firewire: core: add memo about the caller of show functions for device attributes
[sfrench/cifs-2.6.git] / drivers / iio / temperature / ltc2983.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/iio/iio.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23
24 /* register map */
25 #define LTC2983_STATUS_REG                      0x0000
26 #define LTC2983_TEMP_RES_START_REG              0x0010
27 #define LTC2983_TEMP_RES_END_REG                0x005F
28 #define LTC2983_EEPROM_KEY_REG                  0x00B0
29 #define LTC2983_EEPROM_READ_STATUS_REG          0x00D0
30 #define LTC2983_GLOBAL_CONFIG_REG               0x00F0
31 #define LTC2983_MULT_CHANNEL_START_REG          0x00F4
32 #define LTC2983_MULT_CHANNEL_END_REG            0x00F7
33 #define LTC2986_EEPROM_STATUS_REG               0x00F9
34 #define LTC2983_MUX_CONFIG_REG                  0x00FF
35 #define LTC2983_CHAN_ASSIGN_START_REG           0x0200
36 #define LTC2983_CHAN_ASSIGN_END_REG             0x024F
37 #define LTC2983_CUST_SENS_TBL_START_REG         0x0250
38 #define LTC2983_CUST_SENS_TBL_END_REG           0x03CF
39
40 #define LTC2983_DIFFERENTIAL_CHAN_MIN           2
41 #define LTC2983_MIN_CHANNELS_NR                 1
42 #define LTC2983_SLEEP                           0x97
43 #define LTC2983_CUSTOM_STEINHART_SIZE           24
44 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ          6
45 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ       4
46
47 #define LTC2983_EEPROM_KEY                      0xA53C0F5A
48 #define LTC2983_EEPROM_WRITE_CMD                0x15
49 #define LTC2983_EEPROM_READ_CMD                 0x16
50 #define LTC2983_EEPROM_STATUS_FAILURE_MASK      GENMASK(3, 1)
51 #define LTC2983_EEPROM_READ_FAILURE_MASK        GENMASK(7, 0)
52
53 #define LTC2983_EEPROM_WRITE_TIME_MS            2600
54 #define LTC2983_EEPROM_READ_TIME_MS             20
55
56 #define LTC2983_CHAN_START_ADDR(chan) \
57                         (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
58 #define LTC2983_CHAN_RES_ADDR(chan) \
59                         (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
60 #define LTC2983_THERMOCOUPLE_DIFF_MASK          BIT(3)
61 #define LTC2983_THERMOCOUPLE_SGL(x) \
62                                 FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
63 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK       GENMASK(1, 0)
64 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
65                                 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
66 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK      BIT(2)
67 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
68                         FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
69
70 #define LTC2983_THERMISTOR_DIFF_MASK            BIT(2)
71 #define LTC2983_THERMISTOR_SGL(x) \
72                                 FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
73 #define LTC2983_THERMISTOR_R_SHARE_MASK         BIT(1)
74 #define LTC2983_THERMISTOR_R_SHARE(x) \
75                                 FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
76 #define LTC2983_THERMISTOR_C_ROTATE_MASK        BIT(0)
77 #define LTC2983_THERMISTOR_C_ROTATE(x) \
78                                 FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
79
80 #define LTC2983_DIODE_DIFF_MASK                 BIT(2)
81 #define LTC2983_DIODE_SGL(x) \
82                         FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
83 #define LTC2983_DIODE_3_CONV_CYCLE_MASK         BIT(1)
84 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
85                                 FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
86 #define LTC2983_DIODE_AVERAGE_ON_MASK           BIT(0)
87 #define LTC2983_DIODE_AVERAGE_ON(x) \
88                                 FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
89
90 #define LTC2983_RTD_4_WIRE_MASK                 BIT(3)
91 #define LTC2983_RTD_ROTATION_MASK               BIT(1)
92 #define LTC2983_RTD_C_ROTATE(x) \
93                         FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
94 #define LTC2983_RTD_KELVIN_R_SENSE_MASK         GENMASK(3, 2)
95 #define LTC2983_RTD_N_WIRES_MASK                GENMASK(3, 2)
96 #define LTC2983_RTD_N_WIRES(x) \
97                         FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
98 #define LTC2983_RTD_R_SHARE_MASK                BIT(0)
99 #define LTC2983_RTD_R_SHARE(x) \
100                         FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
101
102 #define LTC2983_COMMON_HARD_FAULT_MASK  GENMASK(31, 30)
103 #define LTC2983_COMMON_SOFT_FAULT_MASK  GENMASK(27, 25)
104
105 #define LTC2983_STATUS_START_MASK       BIT(7)
106 #define LTC2983_STATUS_START(x)         FIELD_PREP(LTC2983_STATUS_START_MASK, x)
107 #define LTC2983_STATUS_UP_MASK          GENMASK(7, 6)
108 #define LTC2983_STATUS_UP(reg)          FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
109
110 #define LTC2983_STATUS_CHAN_SEL_MASK    GENMASK(4, 0)
111 #define LTC2983_STATUS_CHAN_SEL(x) \
112                                 FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
113
114 #define LTC2983_TEMP_UNITS_MASK         BIT(2)
115 #define LTC2983_TEMP_UNITS(x)           FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
116
117 #define LTC2983_NOTCH_FREQ_MASK         GENMASK(1, 0)
118 #define LTC2983_NOTCH_FREQ(x)           FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
119
120 #define LTC2983_RES_VALID_MASK          BIT(24)
121 #define LTC2983_DATA_MASK               GENMASK(23, 0)
122 #define LTC2983_DATA_SIGN_BIT           23
123
124 #define LTC2983_CHAN_TYPE_MASK          GENMASK(31, 27)
125 #define LTC2983_CHAN_TYPE(x)            FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
126
127 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
128 #define LTC2983_CHAN_ASSIGN_MASK        GENMASK(26, 22)
129 #define LTC2983_CHAN_ASSIGN(x)          FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
130
131 #define LTC2983_CUSTOM_LEN_MASK         GENMASK(5, 0)
132 #define LTC2983_CUSTOM_LEN(x)           FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
133
134 #define LTC2983_CUSTOM_ADDR_MASK        GENMASK(11, 6)
135 #define LTC2983_CUSTOM_ADDR(x)          FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
136
137 #define LTC2983_THERMOCOUPLE_CFG_MASK   GENMASK(21, 18)
138 #define LTC2983_THERMOCOUPLE_CFG(x) \
139                                 FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
140 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK    GENMASK(31, 29)
141 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK    GENMASK(28, 25)
142
143 #define LTC2983_RTD_CFG_MASK            GENMASK(21, 18)
144 #define LTC2983_RTD_CFG(x)              FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
145 #define LTC2983_RTD_EXC_CURRENT_MASK    GENMASK(17, 14)
146 #define LTC2983_RTD_EXC_CURRENT(x) \
147                                 FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
148 #define LTC2983_RTD_CURVE_MASK          GENMASK(13, 12)
149 #define LTC2983_RTD_CURVE(x)            FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
150
151 #define LTC2983_THERMISTOR_CFG_MASK     GENMASK(21, 19)
152 #define LTC2983_THERMISTOR_CFG(x) \
153                                 FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
154 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK     GENMASK(18, 15)
155 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
156                         FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
157
158 #define LTC2983_DIODE_CFG_MASK          GENMASK(26, 24)
159 #define LTC2983_DIODE_CFG(x)            FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
160 #define LTC2983_DIODE_EXC_CURRENT_MASK  GENMASK(23, 22)
161 #define LTC2983_DIODE_EXC_CURRENT(x) \
162                                 FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
163 #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
164 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
165                                 FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
166
167 #define LTC2983_R_SENSE_VAL_MASK        GENMASK(26, 0)
168 #define LTC2983_R_SENSE_VAL(x)          FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
169
170 #define LTC2983_ADC_SINGLE_ENDED_MASK   BIT(26)
171 #define LTC2983_ADC_SINGLE_ENDED(x) \
172                                 FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
173
174 enum {
175         LTC2983_SENSOR_THERMOCOUPLE = 1,
176         LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
177         LTC2983_SENSOR_RTD = 10,
178         LTC2983_SENSOR_RTD_CUSTOM = 18,
179         LTC2983_SENSOR_THERMISTOR = 19,
180         LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
181         LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
182         LTC2983_SENSOR_DIODE = 28,
183         LTC2983_SENSOR_SENSE_RESISTOR = 29,
184         LTC2983_SENSOR_DIRECT_ADC = 30,
185         LTC2983_SENSOR_ACTIVE_TEMP = 31,
186 };
187
188 #define to_thermocouple(_sensor) \
189                 container_of(_sensor, struct ltc2983_thermocouple, sensor)
190
191 #define to_rtd(_sensor) \
192                 container_of(_sensor, struct ltc2983_rtd, sensor)
193
194 #define to_thermistor(_sensor) \
195                 container_of(_sensor, struct ltc2983_thermistor, sensor)
196
197 #define to_diode(_sensor) \
198                 container_of(_sensor, struct ltc2983_diode, sensor)
199
200 #define to_rsense(_sensor) \
201                 container_of(_sensor, struct ltc2983_rsense, sensor)
202
203 #define to_adc(_sensor) \
204                 container_of(_sensor, struct ltc2983_adc, sensor)
205
206 #define to_temp(_sensor) \
207                 container_of(_sensor, struct ltc2983_temp, sensor)
208
209 struct ltc2983_chip_info {
210         unsigned int max_channels_nr;
211         bool has_temp;
212         bool has_eeprom;
213 };
214
215 struct ltc2983_data {
216         const struct ltc2983_chip_info *info;
217         struct regmap *regmap;
218         struct spi_device *spi;
219         struct mutex lock;
220         struct completion completion;
221         struct iio_chan_spec *iio_chan;
222         struct ltc2983_sensor **sensors;
223         u32 mux_delay_config;
224         u32 filter_notch_freq;
225         u16 custom_table_size;
226         u8 num_channels;
227         u8 iio_channels;
228         /*
229          * DMA (thus cache coherency maintenance) may require the
230          * transfer buffers to live in their own cache lines.
231          * Holds the converted temperature
232          */
233         __be32 temp __aligned(IIO_DMA_MINALIGN);
234         __be32 chan_val;
235         __be32 eeprom_key;
236 };
237
238 struct ltc2983_sensor {
239         int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
240         int (*assign_chan)(struct ltc2983_data *st,
241                            const struct ltc2983_sensor *sensor);
242         /* specifies the sensor channel */
243         u32 chan;
244         /* sensor type */
245         u32 type;
246 };
247
248 struct ltc2983_custom_sensor {
249         /* raw table sensor data */
250         void *table;
251         size_t size;
252         /* address offset */
253         s8 offset;
254         bool is_steinhart;
255 };
256
257 struct ltc2983_thermocouple {
258         struct ltc2983_sensor sensor;
259         struct ltc2983_custom_sensor *custom;
260         u32 sensor_config;
261         u32 cold_junction_chan;
262 };
263
264 struct ltc2983_rtd {
265         struct ltc2983_sensor sensor;
266         struct ltc2983_custom_sensor *custom;
267         u32 sensor_config;
268         u32 r_sense_chan;
269         u32 excitation_current;
270         u32 rtd_curve;
271 };
272
273 struct ltc2983_thermistor {
274         struct ltc2983_sensor sensor;
275         struct ltc2983_custom_sensor *custom;
276         u32 sensor_config;
277         u32 r_sense_chan;
278         u32 excitation_current;
279 };
280
281 struct ltc2983_diode {
282         struct ltc2983_sensor sensor;
283         u32 sensor_config;
284         u32 excitation_current;
285         u32 ideal_factor_value;
286 };
287
288 struct ltc2983_rsense {
289         struct ltc2983_sensor sensor;
290         u32 r_sense_val;
291 };
292
293 struct ltc2983_adc {
294         struct ltc2983_sensor sensor;
295         bool single_ended;
296 };
297
298 struct ltc2983_temp {
299         struct ltc2983_sensor sensor;
300         struct ltc2983_custom_sensor *custom;
301         bool single_ended;
302 };
303
304 /*
305  * Convert to Q format numbers. These number's are integers where
306  * the number of integer and fractional bits are specified. The resolution
307  * is given by 1/@resolution and tell us the number of fractional bits. For
308  * instance a resolution of 2^-10 means we have 10 fractional bits.
309  */
310 static u32 __convert_to_raw(const u64 val, const u32 resolution)
311 {
312         u64 __res = val * resolution;
313
314         /* all values are multiplied by 1000000 to remove the fraction */
315         do_div(__res, 1000000);
316
317         return __res;
318 }
319
320 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
321 {
322         s64 __res = -(s32)val;
323
324         __res = __convert_to_raw(__res, resolution);
325
326         return (u32)-__res;
327 }
328
329 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
330                                    const u32 result, const u32 hard_mask,
331                                    const u32 soft_mask)
332 {
333         const struct device *dev = &st->spi->dev;
334
335         if (result & hard_mask) {
336                 dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
337                 return -EIO;
338         } else if (result & soft_mask) {
339                 /* just print a warning */
340                 dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
341         }
342
343         return 0;
344 }
345
346 static int __ltc2983_chan_assign_common(struct ltc2983_data *st,
347                                         const struct ltc2983_sensor *sensor,
348                                         u32 chan_val)
349 {
350         u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
351
352         chan_val |= LTC2983_CHAN_TYPE(sensor->type);
353         dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
354                 chan_val);
355         st->chan_val = cpu_to_be32(chan_val);
356         return regmap_bulk_write(st->regmap, reg, &st->chan_val,
357                                  sizeof(st->chan_val));
358 }
359
360 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
361                                           struct ltc2983_custom_sensor *custom,
362                                           u32 *chan_val)
363 {
364         u32 reg;
365         u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
366                 LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
367         const struct device *dev = &st->spi->dev;
368         /*
369          * custom->size holds the raw size of the table. However, when
370          * configuring the sensor channel, we must write the number of
371          * entries of the table minus 1. For steinhart sensors 0 is written
372          * since the size is constant!
373          */
374         const u8 len = custom->is_steinhart ? 0 :
375                 (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
376         /*
377          * Check if the offset was assigned already. It should be for steinhart
378          * sensors. When coming from sleep, it should be assigned for all.
379          */
380         if (custom->offset < 0) {
381                 /*
382                  * This needs to be done again here because, from the moment
383                  * when this test was done (successfully) for this custom
384                  * sensor, a steinhart sensor might have been added changing
385                  * custom_table_size...
386                  */
387                 if (st->custom_table_size + custom->size >
388                     (LTC2983_CUST_SENS_TBL_END_REG -
389                      LTC2983_CUST_SENS_TBL_START_REG) + 1) {
390                         dev_err(dev,
391                                 "Not space left(%d) for new custom sensor(%zu)",
392                                 st->custom_table_size,
393                                 custom->size);
394                         return -EINVAL;
395                 }
396
397                 custom->offset = st->custom_table_size /
398                                         LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
399                 st->custom_table_size += custom->size;
400         }
401
402         reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
403
404         *chan_val |= LTC2983_CUSTOM_LEN(len);
405         *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
406         dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
407                 reg, custom->offset,
408                 custom->size);
409         /* write custom sensor table */
410         return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
411 }
412
413 static struct ltc2983_custom_sensor *
414 __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
415                             const char *propname, const bool is_steinhart,
416                             const u32 resolution, const bool has_signed)
417 {
418         struct ltc2983_custom_sensor *new_custom;
419         struct device *dev = &st->spi->dev;
420         /*
421          * For custom steinhart, the full u32 is taken. For all the others
422          * the MSB is discarded.
423          */
424         const u8 n_size = is_steinhart ? 4 : 3;
425         u8 index, n_entries;
426         int ret;
427
428         if (is_steinhart)
429                 n_entries = fwnode_property_count_u32(fn, propname);
430         else
431                 n_entries = fwnode_property_count_u64(fn, propname);
432         /* n_entries must be an even number */
433         if (!n_entries || (n_entries % 2) != 0) {
434                 dev_err(dev, "Number of entries either 0 or not even\n");
435                 return ERR_PTR(-EINVAL);
436         }
437
438         new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
439         if (!new_custom)
440                 return ERR_PTR(-ENOMEM);
441
442         new_custom->size = n_entries * n_size;
443         /* check Steinhart size */
444         if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
445                 dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size,
446                         LTC2983_CUSTOM_STEINHART_SIZE);
447                 return ERR_PTR(-EINVAL);
448         }
449         /* Check space on the table. */
450         if (st->custom_table_size + new_custom->size >
451             (LTC2983_CUST_SENS_TBL_END_REG -
452              LTC2983_CUST_SENS_TBL_START_REG) + 1) {
453                 dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
454                                 st->custom_table_size, new_custom->size);
455                 return ERR_PTR(-EINVAL);
456         }
457
458         /* allocate the table */
459         if (is_steinhart)
460                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
461         else
462                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
463         if (!new_custom->table)
464                 return ERR_PTR(-ENOMEM);
465
466         /*
467          * Steinhart sensors are configured with raw values in the firmware
468          * node. For the other sensors we must convert the value to raw.
469          * The odd index's correspond to temperatures and always have 1/1024
470          * of resolution. Temperatures also come in Kelvin, so signed values
471          * are not possible.
472          */
473         if (is_steinhart) {
474                 ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
475                 if (ret < 0)
476                         return ERR_PTR(ret);
477
478                 cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
479         } else {
480                 ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
481                 if (ret < 0)
482                         return ERR_PTR(ret);
483
484                 for (index = 0; index < n_entries; index++) {
485                         u64 temp = ((u64 *)new_custom->table)[index];
486
487                         if ((index % 2) != 0)
488                                 temp = __convert_to_raw(temp, 1024);
489                         else if (has_signed && (s64)temp < 0)
490                                 temp = __convert_to_raw_sign(temp, resolution);
491                         else
492                                 temp = __convert_to_raw(temp, resolution);
493
494                         put_unaligned_be24(temp, new_custom->table + index * 3);
495                 }
496         }
497
498         new_custom->is_steinhart = is_steinhart;
499         /*
500          * This is done to first add all the steinhart sensors to the table,
501          * in order to maximize the table usage. If we mix adding steinhart
502          * with the other sensors, we might have to do some roundup to make
503          * sure that sensor_addr - 0x250(start address) is a multiple of 4
504          * (for steinhart), and a multiple of 6 for all the other sensors.
505          * Since we have const 24 bytes for steinhart sensors and 24 is
506          * also a multiple of 6, we guarantee that the first non-steinhart
507          * sensor will sit in a correct address without the need of filling
508          * addresses.
509          */
510         if (is_steinhart) {
511                 new_custom->offset = st->custom_table_size /
512                                         LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
513                 st->custom_table_size += new_custom->size;
514         } else {
515                 /* mark as unset. This is checked later on the assign phase */
516                 new_custom->offset = -1;
517         }
518
519         return new_custom;
520 }
521
522 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
523                                               const u32 result)
524 {
525         return __ltc2983_fault_handler(st, result,
526                                        LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
527                                        LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
528 }
529
530 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
531                                         const u32 result)
532 {
533         return __ltc2983_fault_handler(st, result,
534                                        LTC2983_COMMON_HARD_FAULT_MASK,
535                                        LTC2983_COMMON_SOFT_FAULT_MASK);
536 }
537
538 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
539                                 const struct ltc2983_sensor *sensor)
540 {
541         struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
542         u32 chan_val;
543
544         chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
545         chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
546
547         if (thermo->custom) {
548                 int ret;
549
550                 ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
551                                                           &chan_val);
552                 if (ret)
553                         return ret;
554         }
555         return __ltc2983_chan_assign_common(st, sensor, chan_val);
556 }
557
558 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
559                                    const struct ltc2983_sensor *sensor)
560 {
561         struct ltc2983_rtd *rtd = to_rtd(sensor);
562         u32 chan_val;
563
564         chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
565         chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
566         chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
567         chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
568
569         if (rtd->custom) {
570                 int ret;
571
572                 ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
573                                                           &chan_val);
574                 if (ret)
575                         return ret;
576         }
577         return __ltc2983_chan_assign_common(st, sensor, chan_val);
578 }
579
580 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
581                                           const struct ltc2983_sensor *sensor)
582 {
583         struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
584         u32 chan_val;
585
586         chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
587         chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
588         chan_val |=
589                 LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
590
591         if (thermistor->custom) {
592                 int ret;
593
594                 ret = __ltc2983_chan_custom_sensor_assign(st,
595                                                           thermistor->custom,
596                                                           &chan_val);
597                 if (ret)
598                         return ret;
599         }
600         return __ltc2983_chan_assign_common(st, sensor, chan_val);
601 }
602
603 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
604                                      const struct ltc2983_sensor *sensor)
605 {
606         struct ltc2983_diode *diode = to_diode(sensor);
607         u32 chan_val;
608
609         chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
610         chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
611         chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
612
613         return __ltc2983_chan_assign_common(st, sensor, chan_val);
614 }
615
616 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
617                                        const struct ltc2983_sensor *sensor)
618 {
619         struct ltc2983_rsense *rsense = to_rsense(sensor);
620         u32 chan_val;
621
622         chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
623
624         return __ltc2983_chan_assign_common(st, sensor, chan_val);
625 }
626
627 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
628                                    const struct ltc2983_sensor *sensor)
629 {
630         struct ltc2983_adc *adc = to_adc(sensor);
631         u32 chan_val;
632
633         chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
634
635         return __ltc2983_chan_assign_common(st, sensor, chan_val);
636 }
637
638 static int ltc2983_temp_assign_chan(struct ltc2983_data *st,
639                                     const struct ltc2983_sensor *sensor)
640 {
641         struct ltc2983_temp *temp = to_temp(sensor);
642         u32 chan_val;
643         int ret;
644
645         chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended);
646
647         ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val);
648         if (ret)
649                 return ret;
650
651         return __ltc2983_chan_assign_common(st, sensor, chan_val);
652 }
653
654 static struct ltc2983_sensor *
655 ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
656                          const struct ltc2983_sensor *sensor)
657 {
658         struct ltc2983_thermocouple *thermo;
659         struct fwnode_handle *ref;
660         u32 oc_current;
661         int ret;
662
663         thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
664         if (!thermo)
665                 return ERR_PTR(-ENOMEM);
666
667         if (fwnode_property_read_bool(child, "adi,single-ended"))
668                 thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
669
670         ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
671         if (!ret) {
672                 switch (oc_current) {
673                 case 10:
674                         thermo->sensor_config |=
675                                         LTC2983_THERMOCOUPLE_OC_CURR(0);
676                         break;
677                 case 100:
678                         thermo->sensor_config |=
679                                         LTC2983_THERMOCOUPLE_OC_CURR(1);
680                         break;
681                 case 500:
682                         thermo->sensor_config |=
683                                         LTC2983_THERMOCOUPLE_OC_CURR(2);
684                         break;
685                 case 1000:
686                         thermo->sensor_config |=
687                                         LTC2983_THERMOCOUPLE_OC_CURR(3);
688                         break;
689                 default:
690                         dev_err(&st->spi->dev,
691                                 "Invalid open circuit current:%u", oc_current);
692                         return ERR_PTR(-EINVAL);
693                 }
694
695                 thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
696         }
697         /* validate channel index */
698         if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
699             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
700                 dev_err(&st->spi->dev,
701                         "Invalid chann:%d for differential thermocouple",
702                         sensor->chan);
703                 return ERR_PTR(-EINVAL);
704         }
705
706         ref = fwnode_find_reference(child, "adi,cold-junction-handle", 0);
707         if (IS_ERR(ref)) {
708                 ref = NULL;
709         } else {
710                 ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
711                 if (ret) {
712                         /*
713                          * This would be catched later but we can just return
714                          * the error right away.
715                          */
716                         dev_err(&st->spi->dev, "Property reg must be given\n");
717                         goto fail;
718                 }
719         }
720
721         /* check custom sensor */
722         if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
723                 const char *propname = "adi,custom-thermocouple";
724
725                 thermo->custom = __ltc2983_custom_sensor_new(st, child,
726                                                              propname, false,
727                                                              16384, true);
728                 if (IS_ERR(thermo->custom)) {
729                         ret = PTR_ERR(thermo->custom);
730                         goto fail;
731                 }
732         }
733
734         /* set common parameters */
735         thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
736         thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
737
738         fwnode_handle_put(ref);
739         return &thermo->sensor;
740
741 fail:
742         fwnode_handle_put(ref);
743         return ERR_PTR(ret);
744 }
745
746 static struct ltc2983_sensor *
747 ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
748                 const struct ltc2983_sensor *sensor)
749 {
750         struct ltc2983_rtd *rtd;
751         int ret = 0;
752         struct device *dev = &st->spi->dev;
753         struct fwnode_handle *ref;
754         u32 excitation_current = 0, n_wires = 0;
755
756         rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
757         if (!rtd)
758                 return ERR_PTR(-ENOMEM);
759
760         ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
761         if (IS_ERR(ref)) {
762                 dev_err(dev, "Property adi,rsense-handle missing or invalid");
763                 return ERR_CAST(ref);
764         }
765
766         ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
767         if (ret) {
768                 dev_err(dev, "Property reg must be given\n");
769                 goto fail;
770         }
771
772         ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
773         if (!ret) {
774                 switch (n_wires) {
775                 case 2:
776                         rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
777                         break;
778                 case 3:
779                         rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
780                         break;
781                 case 4:
782                         rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
783                         break;
784                 case 5:
785                         /* 4 wires, Kelvin Rsense */
786                         rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
787                         break;
788                 default:
789                         dev_err(dev, "Invalid number of wires:%u\n", n_wires);
790                         ret = -EINVAL;
791                         goto fail;
792                 }
793         }
794
795         if (fwnode_property_read_bool(child, "adi,rsense-share")) {
796                 /* Current rotation is only available with rsense sharing */
797                 if (fwnode_property_read_bool(child, "adi,current-rotate")) {
798                         if (n_wires == 2 || n_wires == 3) {
799                                 dev_err(dev,
800                                         "Rotation not allowed for 2/3 Wire RTDs");
801                                 ret = -EINVAL;
802                                 goto fail;
803                         }
804                         rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
805                 } else {
806                         rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
807                 }
808         }
809         /*
810          * rtd channel indexes are a bit more complicated to validate.
811          * For 4wire RTD with rotation, the channel selection cannot be
812          * >=19 since the chann + 1 is used in this configuration.
813          * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
814          * <=1 since chanel - 1 and channel - 2 are used.
815          */
816         if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
817                 /* 4-wire */
818                 u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
819                         max = st->info->max_channels_nr;
820
821                 if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
822                         max = st->info->max_channels_nr - 1;
823
824                 if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
825                      == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
826                     (rtd->r_sense_chan <=  min)) {
827                         /* kelvin rsense*/
828                         dev_err(dev,
829                                 "Invalid rsense chann:%d to use in kelvin rsense",
830                                 rtd->r_sense_chan);
831
832                         ret = -EINVAL;
833                         goto fail;
834                 }
835
836                 if (sensor->chan < min || sensor->chan > max) {
837                         dev_err(dev, "Invalid chann:%d for the rtd config",
838                                 sensor->chan);
839
840                         ret = -EINVAL;
841                         goto fail;
842                 }
843         } else {
844                 /* same as differential case */
845                 if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
846                         dev_err(&st->spi->dev,
847                                 "Invalid chann:%d for RTD", sensor->chan);
848
849                         ret = -EINVAL;
850                         goto fail;
851                 }
852         }
853
854         /* check custom sensor */
855         if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
856                 rtd->custom = __ltc2983_custom_sensor_new(st, child,
857                                                           "adi,custom-rtd",
858                                                           false, 2048, false);
859                 if (IS_ERR(rtd->custom)) {
860                         ret = PTR_ERR(rtd->custom);
861                         goto fail;
862                 }
863         }
864
865         /* set common parameters */
866         rtd->sensor.fault_handler = ltc2983_common_fault_handler;
867         rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
868
869         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
870                                        &excitation_current);
871         if (ret) {
872                 /* default to 5uA */
873                 rtd->excitation_current = 1;
874         } else {
875                 switch (excitation_current) {
876                 case 5:
877                         rtd->excitation_current = 0x01;
878                         break;
879                 case 10:
880                         rtd->excitation_current = 0x02;
881                         break;
882                 case 25:
883                         rtd->excitation_current = 0x03;
884                         break;
885                 case 50:
886                         rtd->excitation_current = 0x04;
887                         break;
888                 case 100:
889                         rtd->excitation_current = 0x05;
890                         break;
891                 case 250:
892                         rtd->excitation_current = 0x06;
893                         break;
894                 case 500:
895                         rtd->excitation_current = 0x07;
896                         break;
897                 case 1000:
898                         rtd->excitation_current = 0x08;
899                         break;
900                 default:
901                         dev_err(&st->spi->dev,
902                                 "Invalid value for excitation current(%u)",
903                                 excitation_current);
904                         ret = -EINVAL;
905                         goto fail;
906                 }
907         }
908
909         fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
910
911         fwnode_handle_put(ref);
912         return &rtd->sensor;
913 fail:
914         fwnode_handle_put(ref);
915         return ERR_PTR(ret);
916 }
917
918 static struct ltc2983_sensor *
919 ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
920                        const struct ltc2983_sensor *sensor)
921 {
922         struct ltc2983_thermistor *thermistor;
923         struct device *dev = &st->spi->dev;
924         struct fwnode_handle *ref;
925         u32 excitation_current = 0;
926         int ret = 0;
927
928         thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
929         if (!thermistor)
930                 return ERR_PTR(-ENOMEM);
931
932         ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
933         if (IS_ERR(ref)) {
934                 dev_err(dev, "Property adi,rsense-handle missing or invalid");
935                 return ERR_CAST(ref);
936         }
937
938         ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
939         if (ret) {
940                 dev_err(dev, "rsense channel must be configured...\n");
941                 goto fail;
942         }
943
944         if (fwnode_property_read_bool(child, "adi,single-ended")) {
945                 thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
946         } else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
947                 /* rotation is only possible if sharing rsense */
948                 if (fwnode_property_read_bool(child, "adi,current-rotate"))
949                         thermistor->sensor_config =
950                                                 LTC2983_THERMISTOR_C_ROTATE(1);
951                 else
952                         thermistor->sensor_config =
953                                                 LTC2983_THERMISTOR_R_SHARE(1);
954         }
955         /* validate channel index */
956         if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
957             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
958                 dev_err(&st->spi->dev,
959                         "Invalid chann:%d for differential thermistor",
960                         sensor->chan);
961                 ret = -EINVAL;
962                 goto fail;
963         }
964
965         /* check custom sensor */
966         if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
967                 bool steinhart = false;
968                 const char *propname;
969
970                 if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
971                         steinhart = true;
972                         propname = "adi,custom-steinhart";
973                 } else {
974                         propname = "adi,custom-thermistor";
975                 }
976
977                 thermistor->custom = __ltc2983_custom_sensor_new(st, child,
978                                                                  propname,
979                                                                  steinhart,
980                                                                  64, false);
981                 if (IS_ERR(thermistor->custom)) {
982                         ret = PTR_ERR(thermistor->custom);
983                         goto fail;
984                 }
985         }
986         /* set common parameters */
987         thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
988         thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
989
990         ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
991                                        &excitation_current);
992         if (ret) {
993                 /* Auto range is not allowed for custom sensors */
994                 if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
995                         /* default to 1uA */
996                         thermistor->excitation_current = 0x03;
997                 else
998                         /* default to auto-range */
999                         thermistor->excitation_current = 0x0c;
1000         } else {
1001                 switch (excitation_current) {
1002                 case 0:
1003                         /* auto range */
1004                         if (sensor->type >=
1005                             LTC2983_SENSOR_THERMISTOR_STEINHART) {
1006                                 dev_err(&st->spi->dev,
1007                                         "Auto Range not allowed for custom sensors\n");
1008                                 ret = -EINVAL;
1009                                 goto fail;
1010                         }
1011                         thermistor->excitation_current = 0x0c;
1012                         break;
1013                 case 250:
1014                         thermistor->excitation_current = 0x01;
1015                         break;
1016                 case 500:
1017                         thermistor->excitation_current = 0x02;
1018                         break;
1019                 case 1000:
1020                         thermistor->excitation_current = 0x03;
1021                         break;
1022                 case 5000:
1023                         thermistor->excitation_current = 0x04;
1024                         break;
1025                 case 10000:
1026                         thermistor->excitation_current = 0x05;
1027                         break;
1028                 case 25000:
1029                         thermistor->excitation_current = 0x06;
1030                         break;
1031                 case 50000:
1032                         thermistor->excitation_current = 0x07;
1033                         break;
1034                 case 100000:
1035                         thermistor->excitation_current = 0x08;
1036                         break;
1037                 case 250000:
1038                         thermistor->excitation_current = 0x09;
1039                         break;
1040                 case 500000:
1041                         thermistor->excitation_current = 0x0a;
1042                         break;
1043                 case 1000000:
1044                         thermistor->excitation_current = 0x0b;
1045                         break;
1046                 default:
1047                         dev_err(&st->spi->dev,
1048                                 "Invalid value for excitation current(%u)",
1049                                 excitation_current);
1050                         ret = -EINVAL;
1051                         goto fail;
1052                 }
1053         }
1054
1055         fwnode_handle_put(ref);
1056         return &thermistor->sensor;
1057 fail:
1058         fwnode_handle_put(ref);
1059         return ERR_PTR(ret);
1060 }
1061
1062 static struct ltc2983_sensor *
1063 ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
1064                   const struct ltc2983_sensor *sensor)
1065 {
1066         struct ltc2983_diode *diode;
1067         u32 temp = 0, excitation_current = 0;
1068         int ret;
1069
1070         diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1071         if (!diode)
1072                 return ERR_PTR(-ENOMEM);
1073
1074         if (fwnode_property_read_bool(child, "adi,single-ended"))
1075                 diode->sensor_config = LTC2983_DIODE_SGL(1);
1076
1077         if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
1078                 diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1079
1080         if (fwnode_property_read_bool(child, "adi,average-on"))
1081                 diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1082
1083         /* validate channel index */
1084         if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1085             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1086                 dev_err(&st->spi->dev,
1087                         "Invalid chann:%d for differential thermistor",
1088                         sensor->chan);
1089                 return ERR_PTR(-EINVAL);
1090         }
1091         /* set common parameters */
1092         diode->sensor.fault_handler = ltc2983_common_fault_handler;
1093         diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1094
1095         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
1096                                        &excitation_current);
1097         if (!ret) {
1098                 switch (excitation_current) {
1099                 case 10:
1100                         diode->excitation_current = 0x00;
1101                         break;
1102                 case 20:
1103                         diode->excitation_current = 0x01;
1104                         break;
1105                 case 40:
1106                         diode->excitation_current = 0x02;
1107                         break;
1108                 case 80:
1109                         diode->excitation_current = 0x03;
1110                         break;
1111                 default:
1112                         dev_err(&st->spi->dev,
1113                                 "Invalid value for excitation current(%u)",
1114                                 excitation_current);
1115                         return ERR_PTR(-EINVAL);
1116                 }
1117         }
1118
1119         fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
1120
1121         /* 2^20 resolution */
1122         diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1123
1124         return &diode->sensor;
1125 }
1126
1127 static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
1128                                         struct ltc2983_data *st,
1129                                         const struct ltc2983_sensor *sensor)
1130 {
1131         struct ltc2983_rsense *rsense;
1132         int ret;
1133         u32 temp;
1134
1135         rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1136         if (!rsense)
1137                 return ERR_PTR(-ENOMEM);
1138
1139         /* validate channel index */
1140         if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1141                 dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1142                         sensor->chan);
1143                 return ERR_PTR(-EINVAL);
1144         }
1145
1146         ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1147         if (ret) {
1148                 dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1149                 return ERR_PTR(-EINVAL);
1150         }
1151         /*
1152          * Times 1000 because we have milli-ohms and __convert_to_raw
1153          * expects scales of 1000000 which are used for all other
1154          * properties.
1155          * 2^10 resolution
1156          */
1157         rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1158
1159         /* set common parameters */
1160         rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1161
1162         return &rsense->sensor;
1163 }
1164
1165 static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
1166                                          struct ltc2983_data *st,
1167                                          const struct ltc2983_sensor *sensor)
1168 {
1169         struct ltc2983_adc *adc;
1170
1171         adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1172         if (!adc)
1173                 return ERR_PTR(-ENOMEM);
1174
1175         if (fwnode_property_read_bool(child, "adi,single-ended"))
1176                 adc->single_ended = true;
1177
1178         if (!adc->single_ended &&
1179             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1180                 dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1181                         sensor->chan);
1182                 return ERR_PTR(-EINVAL);
1183         }
1184         /* set common parameters */
1185         adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1186         adc->sensor.fault_handler = ltc2983_common_fault_handler;
1187
1188         return &adc->sensor;
1189 }
1190
1191 static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child,
1192                                                struct ltc2983_data *st,
1193                                                const struct ltc2983_sensor *sensor)
1194 {
1195         struct ltc2983_temp *temp;
1196
1197         temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL);
1198         if (!temp)
1199                 return ERR_PTR(-ENOMEM);
1200
1201         if (fwnode_property_read_bool(child, "adi,single-ended"))
1202                 temp->single_ended = true;
1203
1204         if (!temp->single_ended &&
1205             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1206                 dev_err(&st->spi->dev, "Invalid chan:%d for differential temp\n",
1207                         sensor->chan);
1208                 return ERR_PTR(-EINVAL);
1209         }
1210
1211         temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp",
1212                                                    false, 4096, true);
1213         if (IS_ERR(temp->custom))
1214                 return ERR_CAST(temp->custom);
1215
1216         /* set common parameters */
1217         temp->sensor.assign_chan = ltc2983_temp_assign_chan;
1218         temp->sensor.fault_handler = ltc2983_common_fault_handler;
1219
1220         return &temp->sensor;
1221 }
1222
1223 static int ltc2983_chan_read(struct ltc2983_data *st,
1224                         const struct ltc2983_sensor *sensor, int *val)
1225 {
1226         u32 start_conversion = 0;
1227         int ret;
1228         unsigned long time;
1229
1230         start_conversion = LTC2983_STATUS_START(true);
1231         start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1232         dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1233                 sensor->chan, start_conversion);
1234         /* start conversion */
1235         ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1236         if (ret)
1237                 return ret;
1238
1239         reinit_completion(&st->completion);
1240         /*
1241          * wait for conversion to complete.
1242          * 300 ms should be more than enough to complete the conversion.
1243          * Depending on the sensor configuration, there are 2/3 conversions
1244          * cycles of 82ms.
1245          */
1246         time = wait_for_completion_timeout(&st->completion,
1247                                            msecs_to_jiffies(300));
1248         if (!time) {
1249                 dev_warn(&st->spi->dev, "Conversion timed out\n");
1250                 return -ETIMEDOUT;
1251         }
1252
1253         /* read the converted data */
1254         ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1255                                &st->temp, sizeof(st->temp));
1256         if (ret)
1257                 return ret;
1258
1259         *val = __be32_to_cpu(st->temp);
1260
1261         if (!(LTC2983_RES_VALID_MASK & *val)) {
1262                 dev_err(&st->spi->dev, "Invalid conversion detected\n");
1263                 return -EIO;
1264         }
1265
1266         ret = sensor->fault_handler(st, *val);
1267         if (ret)
1268                 return ret;
1269
1270         *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1271         return 0;
1272 }
1273
1274 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1275                             struct iio_chan_spec const *chan,
1276                             int *val, int *val2, long mask)
1277 {
1278         struct ltc2983_data *st = iio_priv(indio_dev);
1279         int ret;
1280
1281         /* sanity check */
1282         if (chan->address >= st->num_channels) {
1283                 dev_err(&st->spi->dev, "Invalid chan address:%ld",
1284                         chan->address);
1285                 return -EINVAL;
1286         }
1287
1288         switch (mask) {
1289         case IIO_CHAN_INFO_RAW:
1290                 mutex_lock(&st->lock);
1291                 ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1292                 mutex_unlock(&st->lock);
1293                 return ret ?: IIO_VAL_INT;
1294         case IIO_CHAN_INFO_SCALE:
1295                 switch (chan->type) {
1296                 case IIO_TEMP:
1297                         /* value in milli degrees */
1298                         *val = 1000;
1299                         /* 2^10 */
1300                         *val2 = 1024;
1301                         return IIO_VAL_FRACTIONAL;
1302                 case IIO_VOLTAGE:
1303                         /* value in millivolt */
1304                         *val = 1000;
1305                         /* 2^21 */
1306                         *val2 = 2097152;
1307                         return IIO_VAL_FRACTIONAL;
1308                 default:
1309                         return -EINVAL;
1310                 }
1311         }
1312
1313         return -EINVAL;
1314 }
1315
1316 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1317                               unsigned int reg,
1318                               unsigned int writeval,
1319                               unsigned int *readval)
1320 {
1321         struct ltc2983_data *st = iio_priv(indio_dev);
1322
1323         if (readval)
1324                 return regmap_read(st->regmap, reg, readval);
1325         else
1326                 return regmap_write(st->regmap, reg, writeval);
1327 }
1328
1329 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1330 {
1331         struct ltc2983_data *st = data;
1332
1333         complete(&st->completion);
1334         return IRQ_HANDLED;
1335 }
1336
1337 #define LTC2983_CHAN(__type, index, __address) ({ \
1338         struct iio_chan_spec __chan = { \
1339                 .type = __type, \
1340                 .indexed = 1, \
1341                 .channel = index, \
1342                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1343                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1344                 .address = __address, \
1345         }; \
1346         __chan; \
1347 })
1348
1349 static int ltc2983_parse_dt(struct ltc2983_data *st)
1350 {
1351         struct device *dev = &st->spi->dev;
1352         struct fwnode_handle *child;
1353         int ret = 0, chan = 0, channel_avail_mask = 0;
1354
1355         device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
1356
1357         device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
1358
1359         st->num_channels = device_get_child_node_count(dev);
1360         if (!st->num_channels) {
1361                 dev_err(&st->spi->dev, "At least one channel must be given!");
1362                 return -EINVAL;
1363         }
1364
1365         st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1366                                    GFP_KERNEL);
1367         if (!st->sensors)
1368                 return -ENOMEM;
1369
1370         st->iio_channels = st->num_channels;
1371         device_for_each_child_node(dev, child) {
1372                 struct ltc2983_sensor sensor;
1373
1374                 ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
1375                 if (ret) {
1376                         dev_err(dev, "reg property must given for child nodes\n");
1377                         goto put_child;
1378                 }
1379
1380                 /* check if we have a valid channel */
1381                 if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1382                     sensor.chan > st->info->max_channels_nr) {
1383                         ret = -EINVAL;
1384                         dev_err(dev, "chan:%d must be from %u to %u\n", sensor.chan,
1385                                 LTC2983_MIN_CHANNELS_NR, st->info->max_channels_nr);
1386                         goto put_child;
1387                 } else if (channel_avail_mask & BIT(sensor.chan)) {
1388                         ret = -EINVAL;
1389                         dev_err(dev, "chan:%d already in use\n", sensor.chan);
1390                         goto put_child;
1391                 }
1392
1393                 ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
1394                 if (ret) {
1395                         dev_err(dev,
1396                                 "adi,sensor-type property must given for child nodes\n");
1397                         goto put_child;
1398                 }
1399
1400                 dev_dbg(dev, "Create new sensor, type %u, chann %u",
1401                                                                 sensor.type,
1402                                                                 sensor.chan);
1403
1404                 if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1405                     sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1406                         st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1407                                                                      &sensor);
1408                 } else if (sensor.type >= LTC2983_SENSOR_RTD &&
1409                            sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1410                         st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1411                 } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1412                            sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1413                         st->sensors[chan] = ltc2983_thermistor_new(child, st,
1414                                                                    &sensor);
1415                 } else if (sensor.type == LTC2983_SENSOR_DIODE) {
1416                         st->sensors[chan] = ltc2983_diode_new(child, st,
1417                                                               &sensor);
1418                 } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1419                         st->sensors[chan] = ltc2983_r_sense_new(child, st,
1420                                                                 &sensor);
1421                         /* don't add rsense to iio */
1422                         st->iio_channels--;
1423                 } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1424                         st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1425                 } else if (st->info->has_temp &&
1426                            sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) {
1427                         st->sensors[chan] = ltc2983_temp_new(child, st, &sensor);
1428                 } else {
1429                         dev_err(dev, "Unknown sensor type %d\n", sensor.type);
1430                         ret = -EINVAL;
1431                         goto put_child;
1432                 }
1433
1434                 if (IS_ERR(st->sensors[chan])) {
1435                         dev_err(dev, "Failed to create sensor %ld",
1436                                 PTR_ERR(st->sensors[chan]));
1437                         ret = PTR_ERR(st->sensors[chan]);
1438                         goto put_child;
1439                 }
1440                 /* set generic sensor parameters */
1441                 st->sensors[chan]->chan = sensor.chan;
1442                 st->sensors[chan]->type = sensor.type;
1443
1444                 channel_avail_mask |= BIT(sensor.chan);
1445                 chan++;
1446         }
1447
1448         return 0;
1449 put_child:
1450         fwnode_handle_put(child);
1451         return ret;
1452 }
1453
1454 static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd,
1455                               unsigned int wait_time, unsigned int status_reg,
1456                               unsigned long status_fail_mask)
1457 {
1458         unsigned long time;
1459         unsigned int val;
1460         int ret;
1461
1462         ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG,
1463                                 &st->eeprom_key, sizeof(st->eeprom_key));
1464         if (ret)
1465                 return ret;
1466
1467         reinit_completion(&st->completion);
1468
1469         ret = regmap_write(st->regmap, LTC2983_STATUS_REG,
1470                            LTC2983_STATUS_START(true) | cmd);
1471         if (ret)
1472                 return ret;
1473
1474         time = wait_for_completion_timeout(&st->completion,
1475                                            msecs_to_jiffies(wait_time));
1476         if (!time) {
1477                 dev_err(&st->spi->dev, "EEPROM command timed out\n");
1478                 return -ETIMEDOUT;
1479         }
1480
1481         ret = regmap_read(st->regmap, status_reg, &val);
1482         if (ret)
1483                 return ret;
1484
1485         if (val & status_fail_mask) {
1486                 dev_err(&st->spi->dev, "EEPROM command failed: 0x%02X\n", val);
1487                 return -EINVAL;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1494 {
1495         u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1496         int ret;
1497
1498         /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1499         ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1500                                        LTC2983_STATUS_UP(status) == 1, 25000,
1501                                        25000 * 10);
1502         if (ret) {
1503                 dev_err(&st->spi->dev, "Device startup timed out\n");
1504                 return ret;
1505         }
1506
1507         ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1508                                  LTC2983_NOTCH_FREQ_MASK,
1509                                  LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1510         if (ret)
1511                 return ret;
1512
1513         ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1514                            st->mux_delay_config);
1515         if (ret)
1516                 return ret;
1517
1518         if (st->info->has_eeprom && !assign_iio) {
1519                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD,
1520                                          LTC2983_EEPROM_READ_TIME_MS,
1521                                          LTC2983_EEPROM_READ_STATUS_REG,
1522                                          LTC2983_EEPROM_READ_FAILURE_MASK);
1523                 if (!ret)
1524                         return 0;
1525         }
1526
1527         for (chan = 0; chan < st->num_channels; chan++) {
1528                 u32 chan_type = 0, *iio_chan;
1529
1530                 ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1531                 if (ret)
1532                         return ret;
1533                 /*
1534                  * The assign_iio flag is necessary for when the device is
1535                  * coming out of sleep. In that case, we just need to
1536                  * re-configure the device channels.
1537                  * We also don't assign iio channels for rsense.
1538                  */
1539                 if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1540                     !assign_iio)
1541                         continue;
1542
1543                 /* assign iio channel */
1544                 if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1545                         chan_type = IIO_TEMP;
1546                         iio_chan = &iio_chan_t;
1547                 } else {
1548                         chan_type = IIO_VOLTAGE;
1549                         iio_chan = &iio_chan_v;
1550                 }
1551
1552                 /*
1553                  * add chan as the iio .address so that, we can directly
1554                  * reference the sensor given the iio_chan_spec
1555                  */
1556                 st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1557                                                        chan);
1558         }
1559
1560         return 0;
1561 }
1562
1563 static const struct regmap_range ltc2983_reg_ranges[] = {
1564         regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1565         regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1566         regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG),
1567         regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG,
1568                          LTC2983_EEPROM_READ_STATUS_REG),
1569         regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1570         regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1571                          LTC2983_MULT_CHANNEL_END_REG),
1572         regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG),
1573         regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1574         regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1575                          LTC2983_CHAN_ASSIGN_END_REG),
1576         regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1577                          LTC2983_CUST_SENS_TBL_END_REG),
1578 };
1579
1580 static const struct regmap_access_table ltc2983_reg_table = {
1581         .yes_ranges = ltc2983_reg_ranges,
1582         .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1583 };
1584
1585 /*
1586  *  The reg_bits are actually 12 but the device needs the first *complete*
1587  *  byte for the command (R/W).
1588  */
1589 static const struct regmap_config ltc2983_regmap_config = {
1590         .reg_bits = 24,
1591         .val_bits = 8,
1592         .wr_table = &ltc2983_reg_table,
1593         .rd_table = &ltc2983_reg_table,
1594         .read_flag_mask = GENMASK(1, 0),
1595         .write_flag_mask = BIT(1),
1596 };
1597
1598 static const struct  iio_info ltc2983_iio_info = {
1599         .read_raw = ltc2983_read_raw,
1600         .debugfs_reg_access = ltc2983_reg_access,
1601 };
1602
1603 static int ltc2983_probe(struct spi_device *spi)
1604 {
1605         struct ltc2983_data *st;
1606         struct iio_dev *indio_dev;
1607         struct gpio_desc *gpio;
1608         const char *name = spi_get_device_id(spi)->name;
1609         int ret;
1610
1611         indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1612         if (!indio_dev)
1613                 return -ENOMEM;
1614
1615         st = iio_priv(indio_dev);
1616
1617         st->info = device_get_match_data(&spi->dev);
1618         if (!st->info)
1619                 st->info = (void *)spi_get_device_id(spi)->driver_data;
1620         if (!st->info)
1621                 return -ENODEV;
1622
1623         st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1624         if (IS_ERR(st->regmap)) {
1625                 dev_err(&spi->dev, "Failed to initialize regmap\n");
1626                 return PTR_ERR(st->regmap);
1627         }
1628
1629         mutex_init(&st->lock);
1630         init_completion(&st->completion);
1631         st->spi = spi;
1632         st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY);
1633         spi_set_drvdata(spi, st);
1634
1635         ret = ltc2983_parse_dt(st);
1636         if (ret)
1637                 return ret;
1638
1639         gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1640         if (IS_ERR(gpio))
1641                 return PTR_ERR(gpio);
1642
1643         if (gpio) {
1644                 /* bring the device out of reset */
1645                 usleep_range(1000, 1200);
1646                 gpiod_set_value_cansleep(gpio, 0);
1647         }
1648
1649         st->iio_chan = devm_kzalloc(&spi->dev,
1650                                     st->iio_channels * sizeof(*st->iio_chan),
1651                                     GFP_KERNEL);
1652         if (!st->iio_chan)
1653                 return -ENOMEM;
1654
1655         ret = ltc2983_setup(st, true);
1656         if (ret)
1657                 return ret;
1658
1659         ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1660                                IRQF_TRIGGER_RISING, name, st);
1661         if (ret) {
1662                 dev_err(&spi->dev, "failed to request an irq, %d", ret);
1663                 return ret;
1664         }
1665
1666         if (st->info->has_eeprom) {
1667                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD,
1668                                          LTC2983_EEPROM_WRITE_TIME_MS,
1669                                          LTC2986_EEPROM_STATUS_REG,
1670                                          LTC2983_EEPROM_STATUS_FAILURE_MASK);
1671                 if (ret)
1672                         return ret;
1673         }
1674
1675         indio_dev->name = name;
1676         indio_dev->num_channels = st->iio_channels;
1677         indio_dev->channels = st->iio_chan;
1678         indio_dev->modes = INDIO_DIRECT_MODE;
1679         indio_dev->info = &ltc2983_iio_info;
1680
1681         return devm_iio_device_register(&spi->dev, indio_dev);
1682 }
1683
1684 static int ltc2983_resume(struct device *dev)
1685 {
1686         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1687         int dummy;
1688
1689         /* dummy read to bring the device out of sleep */
1690         regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1691         /* we need to re-assign the channels */
1692         return ltc2983_setup(st, false);
1693 }
1694
1695 static int ltc2983_suspend(struct device *dev)
1696 {
1697         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1698
1699         return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1700 }
1701
1702 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
1703                                 ltc2983_resume);
1704
1705 static const struct ltc2983_chip_info ltc2983_chip_info_data = {
1706         .max_channels_nr = 20,
1707 };
1708
1709 static const struct ltc2983_chip_info ltc2984_chip_info_data = {
1710         .max_channels_nr = 20,
1711         .has_eeprom = true,
1712 };
1713
1714 static const struct ltc2983_chip_info ltc2986_chip_info_data = {
1715         .max_channels_nr = 10,
1716         .has_temp = true,
1717         .has_eeprom = true,
1718 };
1719
1720 static const struct spi_device_id ltc2983_id_table[] = {
1721         { "ltc2983", (kernel_ulong_t)&ltc2983_chip_info_data },
1722         { "ltc2984", (kernel_ulong_t)&ltc2984_chip_info_data },
1723         { "ltc2986", (kernel_ulong_t)&ltc2986_chip_info_data },
1724         { "ltm2985", (kernel_ulong_t)&ltc2986_chip_info_data },
1725         {},
1726 };
1727 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1728
1729 static const struct of_device_id ltc2983_of_match[] = {
1730         { .compatible = "adi,ltc2983", .data = &ltc2983_chip_info_data },
1731         { .compatible = "adi,ltc2984", .data = &ltc2984_chip_info_data },
1732         { .compatible = "adi,ltc2986", .data = &ltc2986_chip_info_data },
1733         { .compatible = "adi,ltm2985", .data = &ltc2986_chip_info_data },
1734         {},
1735 };
1736 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1737
1738 static struct spi_driver ltc2983_driver = {
1739         .driver = {
1740                 .name = "ltc2983",
1741                 .of_match_table = ltc2983_of_match,
1742                 .pm = pm_sleep_ptr(&ltc2983_pm_ops),
1743         },
1744         .probe = ltc2983_probe,
1745         .id_table = ltc2983_id_table,
1746 };
1747
1748 module_spi_driver(ltc2983_driver);
1749
1750 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1751 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1752 MODULE_LICENSE("GPL");