj, &p->attr_pasid);
1077         kobject_del(p->kobj_queues);
1078         kobject_put(p->kobj_queues);
1079         p->kobj_queues = NULL;
1080
1081         for (i = 0; i < p->n_pdds; i++) {
1082                 pdd = p->pdds[i];
1083
1084                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086
1087                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089                         sysfs_remove_file(pdd->kobj_stats,
1090                                           &pdd->attr_cu_occupancy);
1091                 kobject_del(pdd->kobj_stats);
1092                 kobject_put(pdd->kobj_stats);
1093                 pdd->kobj_stats = NULL;
1094         }
1095
1096         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097                 pdd = p->pdds[i];
1098
1099                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102                 kobject_del(pdd->kobj_counters);
1103                 kobject_put(pdd->kobj_counters);
1104                 pdd->kobj_counters = NULL;
1105         }
1106
1107         kobject_del(p->kobj);
1108         kobject_put(p->kobj);
1109         p->kobj = NULL;
1110 }
1111
1112 /* No process locking is needed in this function, because the process
1113  * is not findable any more. We must assume that no other thread is
1114  * using it any more, otherwise we couldn't safely free the process
1115  * structure in the end.
1116  */
1117 static void kfd_process_wq_release(struct work_struct *work)
1118 {
1119         struct kfd_process *p = container_of(work, struct kfd_process,
1120                                              release_work);
1121         struct dma_fence *ef;
1122
1123         kfd_process_dequeue_from_all_devices(p);
1124         pqm_uninit(&p->pqm);
1125
1126         /* Signal the eviction fence after user mode queues are
1127          * destroyed. This allows any BOs to be freed without
1128          * triggering pointless evictions or waiting for fences.
1129          */
1130         synchronize_rcu();
1131         ef = rcu_access_pointer(p->ef);
1132         dma_fence_signal(ef);
1133
1134         kfd_process_remove_sysfs(p);
1135
1136         kfd_process_kunmap_signal_bo(p);
1137         kfd_process_free_outstanding_kfd_bos(p);
1138         svm_range_list_fini(p);
1139
1140         kfd_process_destroy_pdds(p);
1141         dma_fence_put(ef);
1142
1143         kfd_event_free_process(p);
1144
1145         kfd_pasid_free(p->pasid);
1146         mutex_destroy(&p->mutex);
1147
1148         put_task_struct(p->lead_thread);
1149
1150         kfree(p);
1151 }
1152
1153 static void kfd_process_ref_release(struct kref *ref)
1154 {
1155         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156
1157         INIT_WORK(&p->release_work, kfd_process_wq_release);
1158         queue_work(kfd_process_wq, &p->release_work);
1159 }
1160
1161 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162 {
1163         int idx = srcu_read_lock(&kfd_processes_srcu);
1164         struct kfd_process *p = find_process_by_mm(mm);
1165
1166         srcu_read_unlock(&kfd_processes_srcu, idx);
1167
1168         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169 }
1170
1171 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172 {
1173         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174 }
1175
1176 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177 {
1178         int i;
1179
1180         cancel_delayed_work_sync(&p->eviction_work);
1181         cancel_delayed_work_sync(&p->restore_work);
1182
1183         for (i = 0; i < p->n_pdds; i++) {
1184                 struct kfd_process_device *pdd = p->pdds[i];
1185
1186                 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187                 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188                         amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189         }
1190
1191         /* Indicate to other users that MM is no longer valid */
1192         p->mm = NULL;
1193         kfd_dbg_trap_disable(p);
1194
1195         if (atomic_read(&p->debugged_process_count) > 0) {
1196                 struct kfd_process *target;
1197                 unsigned int temp;
1198                 int idx = srcu_read_lock(&kfd_processes_srcu);
1199
1200                 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201                         if (target->debugger_process && target->debugger_process == p) {
1202                                 mutex_lock_nested(&target->mutex, 1);
1203                                 kfd_dbg_trap_disable(target);
1204                                 mutex_unlock(&target->mutex);
1205                                 if (atomic_read(&p->debugged_process_count) == 0)
1206                                         break;
1207                         }
1208                 }
1209
1210                 srcu_read_unlock(&kfd_processes_srcu, idx);
1211         }
1212
1213         mmu_notifier_put(&p->mmu_notifier);
1214 }
1215
1216 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217                                         struct mm_struct *mm)
1218 {
1219         struct kfd_process *p;
1220
1221         /*
1222          * The kfd_process structure can not be free because the
1223          * mmu_notifier srcu is read locked
1224          */
1225         p = container_of(mn, struct kfd_process, mmu_notifier);
1226         if (WARN_ON(p->mm != mm))
1227                 return;
1228
1229         mutex_lock(&kfd_processes_mutex);
1230         /*
1231          * Do early return if table is empty.
1232          *
1233          * This could potentially happen if this function is called concurrently
1234          * by mmu_notifier and by kfd_cleanup_pocesses.
1235          *
1236          */
1237         if (hash_empty(kfd_processes_table)) {
1238                 mutex_unlock(&kfd_processes_mutex);
1239                 return;
1240         }
1241         hash_del_rcu(&p->kfd_processes);
1242         mutex_unlock(&kfd_processes_mutex);
1243         synchronize_srcu(&kfd_processes_srcu);
1244
1245         kfd_process_notifier_release_internal(p);
1246 }
1247
1248 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249         .release = kfd_process_notifier_release,
1250         .alloc_notifier = kfd_process_alloc_notifier,
1251         .free_notifier = kfd_process_free_notifier,
1252 };
1253
1254 /*
1255  * This code handles the case when driver is being unloaded before all
1256  * mm_struct are released.  We need to safely free the kfd_process and
1257  * avoid race conditions with mmu_notifier that might try to free them.
1258  *
1259  */
1260 void kfd_cleanup_processes(void)
1261 {
1262         struct kfd_process *p;
1263         struct hlist_node *p_temp;
1264         unsigned int temp;
1265         HLIST_HEAD(cleanup_list);
1266
1267         /*
1268          * Move all remaining kfd_process from the process table to a
1269          * temp list for processing.   Once done, callback from mmu_notifier
1270          * release will not see the kfd_process in the table and do early return,
1271          * avoiding double free issues.
1272          */
1273         mutex_lock(&kfd_processes_mutex);
1274         hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275                 hash_del_rcu(&p->kfd_processes);
1276                 synchronize_srcu(&kfd_processes_srcu);
1277                 hlist_add_head(&p->kfd_processes, &cleanup_list);
1278         }
1279         mutex_unlock(&kfd_processes_mutex);
1280
1281         hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282                 kfd_process_notifier_release_internal(p);
1283
1284         /*
1285          * Ensures that all outstanding free_notifier get called, triggering
1286          * the release of the kfd_process struct.
1287          */
1288         mmu_notifier_synchronize();
1289 }
1290
1291 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1292 {
1293         unsigned long  offset;
1294         int i;
1295
1296         if (p->has_cwsr)
1297                 return 0;
1298
1299         for (i = 0; i < p->n_pdds; i++) {
1300                 struct kfd_node *dev = p->pdds[i]->dev;
1301                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302
1303                 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304                         continue;
1305
1306                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309                         MAP_SHARED, offset);
1310
1311                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1312                         int err = qpd->tba_addr;
1313
1314                         pr_err("Failure to set tba address. error %d.\n", err);
1315                         qpd->tba_addr = 0;
1316                         qpd->cwsr_kaddr = NULL;
1317                         return err;
1318                 }
1319
1320                 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1321
1322                 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1323
1324                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327         }
1328
1329         p->has_cwsr = true;
1330
1331         return 0;
1332 }
1333
1334 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1335 {
1336         struct kfd_node *dev = pdd->dev;
1337         struct qcm_process_device *qpd = &pdd->qpd;
1338         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1339                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1340                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1341         struct kgd_mem *mem;
1342         void *kaddr;
1343         int ret;
1344
1345         if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1346                 return 0;
1347
1348         /* cwsr_base is only set for dGPU */
1349         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1350                                       KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1351         if (ret)
1352                 return ret;
1353
1354         qpd->cwsr_mem = mem;
1355         qpd->cwsr_kaddr = kaddr;
1356         qpd->tba_addr = qpd->cwsr_base;
1357
1358         memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1359
1360         kfd_process_set_trap_debug_flag(&pdd->qpd,
1361                                         pdd->process->debug_trap_enabled);
1362
1363         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1364         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1365                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1366
1367         return 0;
1368 }
1369
1370 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1371 {
1372         struct kfd_node *dev = pdd->dev;
1373         struct qcm_process_device *qpd = &pdd->qpd;
1374
1375         if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1376                 return;
1377
1378         kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1379 }
1380
1381 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1382                                   uint64_t tba_addr,
1383                                   uint64_t tma_addr)
1384 {
1385         if (qpd->cwsr_kaddr) {
1386                 /* KFD trap handler is bound, record as second-level TBA/TMA
1387                  * in first-level TMA. First-level trap will jump to second.
1388                  */
1389                 uint64_t *tma =
1390                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1391                 tma[0] = tba_addr;
1392                 tma[1] = tma_addr;
1393         } else {
1394                 /* No trap handler bound, bind as first-level TBA/TMA. */
1395                 qpd->tba_addr = tba_addr;
1396                 qpd->tma_addr = tma_addr;
1397         }
1398 }
1399
1400 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1401 {
1402         int i;
1403
1404         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1405          * boot time retry setting. Mixing processes with different
1406          * XNACK/retry settings can hang the GPU.
1407          *
1408          * Different GPUs can have different noretry settings depending
1409          * on HW bugs or limitations. We need to find at least one
1410          * XNACK mode for this process that's compatible with all GPUs.
1411          * Fortunately GPUs with retry enabled (noretry=0) can run code
1412          * built for XNACK-off. On GFXv9 it may perform slower.
1413          *
1414          * Therefore applications built for XNACK-off can always be
1415          * supported and will be our fallback if any GPU does not
1416          * support retry.
1417          */
1418         for (i = 0; i < p->n_pdds; i++) {
1419                 struct kfd_node *dev = p->pdds[i]->dev;
1420
1421                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1422                  * support the SVM APIs and don't need to be considered
1423                  * for the XNACK mode selection.
1424                  */
1425                 if (!KFD_IS_SOC15(dev))
1426                         continue;
1427                 /* Aldebaran can always support XNACK because it can support
1428                  * per-process XNACK mode selection. But let the dev->noretry
1429                  * setting still influence the default XNACK mode.
1430                  */
1431                 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1432                         if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1433                                 pr_debug("SRIOV platform xnack not supported\n");
1434                                 return false;
1435                         }
1436                         continue;
1437                 }
1438
1439                 /* GFXv10 and later GPUs do not support shader preemption
1440                  * during page faults. This can lead to poor QoS for queue
1441                  * management and memory-manager-related preemptions or
1442                  * even deadlocks.
1443                  */
1444                 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1445                         return false;
1446
1447                 if (dev->kfd->noretry)
1448                         return false;
1449         }
1450
1451         return true;
1452 }
1453
1454 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1455                                      bool enabled)
1456 {
1457         if (qpd->cwsr_kaddr) {
1458                 uint64_t *tma =
1459                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1460                 tma[2] = enabled;
1461         }
1462 }
1463
1464 /*
1465  * On return the kfd_process is fully operational and will be freed when the
1466  * mm is released
1467  */
1468 static struct kfd_process *create_process(const struct task_struct *thread)
1469 {
1470         struct kfd_process *process;
1471         struct mmu_notifier *mn;
1472         int err = -ENOMEM;
1473
1474         process = kzalloc(sizeof(*process), GFP_KERNEL);
1475         if (!process)
1476                 goto err_alloc_process;
1477
1478         kref_init(&process->ref);
1479         mutex_init(&process->mutex);
1480         process->mm = thread->mm;
1481         process->lead_thread = thread->group_leader;
1482         process->n_pdds = 0;
1483         process->queues_paused = false;
1484         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1485         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1486         process->last_restore_timestamp = get_jiffies_64();
1487         err = kfd_event_init_process(process);
1488         if (err)
1489                 goto err_event_init;
1490         process->is_32bit_user_mode = in_compat_syscall();
1491         process->debug_trap_enabled = false;
1492         process->debugger_process = NULL;
1493         process->exception_enable_mask = 0;
1494         atomic_set(&process->debugged_process_count, 0);
1495         sema_init(&process->runtime_enable_sema, 0);
1496
1497         process->pasid = kfd_pasid_alloc();
1498         if (process->pasid == 0) {
1499                 err = -ENOSPC;
1500                 goto err_alloc_pasid;
1501         }
1502
1503         err = pqm_init(&process->pqm, process);
1504         if (err != 0)
1505                 goto err_process_pqm_init;
1506
1507         /* init process apertures*/
1508         err = kfd_init_apertures(process);
1509         if (err != 0)
1510                 goto err_init_apertures;
1511
1512         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1513         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1514
1515         err = svm_range_list_init(process);
1516         if (err)
1517                 goto err_init_svm_range_list;
1518
1519         /* alloc_notifier needs to find the process in the hash table */
1520         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1521                         (uintptr_t)process->mm);
1522
1523         /* Avoid free_notifier to start kfd_process_wq_release if
1524          * mmu_notifier_get failed because of pending signal.
1525          */
1526         kref_get(&process->ref);
1527
1528         /* MMU notifier registration must be the last call that can fail
1529          * because after this point we cannot unwind the process creation.
1530          * After this point, mmu_notifier_put will trigger the cleanup by
1531          * dropping the last process reference in the free_notifier.
1532          */
1533         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1534         if (IS_ERR(mn)) {
1535                 err = PTR_ERR(mn);
1536                 goto err_register_notifier;
1537         }
1538         BUG_ON(mn != &process->mmu_notifier);
1539
1540         kfd_unref_process(process);
1541         get_task_struct(process->lead_thread);
1542
1543         INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1544
1545         return process;
1546
1547 err_register_notifier:
1548         hash_del_rcu(&process->kfd_processes);
1549         svm_range_list_fini(process);
1550 err_init_svm_range_list:
1551         kfd_process_free_outstanding_kfd_bos(process);
1552         kfd_process_destroy_pdds(process);
1553 err_init_apertures:
1554         pqm_uninit(&process->pqm);
1555 err_process_pqm_init:
1556         kfd_pasid_free(process->pasid);
1557 err_alloc_pasid:
1558         kfd_event_free_process(process);
1559 err_event_init:
1560         mutex_destroy(&process->mutex);
1561         kfree(process);
1562 err_alloc_process:
1563         return ERR_PTR(err);
1564 }
1565
1566 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1567                                                         struct kfd_process *p)
1568 {
1569         int i;
1570
1571         for (i = 0; i < p->n_pdds; i++)
1572                 if (p->pdds[i]->dev == dev)
1573                         return p->pdds[i];
1574
1575         return NULL;
1576 }
1577
1578 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1579                                                         struct kfd_process *p)
1580 {
1581         struct kfd_process_device *pdd = NULL;
1582         int retval = 0;
1583
1584         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1585                 return NULL;
1586         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1587         if (!pdd)
1588                 return NULL;
1589
1590         pdd->dev = dev;
1591         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1592         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1593         pdd->qpd.dqm = dev->dqm;
1594         pdd->qpd.pqm = &p->pqm;
1595         pdd->qpd.evicted = 0;
1596         pdd->qpd.mapped_gws_queue = false;
1597         pdd->process = p;
1598         pdd->bound = PDD_UNBOUND;
1599         pdd->already_dequeued = false;
1600         pdd->runtime_inuse = false;
1601         pdd->vram_usage = 0;
1602         pdd->sdma_past_activity_counter = 0;
1603         pdd->user_gpu_id = dev->id;
1604         atomic64_set(&pdd->evict_duration_counter, 0);
1605
1606         if (dev->kfd->shared_resources.enable_mes) {
1607                 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1608                                                 AMDGPU_MES_PROC_CTX_SIZE,
1609                                                 &pdd->proc_ctx_bo,
1610                                                 &pdd->proc_ctx_gpu_addr,
1611                                                 &pdd->proc_ctx_cpu_ptr,
1612                                                 false);
1613                 if (retval) {
1614                         pr_err("failed to allocate process context bo\n");
1615                         goto err_free_pdd;
1616                 }
1617                 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1618         }
1619
1620         p->pdds[p->n_pdds++] = pdd;
1621         if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1622                 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1623                                                         pdd->dev->adev,
1624                                                         false,
1625                                                         0);
1626
1627         /* Init idr used for memory handle translation */
1628         idr_init(&pdd->alloc_idr);
1629
1630         return pdd;
1631
1632 err_free_pdd:
1633         kfree(pdd);
1634         return NULL;
1635 }
1636
1637 /**
1638  * kfd_process_device_init_vm - Initialize a VM for a process-device
1639  *
1640  * @pdd: The process-device
1641  * @drm_file: Optional pointer to a DRM file descriptor
1642  *
1643  * If @drm_file is specified, it will be used to acquire the VM from
1644  * that file descriptor. If successful, the @pdd takes ownership of
1645  * the file descriptor.
1646  *
1647  * If @drm_file is NULL, a new VM is created.
1648  *
1649  * Returns 0 on success, -errno on failure.
1650  */
1651 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1652                                struct file *drm_file)
1653 {
1654         struct amdgpu_fpriv *drv_priv;
1655         struct amdgpu_vm *avm;
1656         struct kfd_process *p;
1657         struct dma_fence *ef;
1658         struct kfd_node *dev;
1659         int ret;
1660
1661         if (!drm_file)
1662                 return -EINVAL;
1663
1664         if (pdd->drm_priv)
1665                 return -EBUSY;
1666
1667         ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1668         if (ret)
1669                 return ret;
1670         avm = &drv_priv->vm;
1671
1672         p = pdd->process;
1673         dev = pdd->dev;
1674
1675         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1676                                                      &p->kgd_process_info,
1677                                                      &ef);
1678         if (ret) {
1679                 pr_err("Failed to create process VM object\n");
1680                 return ret;
1681         }
1682         RCU_INIT_POINTER(p->ef, ef);
1683         pdd->drm_priv = drm_file->private_data;
1684
1685         ret = kfd_process_device_reserve_ib_mem(pdd);
1686         if (ret)
1687                 goto err_reserve_ib_mem;
1688         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1689         if (ret)
1690                 goto err_init_cwsr;
1691
1692         ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1693         if (ret)
1694                 goto err_set_pasid;
1695
1696         pdd->drm_file = drm_file;
1697
1698         return 0;
1699
1700 err_set_pasid:
1701         kfd_process_device_destroy_cwsr_dgpu(pdd);
1702 err_init_cwsr:
1703         kfd_process_device_destroy_ib_mem(pdd);
1704 err_reserve_ib_mem:
1705         pdd->drm_priv = NULL;
1706         amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1707
1708         return ret;
1709 }
1710
1711 /*
1712  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1713  * to the device.
1714  * Unbinding occurs when the process dies or the device is removed.
1715  *
1716  * Assumes that the process lock is held.
1717  */
1718 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1719                                                         struct kfd_process *p)
1720 {
1721         struct kfd_process_device *pdd;
1722         int err;
1723
1724         pdd = kfd_get_process_device_data(dev, p);
1725         if (!pdd) {
1726                 pr_err("Process device data doesn't exist\n");
1727                 return ERR_PTR(-ENOMEM);
1728         }
1729
1730         if (!pdd->drm_priv)
1731                 return ERR_PTR(-ENODEV);
1732
1733         /*
1734          * signal runtime-pm system to auto resume and prevent
1735          * further runtime suspend once device pdd is created until
1736          * pdd is destroyed.
1737          */
1738         if (!pdd->runtime_inuse) {
1739                 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1740                 if (err < 0) {
1741                         pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1742                         return ERR_PTR(err);
1743                 }
1744         }
1745
1746         /*
1747          * make sure that runtime_usage counter is incremented just once
1748          * per pdd
1749          */
1750         pdd->runtime_inuse = true;
1751
1752         return pdd;
1753 }
1754
1755 /* Create specific handle mapped to mem from process local memory idr
1756  * Assumes that the process lock is held.
1757  */
1758 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1759                                         void *mem)
1760 {
1761         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1762 }
1763
1764 /* Translate specific handle from process local memory idr
1765  * Assumes that the process lock is held.
1766  */
1767 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1768                                         int handle)
1769 {
1770         if (handle < 0)
1771                 return NULL;
1772
1773         return idr_find(&pdd->alloc_idr, handle);
1774 }
1775
1776 /* Remove specific handle from process local memory idr
1777  * Assumes that the process lock is held.
1778  */
1779 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1780                                         int handle)
1781 {
1782         if (handle >= 0)
1783                 idr_remove(&pdd->alloc_idr, handle);
1784 }
1785
1786 /* This increments the process->ref counter. */
1787 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1788 {
1789         struct kfd_process *p, *ret_p = NULL;
1790         unsigned int temp;
1791
1792         int idx = srcu_read_lock(&kfd_processes_srcu);
1793
1794         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1795                 if (p->pasid == pasid) {
1796                         kref_get(&p->ref);
1797                         ret_p = p;
1798                         break;
1799                 }
1800         }
1801
1802         srcu_read_unlock(&kfd_processes_srcu, idx);
1803
1804         return ret_p;
1805 }
1806
1807 /* This increments the process->ref counter. */
1808 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1809 {
1810         struct kfd_process *p;
1811
1812         int idx = srcu_read_lock(&kfd_processes_srcu);
1813
1814         p = find_process_by_mm(mm);
1815         if (p)
1816                 kref_get(&p->ref);
1817
1818         srcu_read_unlock(&kfd_processes_srcu, idx);
1819
1820         return p;
1821 }
1822
1823 /* kfd_process_evict_queues - Evict all user queues of a process
1824  *
1825  * Eviction is reference-counted per process-device. This means multiple
1826  * evictions from different sources can be nested safely.
1827  */
1828 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1829 {
1830         int r = 0;
1831         int i;
1832         unsigned int n_evicted = 0;
1833
1834         for (i = 0; i < p->n_pdds; i++) {
1835                 struct kfd_process_device *pdd = p->pdds[i];
1836
1837                 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1838                                              trigger);
1839
1840                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1841                                                             &pdd->qpd);
1842                 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1843                  * we would like to set all the queues to be in evicted state to prevent
1844                  * them been add back since they actually not be saved right now.
1845                  */
1846                 if (r && r != -EIO) {
1847                         pr_err("Failed to evict process queues\n");
1848                         goto fail;
1849                 }
1850                 n_evicted++;
1851         }
1852
1853         return r;
1854
1855 fail:
1856         /* To keep state consistent, roll back partial eviction by
1857          * restoring queues
1858          */
1859         for (i = 0; i < p->n_pdds; i++) {
1860                 struct kfd_process_device *pdd = p->pdds[i];
1861
1862                 if (n_evicted == 0)
1863                         break;
1864
1865                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1866
1867                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1868                                                               &pdd->qpd))
1869                         pr_err("Failed to restore queues\n");
1870
1871                 n_evicted--;
1872         }
1873
1874         return r;
1875 }
1876
1877 /* kfd_process_restore_queues - Restore all user queues of a process */
1878 int kfd_process_restore_queues(struct kfd_process *p)
1879 {
1880         int r, ret = 0;
1881         int i;
1882
1883         for (i = 0; i < p->n_pdds; i++) {
1884                 struct kfd_process_device *pdd = p->pdds[i];
1885
1886                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1887
1888                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1889                                                               &pdd->qpd);
1890                 if (r) {
1891                         pr_err("Failed to restore process queues\n");
1892                         if (!ret)
1893                                 ret = r;
1894                 }
1895         }
1896
1897         return ret;
1898 }
1899
1900 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1901 {
1902         int i;
1903
1904         for (i = 0; i < p->n_pdds; i++)
1905                 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1906                         return i;
1907         return -EINVAL;
1908 }
1909
1910 int
1911 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1912                             uint32_t *gpuid, uint32_t *gpuidx)
1913 {
1914         int i;
1915
1916         for (i = 0; i < p->n_pdds; i++)
1917                 if (p->pdds[i] && p->pdds[i]->dev == node) {
1918                         *gpuid = p->pdds[i]->user_gpu_id;
1919                         *gpuidx = i;
1920                         return 0;
1921                 }
1922         return -EINVAL;
1923 }
1924
1925 static int signal_eviction_fence(struct kfd_process *p)
1926 {
1927         struct dma_fence *ef;
1928         int ret;
1929
1930         rcu_read_lock();
1931         ef = dma_fence_get_rcu_safe(&p->ef);
1932         rcu_read_unlock();
1933         if (!ef)
1934                 return -EINVAL;
1935
1936         ret = dma_fence_signal(ef);
1937         dma_fence_put(ef);
1938
1939         return ret;
1940 }
1941
1942 static void evict_process_worker(struct work_struct *work)
1943 {
1944         int ret;
1945         struct kfd_process *p;
1946         struct delayed_work *dwork;
1947
1948         dwork = to_delayed_work(work);
1949
1950         /* Process termination destroys this worker thread. So during the
1951          * lifetime of this thread, kfd_process p will be valid
1952          */
1953         p = container_of(dwork, struct kfd_process, eviction_work);
1954
1955         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1956         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1957         if (!ret) {
1958                 /* If another thread already signaled the eviction fence,
1959                  * they are responsible stopping the queues and scheduling
1960                  * the restore work.
1961                  */
1962                 if (signal_eviction_fence(p) ||
1963                     mod_delayed_work(kfd_restore_wq, &p->restore_work,
1964                                      msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1965                         kfd_process_restore_queues(p);
1966
1967                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1968         } else
1969                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1970 }
1971
1972 static int restore_process_helper(struct kfd_process *p)
1973 {
1974         int ret = 0;
1975
1976         /* VMs may not have been acquired yet during debugging. */
1977         if (p->kgd_process_info) {
1978                 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1979                         p->kgd_process_info, &p->ef);
1980                 if (ret)
1981                         return ret;
1982         }
1983
1984         ret = kfd_process_restore_queues(p);
1985         if (!ret)
1986                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1987         else
1988                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1989
1990         return ret;
1991 }
1992
1993 static void restore_process_worker(struct work_struct *work)
1994 {
1995         struct delayed_work *dwork;
1996         struct kfd_process *p;
1997         int ret = 0;
1998
1999         dwork = to_delayed_work(work);
2000
2001         /* Process termination destroys this worker thread. So during the
2002          * lifetime of this thread, kfd_process p will be valid
2003          */
2004         p = container_of(dwork, struct kfd_process, restore_work);
2005         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2006
2007         /* Setting last_restore_timestamp before successful restoration.
2008          * Otherwise this would have to be set by KGD (restore_process_bos)
2009          * before KFD BOs are unreserved. If not, the process can be evicted
2010          * again before the timestamp is set.
2011          * If restore fails, the timestamp will be set again in the next
2012          * attempt. This would mean that the minimum GPU quanta would be
2013          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2014          * functions)
2015          */
2016
2017         p->last_restore_timestamp = get_jiffies_64();
2018
2019         ret = restore_process_helper(p);
2020         if (ret) {
2021                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2022                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
2023                 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2024                                      msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2025                         kfd_process_restore_queues(p);
2026         }
2027 }
2028
2029 void kfd_suspend_all_processes(void)
2030 {
2031         struct kfd_process *p;
2032         unsigned int temp;
2033         int idx = srcu_read_lock(&kfd_processes_srcu);
2034
2035         WARN(debug_evictions, "Evicting all processes");
2036         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2037                 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2038                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
2039                 signal_eviction_fence(p);
2040         }
2041         srcu_read_unlock(&kfd_processes_srcu, idx);
2042 }
2043
2044 int kfd_resume_all_processes(void)
2045 {
2046         struct kfd_process *p;
2047         unsigned int temp;
2048         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2049
2050         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2051                 if (restore_process_helper(p)) {
2052                         pr_err("Restore process %d failed during resume\n",
2053                                p->pasid);
2054                         ret = -EFAULT;
2055                 }
2056         }
2057         srcu_read_unlock(&kfd_processes_srcu, idx);
2058         return ret;
2059 }
2060
2061 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2062                           struct vm_area_struct *vma)
2063 {
2064         struct kfd_process_device *pdd;
2065         struct qcm_process_device *qpd;
2066
2067         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2068                 pr_err("Incorrect CWSR mapping size.\n");
2069                 return -EINVAL;
2070         }
2071
2072         pdd = kfd_get_process_device_data(dev, process);
2073         if (!pdd)
2074                 return -EINVAL;
2075         qpd = &pdd->qpd;
2076
2077         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2078                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
2079         if (!qpd->cwsr_kaddr) {
2080                 pr_err("Error allocating per process CWSR buffer.\n");
2081                 return -ENOMEM;
2082         }
2083
2084         vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2085                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2086         /* Mapping pages to user process */
2087         return remap_pfn_range(vma, vma->vm_start,
2088                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2089                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2090 }
2091
2092 /* assumes caller holds process lock. */
2093 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2094 {
2095         uint32_t irq_drain_fence[8];
2096         uint8_t node_id = 0;
2097         int r = 0;
2098
2099         if (!KFD_IS_SOC15(pdd->dev))
2100                 return 0;
2101
2102         pdd->process->irq_drain_is_open = true;
2103
2104         memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2105         irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2106                                                         KFD_IRQ_FENCE_CLIENTID;
2107         irq_drain_fence[3] = pdd->process->pasid;
2108
2109         /*
2110          * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2111          */
2112         if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2113                 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2114                 irq_drain_fence[3] |= node_id << 16;
2115         }
2116
2117         /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2118         if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2119                                                      irq_drain_fence)) {
2120                 pdd->process->irq_drain_is_open = false;
2121                 return 0;
2122         }
2123
2124         r = wait_event_interruptible(pdd->process->wait_irq_drain,
2125                                      !READ_ONCE(pdd->process->irq_drain_is_open));
2126         if (r)
2127                 pdd->process->irq_drain_is_open = false;
2128
2129         return r;
2130 }
2131
2132 void kfd_process_close_interrupt_drain(unsigned int pasid)
2133 {
2134         struct kfd_process *p;
2135
2136         p = kfd_lookup_process_by_pasid(pasid);
2137
2138         if (!p)
2139                 return;
2140
2141         WRITE_ONCE(p->irq_drain_is_open, false);
2142         wake_up_all(&p->wait_irq_drain);
2143         kfd_unref_process(p);
2144 }
2145
2146 struct send_exception_work_handler_workarea {
2147         struct work_struct work;
2148         struct kfd_process *p;
2149         unsigned int queue_id;
2150         uint64_t error_reason;
2151 };
2152
2153 static void send_exception_work_handler(struct work_struct *work)
2154 {
2155         struct send_exception_work_handler_workarea *workarea;
2156         struct kfd_process *p;
2157         struct queue *q;
2158         struct mm_struct *mm;
2159         struct kfd_context_save_area_header __user *csa_header;
2160         uint64_t __user *err_payload_ptr;
2161         uint64_t cur_err;
2162         uint32_t ev_id;
2163
2164         workarea = container_of(work,
2165                                 struct send_exception_work_handler_workarea,
2166                                 work);
2167         p = workarea->p;
2168
2169         mm = get_task_mm(p->lead_thread);
2170
2171         if (!mm)
2172                 return;
2173
2174         kthread_use_mm(mm);
2175
2176         q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2177
2178         if (!q)
2179                 goto out;
2180
2181         csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2182
2183         get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2184         get_user(cur_err, err_payload_ptr);
2185         cur_err |= workarea->error_reason;
2186         put_user(cur_err, err_payload_ptr);
2187         get_user(ev_id, &csa_header->err_event_id);
2188
2189         kfd_set_event(p, ev_id);
2190
2191 out:
2192         kthread_unuse_mm(mm);
2193         mmput(mm);
2194 }
2195
2196 int kfd_send_exception_to_runtime(struct kfd_process *p,
2197                         unsigned int queue_id,
2198                         uint64_t error_reason)
2199 {
2200         struct send_exception_work_handler_workarea worker;
2201
2202         INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2203
2204         worker.p = p;
2205         worker.queue_id = queue_id;
2206         worker.error_reason = error_reason;
2207
2208         schedule_work(&worker.work);
2209         flush_work(&worker.work);
2210         destroy_work_on_stack(&worker.work);
2211
2212         return 0;
2213 }
2214
2215 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2216 {
2217         int i;
2218
2219         if (gpu_id) {
2220                 for (i = 0; i < p->n_pdds; i++) {
2221                         struct kfd_process_device *pdd = p->pdds[i];
2222
2223                         if (pdd->user_gpu_id == gpu_id)
2224                                 return pdd;
2225                 }
2226         }
2227         return NULL;
2228 }
2229
2230 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2231 {
2232         int i;
2233
2234         if (!actual_gpu_id)
2235                 return 0;
2236
2237         for (i = 0; i < p->n_pdds; i++) {
2238                 struct kfd_process_device *pdd = p->pdds[i];
2239
2240                 if (pdd->dev->id == actual_gpu_id)
2241                         return pdd->user_gpu_id;
2242         }
2243         return -EINVAL;
2244 }
2245
2246 #if defined(CONFIG_DEBUG_FS)
2247
2248 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2249 {
2250         struct kfd_process *p;
2251         unsigned int temp;
2252         int r = 0;
2253
2254         int idx = srcu_read_lock(&kfd_processes_srcu);
2255
2256         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2257                 seq_printf(m, "Process %d PASID 0x%x:\n",
2258                            p->lead_thread->tgid, p->pasid);
2259
2260                 mutex_lock(&p->mutex);
2261                 r = pqm_debugfs_mqds(m, &p->pqm);
2262                 mutex_unlock(&p->mutex);
2263
2264                 if (r)
2265                         break;
2266         }
2267
2268         srcu_read_unlock(&kfd_processes_srcu, idx);
2269
2270         return r;
2271 }
2272
2273 #endif