firewire: core: add memo about the caller of show functions for device attributes
[sfrench/cifs-2.6.git] / drivers / hv / hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/hyperv.h>
17 #include <linux/random.h>
18 #include <linux/clockchips.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <clocksource/hyperv_timer.h>
22 #include <asm/mshyperv.h>
23 #include <linux/set_memory.h>
24 #include "hyperv_vmbus.h"
25
26 /* The one and only */
27 struct hv_context hv_context;
28
29 /*
30  * hv_init - Main initialization routine.
31  *
32  * This routine must be called before any other routines in here are called
33  */
34 int hv_init(void)
35 {
36         hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
37         if (!hv_context.cpu_context)
38                 return -ENOMEM;
39         return 0;
40 }
41
42 /*
43  * hv_post_message - Post a message using the hypervisor message IPC.
44  *
45  * This involves a hypercall.
46  */
47 int hv_post_message(union hv_connection_id connection_id,
48                   enum hv_message_type message_type,
49                   void *payload, size_t payload_size)
50 {
51         struct hv_input_post_message *aligned_msg;
52         unsigned long flags;
53         u64 status;
54
55         if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
56                 return -EMSGSIZE;
57
58         local_irq_save(flags);
59
60         /*
61          * A TDX VM with the paravisor must use the decrypted post_msg_page: see
62          * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
63          * can use the encrypted hyperv_pcpu_input_arg because it copies the
64          * input into the GHCB page, which has been decrypted by the paravisor.
65          */
66         if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
67                 aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
68         else
69                 aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
70
71         aligned_msg->connectionid = connection_id;
72         aligned_msg->reserved = 0;
73         aligned_msg->message_type = message_type;
74         aligned_msg->payload_size = payload_size;
75         memcpy((void *)aligned_msg->payload, payload, payload_size);
76
77         if (ms_hyperv.paravisor_present) {
78                 if (hv_isolation_type_tdx())
79                         status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
80                                                   virt_to_phys(aligned_msg), 0);
81                 else if (hv_isolation_type_snp())
82                         status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
83                                                    aligned_msg, NULL,
84                                                    sizeof(*aligned_msg));
85                 else
86                         status = HV_STATUS_INVALID_PARAMETER;
87         } else {
88                 status = hv_do_hypercall(HVCALL_POST_MESSAGE,
89                                 aligned_msg, NULL);
90         }
91
92         local_irq_restore(flags);
93
94         return hv_result(status);
95 }
96
97 int hv_synic_alloc(void)
98 {
99         int cpu, ret = -ENOMEM;
100         struct hv_per_cpu_context *hv_cpu;
101
102         /*
103          * First, zero all per-cpu memory areas so hv_synic_free() can
104          * detect what memory has been allocated and cleanup properly
105          * after any failures.
106          */
107         for_each_present_cpu(cpu) {
108                 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
109                 memset(hv_cpu, 0, sizeof(*hv_cpu));
110         }
111
112         hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
113                                          GFP_KERNEL);
114         if (hv_context.hv_numa_map == NULL) {
115                 pr_err("Unable to allocate NUMA map\n");
116                 goto err;
117         }
118
119         for_each_present_cpu(cpu) {
120                 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
121
122                 tasklet_init(&hv_cpu->msg_dpc,
123                              vmbus_on_msg_dpc, (unsigned long) hv_cpu);
124
125                 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
126                         hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
127                         if (hv_cpu->post_msg_page == NULL) {
128                                 pr_err("Unable to allocate post msg page\n");
129                                 goto err;
130                         }
131
132                         ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1);
133                         if (ret) {
134                                 pr_err("Failed to decrypt post msg page: %d\n", ret);
135                                 /* Just leak the page, as it's unsafe to free the page. */
136                                 hv_cpu->post_msg_page = NULL;
137                                 goto err;
138                         }
139
140                         memset(hv_cpu->post_msg_page, 0, PAGE_SIZE);
141                 }
142
143                 /*
144                  * Synic message and event pages are allocated by paravisor.
145                  * Skip these pages allocation here.
146                  */
147                 if (!ms_hyperv.paravisor_present && !hv_root_partition) {
148                         hv_cpu->synic_message_page =
149                                 (void *)get_zeroed_page(GFP_ATOMIC);
150                         if (hv_cpu->synic_message_page == NULL) {
151                                 pr_err("Unable to allocate SYNIC message page\n");
152                                 goto err;
153                         }
154
155                         hv_cpu->synic_event_page =
156                                 (void *)get_zeroed_page(GFP_ATOMIC);
157                         if (hv_cpu->synic_event_page == NULL) {
158                                 pr_err("Unable to allocate SYNIC event page\n");
159
160                                 free_page((unsigned long)hv_cpu->synic_message_page);
161                                 hv_cpu->synic_message_page = NULL;
162                                 goto err;
163                         }
164                 }
165
166                 if (!ms_hyperv.paravisor_present &&
167                     (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
168                         ret = set_memory_decrypted((unsigned long)
169                                 hv_cpu->synic_message_page, 1);
170                         if (ret) {
171                                 pr_err("Failed to decrypt SYNIC msg page: %d\n", ret);
172                                 hv_cpu->synic_message_page = NULL;
173
174                                 /*
175                                  * Free the event page here so that hv_synic_free()
176                                  * won't later try to re-encrypt it.
177                                  */
178                                 free_page((unsigned long)hv_cpu->synic_event_page);
179                                 hv_cpu->synic_event_page = NULL;
180                                 goto err;
181                         }
182
183                         ret = set_memory_decrypted((unsigned long)
184                                 hv_cpu->synic_event_page, 1);
185                         if (ret) {
186                                 pr_err("Failed to decrypt SYNIC event page: %d\n", ret);
187                                 hv_cpu->synic_event_page = NULL;
188                                 goto err;
189                         }
190
191                         memset(hv_cpu->synic_message_page, 0, PAGE_SIZE);
192                         memset(hv_cpu->synic_event_page, 0, PAGE_SIZE);
193                 }
194         }
195
196         return 0;
197
198 err:
199         /*
200          * Any memory allocations that succeeded will be freed when
201          * the caller cleans up by calling hv_synic_free()
202          */
203         return ret;
204 }
205
206
207 void hv_synic_free(void)
208 {
209         int cpu, ret;
210
211         for_each_present_cpu(cpu) {
212                 struct hv_per_cpu_context *hv_cpu
213                         = per_cpu_ptr(hv_context.cpu_context, cpu);
214
215                 /* It's better to leak the page if the encryption fails. */
216                 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
217                         if (hv_cpu->post_msg_page) {
218                                 ret = set_memory_encrypted((unsigned long)
219                                         hv_cpu->post_msg_page, 1);
220                                 if (ret) {
221                                         pr_err("Failed to encrypt post msg page: %d\n", ret);
222                                         hv_cpu->post_msg_page = NULL;
223                                 }
224                         }
225                 }
226
227                 if (!ms_hyperv.paravisor_present &&
228                     (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
229                         if (hv_cpu->synic_message_page) {
230                                 ret = set_memory_encrypted((unsigned long)
231                                         hv_cpu->synic_message_page, 1);
232                                 if (ret) {
233                                         pr_err("Failed to encrypt SYNIC msg page: %d\n", ret);
234                                         hv_cpu->synic_message_page = NULL;
235                                 }
236                         }
237
238                         if (hv_cpu->synic_event_page) {
239                                 ret = set_memory_encrypted((unsigned long)
240                                         hv_cpu->synic_event_page, 1);
241                                 if (ret) {
242                                         pr_err("Failed to encrypt SYNIC event page: %d\n", ret);
243                                         hv_cpu->synic_event_page = NULL;
244                                 }
245                         }
246                 }
247
248                 free_page((unsigned long)hv_cpu->post_msg_page);
249                 free_page((unsigned long)hv_cpu->synic_event_page);
250                 free_page((unsigned long)hv_cpu->synic_message_page);
251         }
252
253         kfree(hv_context.hv_numa_map);
254 }
255
256 /*
257  * hv_synic_init - Initialize the Synthetic Interrupt Controller.
258  *
259  * If it is already initialized by another entity (ie x2v shim), we need to
260  * retrieve the initialized message and event pages.  Otherwise, we create and
261  * initialize the message and event pages.
262  */
263 void hv_synic_enable_regs(unsigned int cpu)
264 {
265         struct hv_per_cpu_context *hv_cpu
266                 = per_cpu_ptr(hv_context.cpu_context, cpu);
267         union hv_synic_simp simp;
268         union hv_synic_siefp siefp;
269         union hv_synic_sint shared_sint;
270         union hv_synic_scontrol sctrl;
271
272         /* Setup the Synic's message page */
273         simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
274         simp.simp_enabled = 1;
275
276         if (ms_hyperv.paravisor_present || hv_root_partition) {
277                 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
278                 u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
279                                 ~ms_hyperv.shared_gpa_boundary;
280                 hv_cpu->synic_message_page
281                         = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
282                 if (!hv_cpu->synic_message_page)
283                         pr_err("Fail to map synic message page.\n");
284         } else {
285                 simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
286                         >> HV_HYP_PAGE_SHIFT;
287         }
288
289         hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
290
291         /* Setup the Synic's event page */
292         siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
293         siefp.siefp_enabled = 1;
294
295         if (ms_hyperv.paravisor_present || hv_root_partition) {
296                 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
297                 u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
298                                 ~ms_hyperv.shared_gpa_boundary;
299                 hv_cpu->synic_event_page
300                         = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
301                 if (!hv_cpu->synic_event_page)
302                         pr_err("Fail to map synic event page.\n");
303         } else {
304                 siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
305                         >> HV_HYP_PAGE_SHIFT;
306         }
307
308         hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
309
310         /* Setup the shared SINT. */
311         if (vmbus_irq != -1)
312                 enable_percpu_irq(vmbus_irq, 0);
313         shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
314                                         VMBUS_MESSAGE_SINT);
315
316         shared_sint.vector = vmbus_interrupt;
317         shared_sint.masked = false;
318
319         /*
320          * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
321          * it doesn't provide a recommendation flag and AEOI must be disabled.
322          */
323 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
324         shared_sint.auto_eoi =
325                         !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
326 #else
327         shared_sint.auto_eoi = 0;
328 #endif
329         hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
330                                 shared_sint.as_uint64);
331
332         /* Enable the global synic bit */
333         sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
334         sctrl.enable = 1;
335
336         hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
337 }
338
339 int hv_synic_init(unsigned int cpu)
340 {
341         hv_synic_enable_regs(cpu);
342
343         hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
344
345         return 0;
346 }
347
348 /*
349  * hv_synic_cleanup - Cleanup routine for hv_synic_init().
350  */
351 void hv_synic_disable_regs(unsigned int cpu)
352 {
353         struct hv_per_cpu_context *hv_cpu
354                 = per_cpu_ptr(hv_context.cpu_context, cpu);
355         union hv_synic_sint shared_sint;
356         union hv_synic_simp simp;
357         union hv_synic_siefp siefp;
358         union hv_synic_scontrol sctrl;
359
360         shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
361                                         VMBUS_MESSAGE_SINT);
362
363         shared_sint.masked = 1;
364
365         /* Need to correctly cleanup in the case of SMP!!! */
366         /* Disable the interrupt */
367         hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
368                                 shared_sint.as_uint64);
369
370         simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
371         /*
372          * In Isolation VM, sim and sief pages are allocated by
373          * paravisor. These pages also will be used by kdump
374          * kernel. So just reset enable bit here and keep page
375          * addresses.
376          */
377         simp.simp_enabled = 0;
378         if (ms_hyperv.paravisor_present || hv_root_partition) {
379                 iounmap(hv_cpu->synic_message_page);
380                 hv_cpu->synic_message_page = NULL;
381         } else {
382                 simp.base_simp_gpa = 0;
383         }
384
385         hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
386
387         siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
388         siefp.siefp_enabled = 0;
389
390         if (ms_hyperv.paravisor_present || hv_root_partition) {
391                 iounmap(hv_cpu->synic_event_page);
392                 hv_cpu->synic_event_page = NULL;
393         } else {
394                 siefp.base_siefp_gpa = 0;
395         }
396
397         hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
398
399         /* Disable the global synic bit */
400         sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
401         sctrl.enable = 0;
402         hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
403
404         if (vmbus_irq != -1)
405                 disable_percpu_irq(vmbus_irq);
406 }
407
408 #define HV_MAX_TRIES 3
409 /*
410  * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one
411  * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times.
412  * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
413  *
414  * If a bit is set, that means there is a pending channel interrupt.  The expectation is
415  * that the normal interrupt handling mechanism will find and process the channel interrupt
416  * "very soon", and in the process clear the bit.
417  */
418 static bool hv_synic_event_pending(void)
419 {
420         struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
421         union hv_synic_event_flags *event =
422                 (union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
423         unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
424         bool pending;
425         u32 relid;
426         int tries = 0;
427
428 retry:
429         pending = false;
430         for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
431                 /* Special case - VMBus channel protocol messages */
432                 if (relid == 0)
433                         continue;
434                 pending = true;
435                 break;
436         }
437         if (pending && tries++ < HV_MAX_TRIES) {
438                 usleep_range(10000, 20000);
439                 goto retry;
440         }
441         return pending;
442 }
443
444 int hv_synic_cleanup(unsigned int cpu)
445 {
446         struct vmbus_channel *channel, *sc;
447         bool channel_found = false;
448
449         if (vmbus_connection.conn_state != CONNECTED)
450                 goto always_cleanup;
451
452         /*
453          * Hyper-V does not provide a way to change the connect CPU once
454          * it is set; we must prevent the connect CPU from going offline
455          * while the VM is running normally. But in the panic or kexec()
456          * path where the vmbus is already disconnected, the CPU must be
457          * allowed to shut down.
458          */
459         if (cpu == VMBUS_CONNECT_CPU)
460                 return -EBUSY;
461
462         /*
463          * Search for channels which are bound to the CPU we're about to
464          * cleanup.  In case we find one and vmbus is still connected, we
465          * fail; this will effectively prevent CPU offlining.
466          *
467          * TODO: Re-bind the channels to different CPUs.
468          */
469         mutex_lock(&vmbus_connection.channel_mutex);
470         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
471                 if (channel->target_cpu == cpu) {
472                         channel_found = true;
473                         break;
474                 }
475                 list_for_each_entry(sc, &channel->sc_list, sc_list) {
476                         if (sc->target_cpu == cpu) {
477                                 channel_found = true;
478                                 break;
479                         }
480                 }
481                 if (channel_found)
482                         break;
483         }
484         mutex_unlock(&vmbus_connection.channel_mutex);
485
486         if (channel_found)
487                 return -EBUSY;
488
489         /*
490          * channel_found == false means that any channels that were previously
491          * assigned to the CPU have been reassigned elsewhere with a call of
492          * vmbus_send_modifychannel().  Scan the event flags page looking for
493          * bits that are set and waiting with a timeout for vmbus_chan_sched()
494          * to process such bits.  If bits are still set after this operation
495          * and VMBus is connected, fail the CPU offlining operation.
496          */
497         if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
498                 return -EBUSY;
499
500 always_cleanup:
501         hv_stimer_legacy_cleanup(cpu);
502
503         hv_synic_disable_regs(cpu);
504
505         return 0;
506 }