cifs: fix creating sockets when using sfu mount options
[sfrench/cifs-2.6.git] / drivers / gpu / drm / xe / xe_guc_ct.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5
6 #include "xe_guc_ct.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11
12 #include <kunit/static_stub.h>
13
14 #include <drm/drm_managed.h>
15
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_tlb_invalidation.h"
25 #include "xe_guc.h"
26 #include "xe_guc_relay.h"
27 #include "xe_guc_submit.h"
28 #include "xe_map.h"
29 #include "xe_pm.h"
30 #include "xe_trace.h"
31
32 /* Used when a CT send wants to block and / or receive data */
33 struct g2h_fence {
34         u32 *response_buffer;
35         u32 seqno;
36         u32 response_data;
37         u16 response_len;
38         u16 error;
39         u16 hint;
40         u16 reason;
41         bool retry;
42         bool fail;
43         bool done;
44 };
45
46 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
47 {
48         g2h_fence->response_buffer = response_buffer;
49         g2h_fence->response_data = 0;
50         g2h_fence->response_len = 0;
51         g2h_fence->fail = false;
52         g2h_fence->retry = false;
53         g2h_fence->done = false;
54         g2h_fence->seqno = ~0x0;
55 }
56
57 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
58 {
59         return g2h_fence->seqno == ~0x0;
60 }
61
62 static struct xe_guc *
63 ct_to_guc(struct xe_guc_ct *ct)
64 {
65         return container_of(ct, struct xe_guc, ct);
66 }
67
68 static struct xe_gt *
69 ct_to_gt(struct xe_guc_ct *ct)
70 {
71         return container_of(ct, struct xe_gt, uc.guc.ct);
72 }
73
74 static struct xe_device *
75 ct_to_xe(struct xe_guc_ct *ct)
76 {
77         return gt_to_xe(ct_to_gt(ct));
78 }
79
80 /**
81  * DOC: GuC CTB Blob
82  *
83  * We allocate single blob to hold both CTB descriptors and buffers:
84  *
85  *      +--------+-----------------------------------------------+------+
86  *      | offset | contents                                      | size |
87  *      +========+===============================================+======+
88  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
89  *      +--------+-----------------------------------------------+  4K  |
90  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
91  *      +--------+-----------------------------------------------+------+
92  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
93  *      |        |                                               |      |
94  *      +--------+-----------------------------------------------+------+
95  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
96  *      | + n*4K |                                               |      |
97  *      +--------+-----------------------------------------------+------+
98  *
99  * Size of each ``CT Buffer`` must be multiple of 4K.
100  * We don't expect too many messages in flight at any time, unless we are
101  * using the GuC submission. In that case each request requires a minimum
102  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
103  * enough space to avoid backpressure on the driver. We increase the size
104  * of the receive buffer (relative to the send) to ensure a G2H response
105  * CTB has a landing spot.
106  */
107
108 #define CTB_DESC_SIZE           ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
109 #define CTB_H2G_BUFFER_SIZE     (SZ_4K)
110 #define CTB_G2H_BUFFER_SIZE     (4 * CTB_H2G_BUFFER_SIZE)
111 #define G2H_ROOM_BUFFER_SIZE    (CTB_G2H_BUFFER_SIZE / 4)
112
113 static size_t guc_ct_size(void)
114 {
115         return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
116                 CTB_G2H_BUFFER_SIZE;
117 }
118
119 static void guc_ct_fini(struct drm_device *drm, void *arg)
120 {
121         struct xe_guc_ct *ct = arg;
122
123         destroy_workqueue(ct->g2h_wq);
124         xa_destroy(&ct->fence_lookup);
125 }
126
127 static void g2h_worker_func(struct work_struct *w);
128
129 static void primelockdep(struct xe_guc_ct *ct)
130 {
131         if (!IS_ENABLED(CONFIG_LOCKDEP))
132                 return;
133
134         fs_reclaim_acquire(GFP_KERNEL);
135         might_lock(&ct->lock);
136         fs_reclaim_release(GFP_KERNEL);
137 }
138
139 int xe_guc_ct_init(struct xe_guc_ct *ct)
140 {
141         struct xe_device *xe = ct_to_xe(ct);
142         struct xe_gt *gt = ct_to_gt(ct);
143         struct xe_tile *tile = gt_to_tile(gt);
144         struct xe_bo *bo;
145         int err;
146
147         xe_assert(xe, !(guc_ct_size() % PAGE_SIZE));
148
149         ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
150         if (!ct->g2h_wq)
151                 return -ENOMEM;
152
153         spin_lock_init(&ct->fast_lock);
154         xa_init(&ct->fence_lookup);
155         INIT_WORK(&ct->g2h_worker, g2h_worker_func);
156         init_waitqueue_head(&ct->wq);
157         init_waitqueue_head(&ct->g2h_fence_wq);
158
159         err = drmm_mutex_init(&xe->drm, &ct->lock);
160         if (err)
161                 return err;
162
163         primelockdep(ct);
164
165         bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
166                                           XE_BO_CREATE_SYSTEM_BIT |
167                                           XE_BO_CREATE_GGTT_BIT);
168         if (IS_ERR(bo))
169                 return PTR_ERR(bo);
170
171         ct->bo = bo;
172
173         err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
174         if (err)
175                 return err;
176
177         xe_assert(xe, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
178         ct->state = XE_GUC_CT_STATE_DISABLED;
179         return 0;
180 }
181
182 #define desc_read(xe_, guc_ctb__, field_)                       \
183         xe_map_rd_field(xe_, &guc_ctb__->desc, 0,               \
184                         struct guc_ct_buffer_desc, field_)
185
186 #define desc_write(xe_, guc_ctb__, field_, val_)                \
187         xe_map_wr_field(xe_, &guc_ctb__->desc, 0,               \
188                         struct guc_ct_buffer_desc, field_, val_)
189
190 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
191                                 struct iosys_map *map)
192 {
193         h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
194         h2g->info.resv_space = 0;
195         h2g->info.tail = 0;
196         h2g->info.head = 0;
197         h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
198                                      h2g->info.size) -
199                           h2g->info.resv_space;
200         h2g->info.broken = false;
201
202         h2g->desc = *map;
203         xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
204
205         h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
206 }
207
208 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
209                                 struct iosys_map *map)
210 {
211         g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
212         g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
213         g2h->info.head = 0;
214         g2h->info.tail = 0;
215         g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
216                                      g2h->info.size) -
217                           g2h->info.resv_space;
218         g2h->info.broken = false;
219
220         g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
221         xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
222
223         g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
224                                             CTB_H2G_BUFFER_SIZE);
225 }
226
227 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
228 {
229         struct xe_guc *guc = ct_to_guc(ct);
230         u32 desc_addr, ctb_addr, size;
231         int err;
232
233         desc_addr = xe_bo_ggtt_addr(ct->bo);
234         ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
235         size = ct->ctbs.h2g.info.size * sizeof(u32);
236
237         err = xe_guc_self_cfg64(guc,
238                                 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
239                                 desc_addr);
240         if (err)
241                 return err;
242
243         err = xe_guc_self_cfg64(guc,
244                                 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
245                                 ctb_addr);
246         if (err)
247                 return err;
248
249         return xe_guc_self_cfg32(guc,
250                                  GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
251                                  size);
252 }
253
254 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
255 {
256         struct xe_guc *guc = ct_to_guc(ct);
257         u32 desc_addr, ctb_addr, size;
258         int err;
259
260         desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
261         ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
262                 CTB_H2G_BUFFER_SIZE;
263         size = ct->ctbs.g2h.info.size * sizeof(u32);
264
265         err = xe_guc_self_cfg64(guc,
266                                 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
267                                 desc_addr);
268         if (err)
269                 return err;
270
271         err = xe_guc_self_cfg64(guc,
272                                 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
273                                 ctb_addr);
274         if (err)
275                 return err;
276
277         return xe_guc_self_cfg32(guc,
278                                  GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
279                                  size);
280 }
281
282 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
283 {
284         u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
285                 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
286                 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
287                 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
288                            GUC_ACTION_HOST2GUC_CONTROL_CTB),
289                 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
290                            enable ? GUC_CTB_CONTROL_ENABLE :
291                            GUC_CTB_CONTROL_DISABLE),
292         };
293         int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
294
295         return ret > 0 ? -EPROTO : ret;
296 }
297
298 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
299                                 enum xe_guc_ct_state state)
300 {
301         mutex_lock(&ct->lock);          /* Serialise dequeue_one_g2h() */
302         spin_lock_irq(&ct->fast_lock);  /* Serialise CT fast-path */
303
304         xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
305                      state == XE_GUC_CT_STATE_STOPPED);
306
307         ct->g2h_outstanding = 0;
308         ct->state = state;
309
310         spin_unlock_irq(&ct->fast_lock);
311
312         /*
313          * Lockdep doesn't like this under the fast lock and he destroy only
314          * needs to be serialized with the send path which ct lock provides.
315          */
316         xa_destroy(&ct->fence_lookup);
317
318         mutex_unlock(&ct->lock);
319 }
320
321 int xe_guc_ct_enable(struct xe_guc_ct *ct)
322 {
323         struct xe_device *xe = ct_to_xe(ct);
324         int err;
325
326         xe_assert(xe, !xe_guc_ct_enabled(ct));
327
328         guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
329         guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
330
331         err = guc_ct_ctb_h2g_register(ct);
332         if (err)
333                 goto err_out;
334
335         err = guc_ct_ctb_g2h_register(ct);
336         if (err)
337                 goto err_out;
338
339         err = guc_ct_control_toggle(ct, true);
340         if (err)
341                 goto err_out;
342
343         xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
344
345         smp_mb();
346         wake_up_all(&ct->wq);
347         drm_dbg(&xe->drm, "GuC CT communication channel enabled\n");
348
349         return 0;
350
351 err_out:
352         drm_err(&xe->drm, "Failed to enable CT (%d)\n", err);
353
354         return err;
355 }
356
357 static void stop_g2h_handler(struct xe_guc_ct *ct)
358 {
359         cancel_work_sync(&ct->g2h_worker);
360 }
361
362 /**
363  * xe_guc_ct_disable - Set GuC to disabled state
364  * @ct: the &xe_guc_ct
365  *
366  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
367  * in this transition.
368  */
369 void xe_guc_ct_disable(struct xe_guc_ct *ct)
370 {
371         xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
372         stop_g2h_handler(ct);
373 }
374
375 /**
376  * xe_guc_ct_stop - Set GuC to stopped state
377  * @ct: the &xe_guc_ct
378  *
379  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
380  */
381 void xe_guc_ct_stop(struct xe_guc_ct *ct)
382 {
383         xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
384         stop_g2h_handler(ct);
385 }
386
387 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
388 {
389         struct guc_ctb *h2g = &ct->ctbs.h2g;
390
391         lockdep_assert_held(&ct->lock);
392
393         if (cmd_len > h2g->info.space) {
394                 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
395                 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
396                                              h2g->info.size) -
397                                   h2g->info.resv_space;
398                 if (cmd_len > h2g->info.space)
399                         return false;
400         }
401
402         return true;
403 }
404
405 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
406 {
407         if (!g2h_len)
408                 return true;
409
410         lockdep_assert_held(&ct->fast_lock);
411
412         return ct->ctbs.g2h.info.space > g2h_len;
413 }
414
415 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
416 {
417         lockdep_assert_held(&ct->lock);
418
419         if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
420                 return -EBUSY;
421
422         return 0;
423 }
424
425 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
426 {
427         lockdep_assert_held(&ct->lock);
428         ct->ctbs.h2g.info.space -= cmd_len;
429 }
430
431 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
432 {
433         xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space);
434
435         if (g2h_len) {
436                 lockdep_assert_held(&ct->fast_lock);
437
438                 ct->ctbs.g2h.info.space -= g2h_len;
439                 ct->g2h_outstanding += num_g2h;
440         }
441 }
442
443 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
444 {
445         lockdep_assert_held(&ct->fast_lock);
446         xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <=
447                   ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
448
449         ct->ctbs.g2h.info.space += g2h_len;
450         --ct->g2h_outstanding;
451 }
452
453 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
454 {
455         spin_lock_irq(&ct->fast_lock);
456         __g2h_release_space(ct, g2h_len);
457         spin_unlock_irq(&ct->fast_lock);
458 }
459
460 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
461
462 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
463                      u32 ct_fence_value, bool want_response)
464 {
465         struct xe_device *xe = ct_to_xe(ct);
466         struct guc_ctb *h2g = &ct->ctbs.h2g;
467         u32 cmd[H2G_CT_HEADERS];
468         u32 tail = h2g->info.tail;
469         u32 full_len;
470         struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
471                                                          tail * sizeof(u32));
472
473         full_len = len + GUC_CTB_HDR_LEN;
474
475         lockdep_assert_held(&ct->lock);
476         xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN);
477         xe_assert(xe, tail <= h2g->info.size);
478
479         /* Command will wrap, zero fill (NOPs), return and check credits again */
480         if (tail + full_len > h2g->info.size) {
481                 xe_map_memset(xe, &map, 0, 0,
482                               (h2g->info.size - tail) * sizeof(u32));
483                 h2g_reserve_space(ct, (h2g->info.size - tail));
484                 h2g->info.tail = 0;
485                 desc_write(xe, h2g, tail, h2g->info.tail);
486
487                 return -EAGAIN;
488         }
489
490         /*
491          * dw0: CT header (including fence)
492          * dw1: HXG header (including action code)
493          * dw2+: action data
494          */
495         cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
496                 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
497                 FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
498         if (want_response) {
499                 cmd[1] =
500                         FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
501                         FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
502                                    GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
503         } else {
504                 cmd[1] =
505                         FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
506                         FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
507                                    GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
508         }
509
510         /* H2G header in cmd[1] replaces action[0] so: */
511         --len;
512         ++action;
513
514         /* Write H2G ensuring visable before descriptor update */
515         xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
516         xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
517         xe_device_wmb(xe);
518
519         /* Update local copies */
520         h2g->info.tail = (tail + full_len) % h2g->info.size;
521         h2g_reserve_space(ct, full_len);
522
523         /* Update descriptor */
524         desc_write(xe, h2g, tail, h2g->info.tail);
525
526         trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len,
527                              desc_read(xe, h2g, head), h2g->info.tail);
528
529         return 0;
530 }
531
532 /*
533  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
534  * driver, the GuC will just copy it to the reply message. Since we need to
535  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
536  * we use one bit of the seqno as an indicator for that and a rolling counter
537  * for the remaining 15 bits.
538  */
539 #define CT_SEQNO_MASK GENMASK(14, 0)
540 #define CT_SEQNO_UNTRACKED BIT(15)
541 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
542 {
543         u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
544
545         if (!is_g2h_fence)
546                 seqno |= CT_SEQNO_UNTRACKED;
547
548         return seqno;
549 }
550
551 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
552                                 u32 len, u32 g2h_len, u32 num_g2h,
553                                 struct g2h_fence *g2h_fence)
554 {
555         struct xe_device *xe = ct_to_xe(ct);
556         u16 seqno;
557         int ret;
558
559         xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
560         xe_assert(xe, !g2h_len || !g2h_fence);
561         xe_assert(xe, !num_g2h || !g2h_fence);
562         xe_assert(xe, !g2h_len || num_g2h);
563         xe_assert(xe, g2h_len || !num_g2h);
564         lockdep_assert_held(&ct->lock);
565
566         if (unlikely(ct->ctbs.h2g.info.broken)) {
567                 ret = -EPIPE;
568                 goto out;
569         }
570
571         if (ct->state == XE_GUC_CT_STATE_DISABLED) {
572                 ret = -ENODEV;
573                 goto out;
574         }
575
576         if (ct->state == XE_GUC_CT_STATE_STOPPED) {
577                 ret = -ECANCELED;
578                 goto out;
579         }
580
581         xe_assert(xe, xe_guc_ct_enabled(ct));
582
583         if (g2h_fence) {
584                 g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
585                 num_g2h = 1;
586
587                 if (g2h_fence_needs_alloc(g2h_fence)) {
588                         void *ptr;
589
590                         g2h_fence->seqno = next_ct_seqno(ct, true);
591                         ptr = xa_store(&ct->fence_lookup,
592                                        g2h_fence->seqno,
593                                        g2h_fence, GFP_ATOMIC);
594                         if (IS_ERR(ptr)) {
595                                 ret = PTR_ERR(ptr);
596                                 goto out;
597                         }
598                 }
599
600                 seqno = g2h_fence->seqno;
601         } else {
602                 seqno = next_ct_seqno(ct, false);
603         }
604
605         if (g2h_len)
606                 spin_lock_irq(&ct->fast_lock);
607 retry:
608         ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
609         if (unlikely(ret))
610                 goto out_unlock;
611
612         ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
613         if (unlikely(ret)) {
614                 if (ret == -EAGAIN)
615                         goto retry;
616                 goto out_unlock;
617         }
618
619         __g2h_reserve_space(ct, g2h_len, num_g2h);
620         xe_guc_notify(ct_to_guc(ct));
621 out_unlock:
622         if (g2h_len)
623                 spin_unlock_irq(&ct->fast_lock);
624 out:
625         return ret;
626 }
627
628 static void kick_reset(struct xe_guc_ct *ct)
629 {
630         xe_gt_reset_async(ct_to_gt(ct));
631 }
632
633 static int dequeue_one_g2h(struct xe_guc_ct *ct);
634
635 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
636                               u32 g2h_len, u32 num_g2h,
637                               struct g2h_fence *g2h_fence)
638 {
639         struct drm_device *drm = &ct_to_xe(ct)->drm;
640         struct drm_printer p = drm_info_printer(drm->dev);
641         unsigned int sleep_period_ms = 1;
642         int ret;
643
644         xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
645         lockdep_assert_held(&ct->lock);
646         xe_device_assert_mem_access(ct_to_xe(ct));
647
648 try_again:
649         ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
650                                    g2h_fence);
651
652         /*
653          * We wait to try to restore credits for about 1 second before bailing.
654          * In the case of H2G credits we have no choice but just to wait for the
655          * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
656          * the case of G2H we process any G2H in the channel, hopefully freeing
657          * credits as we consume the G2H messages.
658          */
659         if (unlikely(ret == -EBUSY &&
660                      !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
661                 struct guc_ctb *h2g = &ct->ctbs.h2g;
662
663                 if (sleep_period_ms == 1024)
664                         goto broken;
665
666                 trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail,
667                                                  h2g->info.size,
668                                                  h2g->info.space,
669                                                  len + GUC_CTB_HDR_LEN);
670                 msleep(sleep_period_ms);
671                 sleep_period_ms <<= 1;
672
673                 goto try_again;
674         } else if (unlikely(ret == -EBUSY)) {
675                 struct xe_device *xe = ct_to_xe(ct);
676                 struct guc_ctb *g2h = &ct->ctbs.g2h;
677
678                 trace_xe_guc_ct_g2h_flow_control(g2h->info.head,
679                                                  desc_read(xe, g2h, tail),
680                                                  g2h->info.size,
681                                                  g2h->info.space,
682                                                  g2h_fence ?
683                                                  GUC_CTB_HXG_MSG_MAX_LEN :
684                                                  g2h_len);
685
686 #define g2h_avail(ct)   \
687         (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
688                 if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
689                                         g2h_avail(ct), HZ))
690                         goto broken;
691 #undef g2h_avail
692
693                 if (dequeue_one_g2h(ct) < 0)
694                         goto broken;
695
696                 goto try_again;
697         }
698
699         return ret;
700
701 broken:
702         drm_err(drm, "No forward process on H2G, reset required");
703         xe_guc_ct_print(ct, &p, true);
704         ct->ctbs.h2g.info.broken = true;
705
706         return -EDEADLK;
707 }
708
709 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
710                        u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
711 {
712         int ret;
713
714         xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
715
716         mutex_lock(&ct->lock);
717         ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
718         mutex_unlock(&ct->lock);
719
720         return ret;
721 }
722
723 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
724                    u32 g2h_len, u32 num_g2h)
725 {
726         int ret;
727
728         ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
729         if (ret == -EDEADLK)
730                 kick_reset(ct);
731
732         return ret;
733 }
734
735 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
736                           u32 g2h_len, u32 num_g2h)
737 {
738         int ret;
739
740         ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
741         if (ret == -EDEADLK)
742                 kick_reset(ct);
743
744         return ret;
745 }
746
747 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
748 {
749         int ret;
750
751         lockdep_assert_held(&ct->lock);
752
753         ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
754         if (ret == -EDEADLK)
755                 kick_reset(ct);
756
757         return ret;
758 }
759
760 /*
761  * Check if a GT reset is in progress or will occur and if GT reset brought the
762  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
763  */
764 static bool retry_failure(struct xe_guc_ct *ct, int ret)
765 {
766         if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
767                 return false;
768
769 #define ct_alive(ct)    \
770         (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
771          !ct->ctbs.g2h.info.broken)
772         if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
773                 return false;
774 #undef ct_alive
775
776         return true;
777 }
778
779 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
780                             u32 *response_buffer, bool no_fail)
781 {
782         struct xe_device *xe = ct_to_xe(ct);
783         struct g2h_fence g2h_fence;
784         int ret = 0;
785
786         /*
787          * We use a fence to implement blocking sends / receiving response data.
788          * The seqno of the fence is sent in the H2G, returned in the G2H, and
789          * an xarray is used as storage media with the seqno being to key.
790          * Fields in the fence hold success, failure, retry status and the
791          * response data. Safe to allocate on the stack as the xarray is the
792          * only reference and it cannot be present after this function exits.
793          */
794 retry:
795         g2h_fence_init(&g2h_fence, response_buffer);
796 retry_same_fence:
797         ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
798         if (unlikely(ret == -ENOMEM)) {
799                 void *ptr;
800
801                 /* Retry allocation /w GFP_KERNEL */
802                 ptr = xa_store(&ct->fence_lookup,
803                                g2h_fence.seqno,
804                                &g2h_fence, GFP_KERNEL);
805                 if (IS_ERR(ptr))
806                         return PTR_ERR(ptr);
807
808                 goto retry_same_fence;
809         } else if (unlikely(ret)) {
810                 if (ret == -EDEADLK)
811                         kick_reset(ct);
812
813                 if (no_fail && retry_failure(ct, ret))
814                         goto retry_same_fence;
815
816                 if (!g2h_fence_needs_alloc(&g2h_fence))
817                         xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
818
819                 return ret;
820         }
821
822         ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
823         if (!ret) {
824                 drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x",
825                         g2h_fence.seqno, action[0]);
826                 xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
827                 return -ETIME;
828         }
829
830         if (g2h_fence.retry) {
831                 drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d",
832                          action[0], g2h_fence.reason);
833                 goto retry;
834         }
835         if (g2h_fence.fail) {
836                 drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d",
837                         action[0], g2h_fence.error, g2h_fence.hint);
838                 ret = -EIO;
839         }
840
841         return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
842 }
843
844 /**
845  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
846  * @ct: the &xe_guc_ct
847  * @action: the dword array with `HXG Request`_ message (can't be NULL)
848  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
849  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
850  *
851  * Send a `HXG Request`_ message to the GuC over CT communication channel and
852  * blocks until GuC replies with a `HXG Response`_ message.
853  *
854  * For non-blocking communication with GuC use xe_guc_ct_send().
855  *
856  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
857  *
858  * Return: response length (in dwords) if &response_buffer was not NULL, or
859  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
860  *         a negative error code on failure.
861  */
862 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
863                         u32 *response_buffer)
864 {
865         KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
866         return guc_ct_send_recv(ct, action, len, response_buffer, false);
867 }
868
869 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
870                                 u32 len, u32 *response_buffer)
871 {
872         return guc_ct_send_recv(ct, action, len, response_buffer, true);
873 }
874
875 static u32 *msg_to_hxg(u32 *msg)
876 {
877         return msg + GUC_CTB_MSG_MIN_LEN;
878 }
879
880 static u32 msg_len_to_hxg_len(u32 len)
881 {
882         return len - GUC_CTB_MSG_MIN_LEN;
883 }
884
885 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
886 {
887         u32 *hxg = msg_to_hxg(msg);
888         u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
889
890         lockdep_assert_held(&ct->lock);
891
892         switch (action) {
893         case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
894         case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
895         case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
896         case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
897                 g2h_release_space(ct, len);
898         }
899
900         return 0;
901 }
902
903 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
904 {
905         struct xe_gt *gt =  ct_to_gt(ct);
906         struct xe_device *xe = gt_to_xe(gt);
907         u32 *hxg = msg_to_hxg(msg);
908         u32 hxg_len = msg_len_to_hxg_len(len);
909         u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
910         u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
911         struct g2h_fence *g2h_fence;
912
913         lockdep_assert_held(&ct->lock);
914
915         /*
916          * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
917          * Those messages should never fail, so if we do get an error back it
918          * means we're likely doing an illegal operation and the GuC is
919          * rejecting it. We have no way to inform the code that submitted the
920          * H2G that the message was rejected, so we need to escalate the
921          * failure to trigger a reset.
922          */
923         if (fence & CT_SEQNO_UNTRACKED) {
924                 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
925                         xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
926                                   fence,
927                                   FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
928                                   FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
929                 else
930                         xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
931                                   type, fence);
932
933                 return -EPROTO;
934         }
935
936         g2h_fence = xa_erase(&ct->fence_lookup, fence);
937         if (unlikely(!g2h_fence)) {
938                 /* Don't tear down channel, as send could've timed out */
939                 xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
940                 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
941                 return 0;
942         }
943
944         xe_assert(xe, fence == g2h_fence->seqno);
945
946         if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
947                 g2h_fence->fail = true;
948                 g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
949                 g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
950         } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
951                 g2h_fence->retry = true;
952                 g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
953         } else if (g2h_fence->response_buffer) {
954                 g2h_fence->response_len = hxg_len;
955                 memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
956         } else {
957                 g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
958         }
959
960         g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
961
962         g2h_fence->done = true;
963         smp_mb();
964
965         wake_up_all(&ct->g2h_fence_wq);
966
967         return 0;
968 }
969
970 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
971 {
972         struct xe_device *xe = ct_to_xe(ct);
973         u32 *hxg = msg_to_hxg(msg);
974         u32 origin, type;
975         int ret;
976
977         lockdep_assert_held(&ct->lock);
978
979         origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
980         if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
981                 drm_err(&xe->drm,
982                         "G2H channel broken on read, origin=%d, reset required\n",
983                         origin);
984                 ct->ctbs.g2h.info.broken = true;
985
986                 return -EPROTO;
987         }
988
989         type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
990         switch (type) {
991         case GUC_HXG_TYPE_EVENT:
992                 ret = parse_g2h_event(ct, msg, len);
993                 break;
994         case GUC_HXG_TYPE_RESPONSE_SUCCESS:
995         case GUC_HXG_TYPE_RESPONSE_FAILURE:
996         case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
997                 ret = parse_g2h_response(ct, msg, len);
998                 break;
999         default:
1000                 drm_err(&xe->drm,
1001                         "G2H channel broken on read, type=%d, reset required\n",
1002                         type);
1003                 ct->ctbs.g2h.info.broken = true;
1004
1005                 ret = -EOPNOTSUPP;
1006         }
1007
1008         return ret;
1009 }
1010
1011 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1012 {
1013         struct xe_device *xe = ct_to_xe(ct);
1014         struct xe_guc *guc = ct_to_guc(ct);
1015         u32 hxg_len = msg_len_to_hxg_len(len);
1016         u32 *hxg = msg_to_hxg(msg);
1017         u32 action, adj_len;
1018         u32 *payload;
1019         int ret = 0;
1020
1021         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1022                 return 0;
1023
1024         action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1025         payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1026         adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1027
1028         switch (action) {
1029         case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1030                 ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1031                 break;
1032         case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1033                 ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1034                 break;
1035         case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1036                 ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1037                 break;
1038         case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1039                 ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1040                                                               adj_len);
1041                 break;
1042         case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1043                 /* Selftest only at the moment */
1044                 break;
1045         case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1046         case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1047                 /* FIXME: Handle this */
1048                 break;
1049         case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1050                 ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1051                                                                  adj_len);
1052                 break;
1053         case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1054                 ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1055                 break;
1056         case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1057                 ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1058                                                            adj_len);
1059                 break;
1060         case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1061                 ret = xe_guc_access_counter_notify_handler(guc, payload,
1062                                                            adj_len);
1063                 break;
1064         case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1065                 ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1066                 break;
1067         case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1068                 ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1069                 break;
1070         default:
1071                 drm_err(&xe->drm, "unexpected action 0x%04x\n", action);
1072         }
1073
1074         if (ret)
1075                 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
1076                         action, ret);
1077
1078         return 0;
1079 }
1080
1081 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1082 {
1083         struct xe_device *xe = ct_to_xe(ct);
1084         struct guc_ctb *g2h = &ct->ctbs.g2h;
1085         u32 tail, head, len;
1086         s32 avail;
1087         u32 action;
1088         u32 *hxg;
1089
1090         xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1091         lockdep_assert_held(&ct->fast_lock);
1092
1093         if (ct->state == XE_GUC_CT_STATE_DISABLED)
1094                 return -ENODEV;
1095
1096         if (ct->state == XE_GUC_CT_STATE_STOPPED)
1097                 return -ECANCELED;
1098
1099         if (g2h->info.broken)
1100                 return -EPIPE;
1101
1102         xe_assert(xe, xe_guc_ct_enabled(ct));
1103
1104         /* Calculate DW available to read */
1105         tail = desc_read(xe, g2h, tail);
1106         avail = tail - g2h->info.head;
1107         if (unlikely(avail == 0))
1108                 return 0;
1109
1110         if (avail < 0)
1111                 avail += g2h->info.size;
1112
1113         /* Read header */
1114         xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1115                            sizeof(u32));
1116         len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1117         if (len > avail) {
1118                 drm_err(&xe->drm,
1119                         "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1120                         avail, len);
1121                 g2h->info.broken = true;
1122
1123                 return -EPROTO;
1124         }
1125
1126         head = (g2h->info.head + 1) % g2h->info.size;
1127         avail = len - 1;
1128
1129         /* Read G2H message */
1130         if (avail + head > g2h->info.size) {
1131                 u32 avail_til_wrap = g2h->info.size - head;
1132
1133                 xe_map_memcpy_from(xe, msg + 1,
1134                                    &g2h->cmds, sizeof(u32) * head,
1135                                    avail_til_wrap * sizeof(u32));
1136                 xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1137                                    &g2h->cmds, 0,
1138                                    (avail - avail_til_wrap) * sizeof(u32));
1139         } else {
1140                 xe_map_memcpy_from(xe, msg + 1,
1141                                    &g2h->cmds, sizeof(u32) * head,
1142                                    avail * sizeof(u32));
1143         }
1144
1145         hxg = msg_to_hxg(msg);
1146         action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1147
1148         if (fast_path) {
1149                 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1150                         return 0;
1151
1152                 switch (action) {
1153                 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1154                 case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1155                         break;  /* Process these in fast-path */
1156                 default:
1157                         return 0;
1158                 }
1159         }
1160
1161         /* Update local / descriptor header */
1162         g2h->info.head = (head + avail) % g2h->info.size;
1163         desc_write(xe, g2h, head, g2h->info.head);
1164
1165         trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len,
1166                              g2h->info.head, tail);
1167
1168         return len;
1169 }
1170
1171 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1172 {
1173         struct xe_device *xe = ct_to_xe(ct);
1174         struct xe_guc *guc = ct_to_guc(ct);
1175         u32 hxg_len = msg_len_to_hxg_len(len);
1176         u32 *hxg = msg_to_hxg(msg);
1177         u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1178         u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1179         u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1180         int ret = 0;
1181
1182         switch (action) {
1183         case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1184                 ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1185                 break;
1186         case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1187                 __g2h_release_space(ct, len);
1188                 ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1189                                                            adj_len);
1190                 break;
1191         default:
1192                 drm_warn(&xe->drm, "NOT_POSSIBLE");
1193         }
1194
1195         if (ret)
1196                 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
1197                         action, ret);
1198 }
1199
1200 /**
1201  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1202  * @ct: GuC CT object
1203  *
1204  * Anything related to page faults is critical for performance, process these
1205  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1206  * waiters or queue another worker.
1207  */
1208 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1209 {
1210         struct xe_device *xe = ct_to_xe(ct);
1211         bool ongoing;
1212         int len;
1213
1214         ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1215         if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1216                 return;
1217
1218         spin_lock(&ct->fast_lock);
1219         do {
1220                 len = g2h_read(ct, ct->fast_msg, true);
1221                 if (len > 0)
1222                         g2h_fast_path(ct, ct->fast_msg, len);
1223         } while (len > 0);
1224         spin_unlock(&ct->fast_lock);
1225
1226         if (ongoing)
1227                 xe_device_mem_access_put(xe);
1228 }
1229
1230 /* Returns less than zero on error, 0 on done, 1 on more available */
1231 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1232 {
1233         int len;
1234         int ret;
1235
1236         lockdep_assert_held(&ct->lock);
1237
1238         spin_lock_irq(&ct->fast_lock);
1239         len = g2h_read(ct, ct->msg, false);
1240         spin_unlock_irq(&ct->fast_lock);
1241         if (len <= 0)
1242                 return len;
1243
1244         ret = parse_g2h_msg(ct, ct->msg, len);
1245         if (unlikely(ret < 0))
1246                 return ret;
1247
1248         ret = process_g2h_msg(ct, ct->msg, len);
1249         if (unlikely(ret < 0))
1250                 return ret;
1251
1252         return 1;
1253 }
1254
1255 static void g2h_worker_func(struct work_struct *w)
1256 {
1257         struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1258         bool ongoing;
1259         int ret;
1260
1261         /*
1262          * Normal users must always hold mem_access.ref around CT calls. However
1263          * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1264          * at this stage we can't rely on mem_access.ref and even the
1265          * callback_task will be different than current.  For such cases we just
1266          * need to ensure we always process the responses from any blocking
1267          * ct_send requests or where we otherwise expect some response when
1268          * initiated from those callbacks (which will need to wait for the below
1269          * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1270          * the device has suspended to the point that the CT communication has
1271          * been disabled.
1272          *
1273          * If we are inside the runtime pm callback, we can be the only task
1274          * still issuing CT requests (since that requires having the
1275          * mem_access.ref).  It seems like it might in theory be possible to
1276          * receive unsolicited events from the GuC just as we are
1277          * suspending-resuming, but those will currently anyway be lost when
1278          * eventually exiting from suspend, hence no need to wake up the device
1279          * here. If we ever need something stronger than get_if_ongoing() then
1280          * we need to be careful with blocking the pm callbacks from getting CT
1281          * responses, if the worker here is blocked on those callbacks
1282          * completing, creating a deadlock.
1283          */
1284         ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1285         if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1286                 return;
1287
1288         do {
1289                 mutex_lock(&ct->lock);
1290                 ret = dequeue_one_g2h(ct);
1291                 mutex_unlock(&ct->lock);
1292
1293                 if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1294                         struct drm_device *drm = &ct_to_xe(ct)->drm;
1295                         struct drm_printer p = drm_info_printer(drm->dev);
1296
1297                         xe_guc_ct_print(ct, &p, false);
1298                         kick_reset(ct);
1299                 }
1300         } while (ret == 1);
1301
1302         if (ongoing)
1303                 xe_device_mem_access_put(ct_to_xe(ct));
1304 }
1305
1306 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1307                                      struct guc_ctb_snapshot *snapshot,
1308                                      bool atomic)
1309 {
1310         u32 head, tail;
1311
1312         xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1313                            sizeof(struct guc_ct_buffer_desc));
1314         memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1315
1316         snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1317                                        atomic ? GFP_ATOMIC : GFP_KERNEL);
1318
1319         if (!snapshot->cmds) {
1320                 drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1321                 return;
1322         }
1323
1324         head = snapshot->desc.head;
1325         tail = snapshot->desc.tail;
1326
1327         if (head != tail) {
1328                 struct iosys_map map =
1329                         IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1330
1331                 while (head != tail) {
1332                         snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1333                         ++head;
1334                         if (head == ctb->info.size) {
1335                                 head = 0;
1336                                 map = ctb->cmds;
1337                         } else {
1338                                 iosys_map_incr(&map, sizeof(u32));
1339                         }
1340                 }
1341         }
1342 }
1343
1344 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1345                                    struct drm_printer *p)
1346 {
1347         u32 head, tail;
1348
1349         drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1350         drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1351         drm_printf(p, "\thead: %d\n", snapshot->info.head);
1352         drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1353         drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1354         drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1355         drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1356         drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1357         drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1358
1359         if (!snapshot->cmds)
1360                 return;
1361
1362         head = snapshot->desc.head;
1363         tail = snapshot->desc.tail;
1364
1365         while (head != tail) {
1366                 drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1367                            snapshot->cmds[head]);
1368                 ++head;
1369                 if (head == snapshot->info.size)
1370                         head = 0;
1371         }
1372 }
1373
1374 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1375 {
1376         kfree(snapshot->cmds);
1377 }
1378
1379 /**
1380  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1381  * @ct: GuC CT object.
1382  * @atomic: Boolean to indicate if this is called from atomic context like
1383  * reset or CTB handler or from some regular path like debugfs.
1384  *
1385  * This can be printed out in a later stage like during dev_coredump
1386  * analysis.
1387  *
1388  * Returns: a GuC CT snapshot object that must be freed by the caller
1389  * by using `xe_guc_ct_snapshot_free`.
1390  */
1391 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1392                                                       bool atomic)
1393 {
1394         struct xe_device *xe = ct_to_xe(ct);
1395         struct xe_guc_ct_snapshot *snapshot;
1396
1397         snapshot = kzalloc(sizeof(*snapshot),
1398                            atomic ? GFP_ATOMIC : GFP_KERNEL);
1399
1400         if (!snapshot) {
1401                 drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1402                 return NULL;
1403         }
1404
1405         if (xe_guc_ct_enabled(ct)) {
1406                 snapshot->ct_enabled = true;
1407                 snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1408                 guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1409                                          &snapshot->h2g, atomic);
1410                 guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1411                                          &snapshot->g2h, atomic);
1412         }
1413
1414         return snapshot;
1415 }
1416
1417 /**
1418  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1419  * @snapshot: GuC CT snapshot object.
1420  * @p: drm_printer where it will be printed out.
1421  *
1422  * This function prints out a given GuC CT snapshot object.
1423  */
1424 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1425                               struct drm_printer *p)
1426 {
1427         if (!snapshot)
1428                 return;
1429
1430         if (snapshot->ct_enabled) {
1431                 drm_puts(p, "H2G CTB (all sizes in DW):\n");
1432                 guc_ctb_snapshot_print(&snapshot->h2g, p);
1433
1434                 drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1435                 guc_ctb_snapshot_print(&snapshot->g2h, p);
1436
1437                 drm_printf(p, "\tg2h outstanding: %d\n",
1438                            snapshot->g2h_outstanding);
1439         } else {
1440                 drm_puts(p, "CT disabled\n");
1441         }
1442 }
1443
1444 /**
1445  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1446  * @snapshot: GuC CT snapshot object.
1447  *
1448  * This function free all the memory that needed to be allocated at capture
1449  * time.
1450  */
1451 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1452 {
1453         if (!snapshot)
1454                 return;
1455
1456         guc_ctb_snapshot_free(&snapshot->h2g);
1457         guc_ctb_snapshot_free(&snapshot->g2h);
1458         kfree(snapshot);
1459 }
1460
1461 /**
1462  * xe_guc_ct_print - GuC CT Print.
1463  * @ct: GuC CT.
1464  * @p: drm_printer where it will be printed out.
1465  * @atomic: Boolean to indicate if this is called from atomic context like
1466  * reset or CTB handler or from some regular path like debugfs.
1467  *
1468  * This function quickly capture a snapshot and immediately print it out.
1469  */
1470 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1471 {
1472         struct xe_guc_ct_snapshot *snapshot;
1473
1474         snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1475         xe_guc_ct_snapshot_print(snapshot, p);
1476         xe_guc_ct_snapshot_free(snapshot);
1477 }