Merge tag 'sched-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / tid_rdma.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 - 2020 Intel Corporation.
4  *
5  */
6
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39
40 #define GENERATION_MASK 0xFFFFF
41
42 static u32 mask_generation(u32 a)
43 {
44         return a & GENERATION_MASK;
45 }
46
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62                         TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109
110 static void tid_rdma_trigger_resume(struct work_struct *work);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113                                          gfp_t gfp);
114 static void hfi1_init_trdma_req(struct rvt_qp *qp,
115                                 struct tid_rdma_request *req);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117 static void hfi1_tid_timeout(struct timer_list *t);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122 static void hfi1_tid_retry_timeout(struct timer_list *t);
123 static int make_tid_rdma_ack(struct rvt_qp *qp,
124                              struct ib_other_headers *ohdr,
125                              struct hfi1_pkt_state *ps);
126 static void hfi1_do_tid_send(struct rvt_qp *qp);
127 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129                              struct ib_other_headers *ohdr,
130                              struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132                                    struct hfi1_qp_priv *priv,
133                                    struct hfi1_ctxtdata *rcd,
134                                    struct tid_rdma_flow *flow,
135                                    bool fecn);
136
137 static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
138 {
139         if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140                 priv->r_tid_ack = priv->r_tid_tail;
141 }
142
143 static void tid_rdma_schedule_ack(struct rvt_qp *qp)
144 {
145         struct hfi1_qp_priv *priv = qp->priv;
146
147         priv->s_flags |= RVT_S_ACK_PENDING;
148         hfi1_schedule_tid_send(qp);
149 }
150
151 static void tid_rdma_trigger_ack(struct rvt_qp *qp)
152 {
153         validate_r_tid_ack(qp->priv);
154         tid_rdma_schedule_ack(qp);
155 }
156
157 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
158 {
159         return
160                 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161                         TID_OPFN_QP_CTXT_SHIFT) |
162                 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163                         TID_OPFN_QP_KDETH_SHIFT) |
164                 (((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165                         TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166                 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167                         TID_OPFN_TIMEOUT_SHIFT) |
168                 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169                 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170                 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171                         TID_OPFN_MAX_READ_SHIFT) |
172                 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173                         TID_OPFN_MAX_WRITE_SHIFT);
174 }
175
176 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
177 {
178         p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179                 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180         p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181         p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182                 TID_OPFN_MAX_WRITE_MASK;
183         p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184                 TID_OPFN_MAX_READ_MASK;
185         p->qp =
186                 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187                         << 16) |
188                 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189         p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190         p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
191 }
192
193 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
194 {
195         struct hfi1_qp_priv *priv = qp->priv;
196
197         p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198         p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199         p->jkey = priv->rcd->jkey;
200         p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201         p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202         p->timeout = qp->timeout;
203         p->urg = is_urg_masked(priv->rcd);
204 }
205
206 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
207 {
208         struct hfi1_qp_priv *priv = qp->priv;
209
210         *data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211         return true;
212 }
213
214 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
215 {
216         struct hfi1_qp_priv *priv = qp->priv;
217         struct tid_rdma_params *remote, *old;
218         bool ret = true;
219
220         old = rcu_dereference_protected(priv->tid_rdma.remote,
221                                         lockdep_is_held(&priv->opfn.lock));
222         data &= ~0xfULL;
223         /*
224          * If data passed in is zero, return true so as not to continue the
225          * negotiation process
226          */
227         if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228                 goto null;
229         /*
230          * If kzalloc fails, return false. This will result in:
231          * * at the requester a new OPFN request being generated to retry
232          *   the negotiation
233          * * at the responder, 0 being returned to the requester so as to
234          *   disable TID RDMA at both the requester and the responder
235          */
236         remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237         if (!remote) {
238                 ret = false;
239                 goto null;
240         }
241
242         tid_rdma_opfn_decode(remote, data);
243         priv->tid_timer_timeout_jiffies =
244                 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245                                    1000UL) << 3) * 7);
246         trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247         trace_hfi1_opfn_param(qp, 1, remote);
248         rcu_assign_pointer(priv->tid_rdma.remote, remote);
249         /*
250          * A TID RDMA READ request's segment size is not equal to
251          * remote->max_len only when the request's data length is smaller
252          * than remote->max_len. In that case, there will be only one segment.
253          * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254          * during retry, it will lead to req->cur_seg = 0, which is exactly
255          * what is expected.
256          */
257         priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258         priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259         goto free;
260 null:
261         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262         priv->timeout_shift = 0;
263 free:
264         if (old)
265                 kfree_rcu(old, rcu_head);
266         return ret;
267 }
268
269 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
270 {
271         bool ret;
272
273         ret = tid_rdma_conn_reply(qp, *data);
274         *data = 0;
275         /*
276          * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277          * TID RDMA could not be enabled. This will result in TID RDMA being
278          * disabled at the requester too.
279          */
280         if (ret)
281                 (void)tid_rdma_conn_req(qp, data);
282         return ret;
283 }
284
285 void tid_rdma_conn_error(struct rvt_qp *qp)
286 {
287         struct hfi1_qp_priv *priv = qp->priv;
288         struct tid_rdma_params *old;
289
290         old = rcu_dereference_protected(priv->tid_rdma.remote,
291                                         lockdep_is_held(&priv->opfn.lock));
292         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293         if (old)
294                 kfree_rcu(old, rcu_head);
295 }
296
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
299 {
300         if (reinit)
301                 return 0;
302
303         BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304         BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305         rcd->jkey = TID_RDMA_JKEY;
306         hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307         return hfi1_alloc_ctxt_rcv_groups(rcd);
308 }
309
310 /**
311  * qp_to_rcd - determine the receive context used by a qp
312  * @rdi: rvt dev struct
313  * @qp: the qp
314  *
315  * This routine returns the receive context associated
316  * with a a qp's qpn.
317  *
318  * Return: the context.
319  */
320 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
321                                        struct rvt_qp *qp)
322 {
323         struct hfi1_ibdev *verbs_dev = container_of(rdi,
324                                                     struct hfi1_ibdev,
325                                                     rdi);
326         struct hfi1_devdata *dd = container_of(verbs_dev,
327                                                struct hfi1_devdata,
328                                                verbs_dev);
329         unsigned int ctxt;
330
331         if (qp->ibqp.qp_num == 0)
332                 ctxt = 0;
333         else
334                 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
335         return dd->rcd[ctxt];
336 }
337
338 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
339                       struct ib_qp_init_attr *init_attr)
340 {
341         struct hfi1_qp_priv *qpriv = qp->priv;
342         int i, ret;
343
344         qpriv->rcd = qp_to_rcd(rdi, qp);
345
346         spin_lock_init(&qpriv->opfn.lock);
347         INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
348         INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
349         qpriv->flow_state.psn = 0;
350         qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
351         qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
352         qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
353         qpriv->s_state = TID_OP(WRITE_RESP);
354         qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
355         qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
356         qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
357         qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
358         qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
359         qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
360         qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
361         qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
362         atomic_set(&qpriv->n_requests, 0);
363         atomic_set(&qpriv->n_tid_requests, 0);
364         timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
365         timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
366         INIT_LIST_HEAD(&qpriv->tid_wait);
367
368         if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
369                 struct hfi1_devdata *dd = qpriv->rcd->dd;
370
371                 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
372                                                 sizeof(*qpriv->pages),
373                                             GFP_KERNEL, dd->node);
374                 if (!qpriv->pages)
375                         return -ENOMEM;
376                 for (i = 0; i < qp->s_size; i++) {
377                         struct hfi1_swqe_priv *priv;
378                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
379
380                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
381                                             dd->node);
382                         if (!priv)
383                                 return -ENOMEM;
384
385                         hfi1_init_trdma_req(qp, &priv->tid_req);
386                         priv->tid_req.e.swqe = wqe;
387                         wqe->priv = priv;
388                 }
389                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
390                         struct hfi1_ack_priv *priv;
391
392                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
393                                             dd->node);
394                         if (!priv)
395                                 return -ENOMEM;
396
397                         hfi1_init_trdma_req(qp, &priv->tid_req);
398                         priv->tid_req.e.ack = &qp->s_ack_queue[i];
399
400                         ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
401                                                             GFP_KERNEL);
402                         if (ret) {
403                                 kfree(priv);
404                                 return ret;
405                         }
406                         qp->s_ack_queue[i].priv = priv;
407                 }
408         }
409
410         return 0;
411 }
412
413 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
414 {
415         struct hfi1_qp_priv *qpriv = qp->priv;
416         struct rvt_swqe *wqe;
417         u32 i;
418
419         if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
420                 for (i = 0; i < qp->s_size; i++) {
421                         wqe = rvt_get_swqe_ptr(qp, i);
422                         kfree(wqe->priv);
423                         wqe->priv = NULL;
424                 }
425                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
426                         struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
427
428                         if (priv)
429                                 hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
430                         kfree(priv);
431                         qp->s_ack_queue[i].priv = NULL;
432                 }
433                 cancel_work_sync(&qpriv->opfn.opfn_work);
434                 kfree(qpriv->pages);
435                 qpriv->pages = NULL;
436         }
437 }
438
439 /* Flow and tid waiter functions */
440 /**
441  * DOC: lock ordering
442  *
443  * There are two locks involved with the queuing
444  * routines: the qp s_lock and the exp_lock.
445  *
446  * Since the tid space allocation is called from
447  * the send engine, the qp s_lock is already held.
448  *
449  * The allocation routines will get the exp_lock.
450  *
451  * The first_qp() call is provided to allow the head of
452  * the rcd wait queue to be fetched under the exp_lock and
453  * followed by a drop of the exp_lock.
454  *
455  * Any qp in the wait list will have the qp reference count held
456  * to hold the qp in memory.
457  */
458
459 /*
460  * return head of rcd wait list
461  *
462  * Must hold the exp_lock.
463  *
464  * Get a reference to the QP to hold the QP in memory.
465  *
466  * The caller must release the reference when the local
467  * is no longer being used.
468  */
469 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
470                                struct tid_queue *queue)
471         __must_hold(&rcd->exp_lock)
472 {
473         struct hfi1_qp_priv *priv;
474
475         lockdep_assert_held(&rcd->exp_lock);
476         priv = list_first_entry_or_null(&queue->queue_head,
477                                         struct hfi1_qp_priv,
478                                         tid_wait);
479         if (!priv)
480                 return NULL;
481         rvt_get_qp(priv->owner);
482         return priv->owner;
483 }
484
485 /**
486  * kernel_tid_waiters - determine rcd wait
487  * @rcd: the receive context
488  * @queue: the queue to operate on
489  * @qp: the head of the qp being processed
490  *
491  * This routine will return false IFF
492  * the list is NULL or the head of the
493  * list is the indicated qp.
494  *
495  * Must hold the qp s_lock and the exp_lock.
496  *
497  * Return:
498  * false if either of the conditions below are satisfied:
499  * 1. The list is empty or
500  * 2. The indicated qp is at the head of the list and the
501  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
502  * true is returned otherwise.
503  */
504 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
505                                struct tid_queue *queue, struct rvt_qp *qp)
506         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
507 {
508         struct rvt_qp *fqp;
509         bool ret = true;
510
511         lockdep_assert_held(&qp->s_lock);
512         lockdep_assert_held(&rcd->exp_lock);
513         fqp = first_qp(rcd, queue);
514         if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
515                 ret = false;
516         rvt_put_qp(fqp);
517         return ret;
518 }
519
520 /**
521  * dequeue_tid_waiter - dequeue the qp from the list
522  * @rcd: the receive context
523  * @queue: the queue to operate on
524  * @qp: the qp to remove the wait list
525  *
526  * This routine removes the indicated qp from the
527  * wait list if it is there.
528  *
529  * This should be done after the hardware flow and
530  * tid array resources have been allocated.
531  *
532  * Must hold the qp s_lock and the rcd exp_lock.
533  *
534  * It assumes the s_lock to protect the s_flags
535  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
536  */
537 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
538                                struct tid_queue *queue, struct rvt_qp *qp)
539         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
540 {
541         struct hfi1_qp_priv *priv = qp->priv;
542
543         lockdep_assert_held(&qp->s_lock);
544         lockdep_assert_held(&rcd->exp_lock);
545         if (list_empty(&priv->tid_wait))
546                 return;
547         list_del_init(&priv->tid_wait);
548         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
549         queue->dequeue++;
550         rvt_put_qp(qp);
551 }
552
553 /**
554  * queue_qp_for_tid_wait - suspend QP on tid space
555  * @rcd: the receive context
556  * @queue: the queue to operate on
557  * @qp: the qp
558  *
559  * The qp is inserted at the tail of the rcd
560  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
561  *
562  * Must hold the qp s_lock and the exp_lock.
563  */
564 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
565                                   struct tid_queue *queue, struct rvt_qp *qp)
566         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
567 {
568         struct hfi1_qp_priv *priv = qp->priv;
569
570         lockdep_assert_held(&qp->s_lock);
571         lockdep_assert_held(&rcd->exp_lock);
572         if (list_empty(&priv->tid_wait)) {
573                 qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
574                 list_add_tail(&priv->tid_wait, &queue->queue_head);
575                 priv->tid_enqueue = ++queue->enqueue;
576                 rcd->dd->verbs_dev.n_tidwait++;
577                 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
578                 rvt_get_qp(qp);
579         }
580 }
581
582 /**
583  * __trigger_tid_waiter - trigger tid waiter
584  * @qp: the qp
585  *
586  * This is a private entrance to schedule the qp
587  * assuming the caller is holding the qp->s_lock.
588  */
589 static void __trigger_tid_waiter(struct rvt_qp *qp)
590         __must_hold(&qp->s_lock)
591 {
592         lockdep_assert_held(&qp->s_lock);
593         if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
594                 return;
595         trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
596         hfi1_schedule_send(qp);
597 }
598
599 /**
600  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
601  * @qp: the qp
602  *
603  * trigger a schedule or a waiting qp in a deadlock
604  * safe manner.  The qp reference is held prior
605  * to this call via first_qp().
606  *
607  * If the qp trigger was already scheduled (!rval)
608  * the reference is dropped, otherwise the resume
609  * or the destroy cancel will dispatch the reference.
610  */
611 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
612 {
613         struct hfi1_qp_priv *priv;
614         struct hfi1_ibport *ibp;
615         struct hfi1_pportdata *ppd;
616         struct hfi1_devdata *dd;
617         bool rval;
618
619         if (!qp)
620                 return;
621
622         priv = qp->priv;
623         ibp = to_iport(qp->ibqp.device, qp->port_num);
624         ppd = ppd_from_ibp(ibp);
625         dd = dd_from_ibdev(qp->ibqp.device);
626
627         rval = queue_work_on(priv->s_sde ?
628                              priv->s_sde->cpu :
629                              cpumask_first(cpumask_of_node(dd->node)),
630                              ppd->hfi1_wq,
631                              &priv->tid_rdma.trigger_work);
632         if (!rval)
633                 rvt_put_qp(qp);
634 }
635
636 /**
637  * tid_rdma_trigger_resume - field a trigger work request
638  * @work: the work item
639  *
640  * Complete the off qp trigger processing by directly
641  * calling the progress routine.
642  */
643 static void tid_rdma_trigger_resume(struct work_struct *work)
644 {
645         struct tid_rdma_qp_params *tr;
646         struct hfi1_qp_priv *priv;
647         struct rvt_qp *qp;
648
649         tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
650         priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
651         qp = priv->owner;
652         spin_lock_irq(&qp->s_lock);
653         if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
654                 spin_unlock_irq(&qp->s_lock);
655                 hfi1_do_send(priv->owner, true);
656         } else {
657                 spin_unlock_irq(&qp->s_lock);
658         }
659         rvt_put_qp(qp);
660 }
661
662 /*
663  * tid_rdma_flush_wait - unwind any tid space wait
664  *
665  * This is called when resetting a qp to
666  * allow a destroy or reset to get rid
667  * of any tid space linkage and reference counts.
668  */
669 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
670         __must_hold(&qp->s_lock)
671 {
672         struct hfi1_qp_priv *priv;
673
674         if (!qp)
675                 return;
676         lockdep_assert_held(&qp->s_lock);
677         priv = qp->priv;
678         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
679         spin_lock(&priv->rcd->exp_lock);
680         if (!list_empty(&priv->tid_wait)) {
681                 list_del_init(&priv->tid_wait);
682                 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
683                 queue->dequeue++;
684                 rvt_put_qp(qp);
685         }
686         spin_unlock(&priv->rcd->exp_lock);
687 }
688
689 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
690         __must_hold(&qp->s_lock)
691 {
692         struct hfi1_qp_priv *priv = qp->priv;
693
694         _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
695         _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
696 }
697
698 /* Flow functions */
699 /**
700  * kern_reserve_flow - allocate a hardware flow
701  * @rcd: the context to use for allocation
702  * @last: the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
703  *         signify "don't care".
704  *
705  * Use a bit mask based allocation to reserve a hardware
706  * flow for use in receiving KDETH data packets. If a preferred flow is
707  * specified the function will attempt to reserve that flow again, if
708  * available.
709  *
710  * The exp_lock must be held.
711  *
712  * Return:
713  * On success: a value positive value between 0 and RXE_NUM_TID_FLOWS - 1
714  * On failure: -EAGAIN
715  */
716 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
717         __must_hold(&rcd->exp_lock)
718 {
719         int nr;
720
721         /* Attempt to reserve the preferred flow index */
722         if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
723             !test_and_set_bit(last, &rcd->flow_mask))
724                 return last;
725
726         nr = ffz(rcd->flow_mask);
727         BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
728                      (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
729         if (nr > (RXE_NUM_TID_FLOWS - 1))
730                 return -EAGAIN;
731         set_bit(nr, &rcd->flow_mask);
732         return nr;
733 }
734
735 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
736                              u32 flow_idx)
737 {
738         u64 reg;
739
740         reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
741                 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
742                 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
743                 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
744                 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
745                 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
746
747         if (generation != KERN_GENERATION_RESERVED)
748                 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
749
750         write_uctxt_csr(rcd->dd, rcd->ctxt,
751                         RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
752 }
753
754 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
755         __must_hold(&rcd->exp_lock)
756 {
757         u32 generation = rcd->flows[flow_idx].generation;
758
759         kern_set_hw_flow(rcd, generation, flow_idx);
760         return generation;
761 }
762
763 static u32 kern_flow_generation_next(u32 gen)
764 {
765         u32 generation = mask_generation(gen + 1);
766
767         if (generation == KERN_GENERATION_RESERVED)
768                 generation = mask_generation(generation + 1);
769         return generation;
770 }
771
772 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
773         __must_hold(&rcd->exp_lock)
774 {
775         rcd->flows[flow_idx].generation =
776                 kern_flow_generation_next(rcd->flows[flow_idx].generation);
777         kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
778 }
779
780 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
781 {
782         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
783         struct tid_flow_state *fs = &qpriv->flow_state;
784         struct rvt_qp *fqp;
785         unsigned long flags;
786         int ret = 0;
787
788         /* The QP already has an allocated flow */
789         if (fs->index != RXE_NUM_TID_FLOWS)
790                 return ret;
791
792         spin_lock_irqsave(&rcd->exp_lock, flags);
793         if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
794                 goto queue;
795
796         ret = kern_reserve_flow(rcd, fs->last_index);
797         if (ret < 0)
798                 goto queue;
799         fs->index = ret;
800         fs->last_index = fs->index;
801
802         /* Generation received in a RESYNC overrides default flow generation */
803         if (fs->generation != KERN_GENERATION_RESERVED)
804                 rcd->flows[fs->index].generation = fs->generation;
805         fs->generation = kern_setup_hw_flow(rcd, fs->index);
806         fs->psn = 0;
807         dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
808         /* get head before dropping lock */
809         fqp = first_qp(rcd, &rcd->flow_queue);
810         spin_unlock_irqrestore(&rcd->exp_lock, flags);
811
812         tid_rdma_schedule_tid_wakeup(fqp);
813         return 0;
814 queue:
815         queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
816         spin_unlock_irqrestore(&rcd->exp_lock, flags);
817         return -EAGAIN;
818 }
819
820 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
821 {
822         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
823         struct tid_flow_state *fs = &qpriv->flow_state;
824         struct rvt_qp *fqp;
825         unsigned long flags;
826
827         if (fs->index >= RXE_NUM_TID_FLOWS)
828                 return;
829         spin_lock_irqsave(&rcd->exp_lock, flags);
830         kern_clear_hw_flow(rcd, fs->index);
831         clear_bit(fs->index, &rcd->flow_mask);
832         fs->index = RXE_NUM_TID_FLOWS;
833         fs->psn = 0;
834         fs->generation = KERN_GENERATION_RESERVED;
835
836         /* get head before dropping lock */
837         fqp = first_qp(rcd, &rcd->flow_queue);
838         spin_unlock_irqrestore(&rcd->exp_lock, flags);
839
840         if (fqp == qp) {
841                 __trigger_tid_waiter(fqp);
842                 rvt_put_qp(fqp);
843         } else {
844                 tid_rdma_schedule_tid_wakeup(fqp);
845         }
846 }
847
848 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
849 {
850         int i;
851
852         for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
853                 rcd->flows[i].generation = mask_generation(get_random_u32());
854                 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
855         }
856 }
857
858 /* TID allocation functions */
859 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
860 {
861         u8 count = s->count;
862
863         return ilog2(count) + 1;
864 }
865
866 /**
867  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
868  * @flow: overall info for a TID RDMA segment
869  * @pages: pointer to an array of page structs
870  * @npages: number of pages
871  * @list: page set array to return
872  *
873  * This routine returns the number of groups associated with
874  * the current sge information.  This implementation is based
875  * on the expected receive find_phys_blocks() adjusted to
876  * use the MR information vs. the pfn.
877  *
878  * Return:
879  * the number of RcvArray entries
880  */
881 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
882                                         struct page **pages,
883                                         u32 npages,
884                                         struct tid_rdma_pageset *list)
885 {
886         u32 pagecount, pageidx, setcount = 0, i;
887         void *vaddr, *this_vaddr;
888
889         if (!npages)
890                 return 0;
891
892         /*
893          * Look for sets of physically contiguous pages in the user buffer.
894          * This will allow us to optimize Expected RcvArray entry usage by
895          * using the bigger supported sizes.
896          */
897         vaddr = page_address(pages[0]);
898         trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
899         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
900                 this_vaddr = i < npages ? page_address(pages[i]) : NULL;
901                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
902                                          this_vaddr);
903                 /*
904                  * If the vaddr's are not sequential, pages are not physically
905                  * contiguous.
906                  */
907                 if (this_vaddr != (vaddr + PAGE_SIZE)) {
908                         /*
909                          * At this point we have to loop over the set of
910                          * physically contiguous pages and break them down it
911                          * sizes supported by the HW.
912                          * There are two main constraints:
913                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
914                          *        If the total set size is bigger than that
915                          *        program only a MAX_EXPECTED_BUFFER chunk.
916                          *     2. The buffer size has to be a power of two. If
917                          *        it is not, round down to the closes power of
918                          *        2 and program that size.
919                          */
920                         while (pagecount) {
921                                 int maxpages = pagecount;
922                                 u32 bufsize = pagecount * PAGE_SIZE;
923
924                                 if (bufsize > MAX_EXPECTED_BUFFER)
925                                         maxpages =
926                                                 MAX_EXPECTED_BUFFER >>
927                                                 PAGE_SHIFT;
928                                 else if (!is_power_of_2(bufsize))
929                                         maxpages =
930                                                 rounddown_pow_of_two(bufsize) >>
931                                                 PAGE_SHIFT;
932
933                                 list[setcount].idx = pageidx;
934                                 list[setcount].count = maxpages;
935                                 trace_hfi1_tid_pageset(flow->req->qp, setcount,
936                                                        list[setcount].idx,
937                                                        list[setcount].count);
938                                 pagecount -= maxpages;
939                                 pageidx += maxpages;
940                                 setcount++;
941                         }
942                         pageidx = i;
943                         pagecount = 1;
944                         vaddr = this_vaddr;
945                 } else {
946                         vaddr += PAGE_SIZE;
947                         pagecount++;
948                 }
949         }
950         /* insure we always return an even number of sets */
951         if (setcount & 1)
952                 list[setcount++].count = 0;
953         return setcount;
954 }
955
956 /**
957  * tid_flush_pages - dump out pages into pagesets
958  * @list: list of pagesets
959  * @idx: pointer to current page index
960  * @pages: number of pages to dump
961  * @sets: current number of pagesset
962  *
963  * This routine flushes out accumuated pages.
964  *
965  * To insure an even number of sets the
966  * code may add a filler.
967  *
968  * This can happen with when pages is not
969  * a power of 2 or pages is a power of 2
970  * less than the maximum pages.
971  *
972  * Return:
973  * The new number of sets
974  */
975
976 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
977                            u32 *idx, u32 pages, u32 sets)
978 {
979         while (pages) {
980                 u32 maxpages = pages;
981
982                 if (maxpages > MAX_EXPECTED_PAGES)
983                         maxpages = MAX_EXPECTED_PAGES;
984                 else if (!is_power_of_2(maxpages))
985                         maxpages = rounddown_pow_of_two(maxpages);
986                 list[sets].idx = *idx;
987                 list[sets++].count = maxpages;
988                 *idx += maxpages;
989                 pages -= maxpages;
990         }
991         /* might need a filler */
992         if (sets & 1)
993                 list[sets++].count = 0;
994         return sets;
995 }
996
997 /**
998  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
999  * @flow: overall info for a TID RDMA segment
1000  * @pages: pointer to an array of page structs
1001  * @npages: number of pages
1002  * @list: page set array to return
1003  *
1004  * This routine parses an array of pages to compute pagesets
1005  * in an 8k compatible way.
1006  *
1007  * pages are tested two at a time, i, i + 1 for contiguous
1008  * pages and i - 1 and i contiguous pages.
1009  *
1010  * If any condition is false, any accumulated pages are flushed and
1011  * v0,v1 are emitted as separate PAGE_SIZE pagesets
1012  *
1013  * Otherwise, the current 8k is totaled for a future flush.
1014  *
1015  * Return:
1016  * The number of pagesets
1017  * list set with the returned number of pagesets
1018  *
1019  */
1020 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1021                                         struct page **pages,
1022                                         u32 npages,
1023                                         struct tid_rdma_pageset *list)
1024 {
1025         u32 idx, sets = 0, i;
1026         u32 pagecnt = 0;
1027         void *v0, *v1, *vm1;
1028
1029         if (!npages)
1030                 return 0;
1031         for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1032                 /* get a new v0 */
1033                 v0 = page_address(pages[i]);
1034                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1035                 v1 = i + 1 < npages ?
1036                                 page_address(pages[i + 1]) : NULL;
1037                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1038                 /* compare i, i + 1 vaddr */
1039                 if (v1 != (v0 + PAGE_SIZE)) {
1040                         /* flush out pages */
1041                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1042                         /* output v0,v1 as two pagesets */
1043                         list[sets].idx = idx++;
1044                         list[sets++].count = 1;
1045                         if (v1) {
1046                                 list[sets].count = 1;
1047                                 list[sets++].idx = idx++;
1048                         } else {
1049                                 list[sets++].count = 0;
1050                         }
1051                         vm1 = NULL;
1052                         pagecnt = 0;
1053                         continue;
1054                 }
1055                 /* i,i+1 consecutive, look at i-1,i */
1056                 if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1057                         /* flush out pages */
1058                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1059                         pagecnt = 0;
1060                 }
1061                 /* pages will always be a multiple of 8k */
1062                 pagecnt += 2;
1063                 /* save i-1 */
1064                 vm1 = v1;
1065                 /* move to next pair */
1066         }
1067         /* dump residual pages at end */
1068         sets = tid_flush_pages(list, &idx, npages - idx, sets);
1069         /* by design cannot be odd sets */
1070         WARN_ON(sets & 1);
1071         return sets;
1072 }
1073
1074 /*
1075  * Find pages for one segment of a sge array represented by @ss. The function
1076  * does not check the sge, the sge must have been checked for alignment with a
1077  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1078  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1079  * copy maintained in @ss->sge, the original sge is not modified.
1080  *
1081  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1082  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1083  * references to the MR. This difference requires that we keep track of progress
1084  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1085  * structure.
1086  */
1087 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1088                            struct page **pages,
1089                            struct rvt_sge_state *ss, bool *last)
1090 {
1091         struct tid_rdma_request *req = flow->req;
1092         struct rvt_sge *sge = &ss->sge;
1093         u32 length = flow->req->seg_len;
1094         u32 len = PAGE_SIZE;
1095         u32 i = 0;
1096
1097         while (length && req->isge < ss->num_sge) {
1098                 pages[i++] = virt_to_page(sge->vaddr);
1099
1100                 sge->vaddr += len;
1101                 sge->length -= len;
1102                 sge->sge_length -= len;
1103                 if (!sge->sge_length) {
1104                         if (++req->isge < ss->num_sge)
1105                                 *sge = ss->sg_list[req->isge - 1];
1106                 } else if (sge->length == 0 && sge->mr->lkey) {
1107                         if (++sge->n >= RVT_SEGSZ) {
1108                                 ++sge->m;
1109                                 sge->n = 0;
1110                         }
1111                         sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1112                         sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1113                 }
1114                 length -= len;
1115         }
1116
1117         flow->length = flow->req->seg_len - length;
1118         *last = req->isge != ss->num_sge;
1119         return i;
1120 }
1121
1122 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1123 {
1124         struct hfi1_devdata *dd;
1125         int i;
1126         struct tid_rdma_pageset *pset;
1127
1128         dd = flow->req->rcd->dd;
1129         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1130                         i++, pset++) {
1131                 if (pset->count && pset->addr) {
1132                         dma_unmap_page(&dd->pcidev->dev,
1133                                        pset->addr,
1134                                        PAGE_SIZE * pset->count,
1135                                        DMA_FROM_DEVICE);
1136                         pset->mapped = 0;
1137                 }
1138         }
1139 }
1140
1141 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1142 {
1143         int i;
1144         struct hfi1_devdata *dd = flow->req->rcd->dd;
1145         struct tid_rdma_pageset *pset;
1146
1147         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1148                         i++, pset++) {
1149                 if (pset->count) {
1150                         pset->addr = dma_map_page(&dd->pcidev->dev,
1151                                                   pages[pset->idx],
1152                                                   0,
1153                                                   PAGE_SIZE * pset->count,
1154                                                   DMA_FROM_DEVICE);
1155
1156                         if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1157                                 dma_unmap_flow(flow);
1158                                 return -ENOMEM;
1159                         }
1160                         pset->mapped = 1;
1161                 }
1162         }
1163         return 0;
1164 }
1165
1166 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1167 {
1168         return !!flow->pagesets[0].mapped;
1169 }
1170
1171 /*
1172  * Get pages pointers and identify contiguous physical memory chunks for a
1173  * segment. All segments are of length flow->req->seg_len.
1174  */
1175 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1176                                 struct page **pages,
1177                                 struct rvt_sge_state *ss, bool *last)
1178 {
1179         u8 npages;
1180
1181         /* Reuse previously computed pagesets, if any */
1182         if (flow->npagesets) {
1183                 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1184                                           flow);
1185                 if (!dma_mapped(flow))
1186                         return dma_map_flow(flow, pages);
1187                 return 0;
1188         }
1189
1190         npages = kern_find_pages(flow, pages, ss, last);
1191
1192         if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1193                 flow->npagesets =
1194                         tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1195                                                      flow->pagesets);
1196         else
1197                 flow->npagesets =
1198                         tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1199                                                      flow->pagesets);
1200
1201         return dma_map_flow(flow, pages);
1202 }
1203
1204 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1205                                      struct hfi1_ctxtdata *rcd, char *s,
1206                                      struct tid_group *grp, u8 cnt)
1207 {
1208         struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1209
1210         WARN_ON_ONCE(flow->tnode_cnt >=
1211                      (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1212         if (WARN_ON_ONCE(cnt & 1))
1213                 dd_dev_err(rcd->dd,
1214                            "unexpected odd allocation cnt %u map 0x%x used %u",
1215                            cnt, grp->map, grp->used);
1216
1217         node->grp = grp;
1218         node->map = grp->map;
1219         node->cnt = cnt;
1220         trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1221                                 grp->base, grp->map, grp->used, cnt);
1222 }
1223
1224 /*
1225  * Try to allocate pageset_count TID's from TID groups for a context
1226  *
1227  * This function allocates TID's without moving groups between lists or
1228  * modifying grp->map. This is done as follows, being cogizant of the lists
1229  * between which the TID groups will move:
1230  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1231  *    these groups will move from group->full without affecting used
1232  * 2. If more TID's are needed allocate from used (will move from used->full or
1233  *    stay in used)
1234  * 3. If we still don't have the required number of TID's go back and look again
1235  *    at a complete group (will move from group->used)
1236  */
1237 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1238 {
1239         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1240         struct hfi1_devdata *dd = rcd->dd;
1241         u32 ngroups, pageidx = 0;
1242         struct tid_group *group = NULL, *used;
1243         u8 use;
1244
1245         flow->tnode_cnt = 0;
1246         ngroups = flow->npagesets / dd->rcv_entries.group_size;
1247         if (!ngroups)
1248                 goto used_list;
1249
1250         /* First look at complete groups */
1251         list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1252                 kern_add_tid_node(flow, rcd, "complete groups", group,
1253                                   group->size);
1254
1255                 pageidx += group->size;
1256                 if (!--ngroups)
1257                         break;
1258         }
1259
1260         if (pageidx >= flow->npagesets)
1261                 goto ok;
1262
1263 used_list:
1264         /* Now look at partially used groups */
1265         list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1266                 use = min_t(u32, flow->npagesets - pageidx,
1267                             used->size - used->used);
1268                 kern_add_tid_node(flow, rcd, "used groups", used, use);
1269
1270                 pageidx += use;
1271                 if (pageidx >= flow->npagesets)
1272                         goto ok;
1273         }
1274
1275         /*
1276          * Look again at a complete group, continuing from where we left.
1277          * However, if we are at the head, we have reached the end of the
1278          * complete groups list from the first loop above
1279          */
1280         if (group && &group->list == &rcd->tid_group_list.list)
1281                 goto bail_eagain;
1282         group = list_prepare_entry(group, &rcd->tid_group_list.list,
1283                                    list);
1284         if (list_is_last(&group->list, &rcd->tid_group_list.list))
1285                 goto bail_eagain;
1286         group = list_next_entry(group, list);
1287         use = min_t(u32, flow->npagesets - pageidx, group->size);
1288         kern_add_tid_node(flow, rcd, "complete continue", group, use);
1289         pageidx += use;
1290         if (pageidx >= flow->npagesets)
1291                 goto ok;
1292 bail_eagain:
1293         trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1294                                   (u64)flow->npagesets);
1295         return -EAGAIN;
1296 ok:
1297         return 0;
1298 }
1299
1300 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1301                                    u32 *pset_idx)
1302 {
1303         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1304         struct hfi1_devdata *dd = rcd->dd;
1305         struct kern_tid_node *node = &flow->tnode[grp_num];
1306         struct tid_group *grp = node->grp;
1307         struct tid_rdma_pageset *pset;
1308         u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1309         u32 rcventry, npages = 0, pair = 0, tidctrl;
1310         u8 i, cnt = 0;
1311
1312         for (i = 0; i < grp->size; i++) {
1313                 rcventry = grp->base + i;
1314
1315                 if (node->map & BIT(i) || cnt >= node->cnt) {
1316                         rcv_array_wc_fill(dd, rcventry);
1317                         continue;
1318                 }
1319                 pset = &flow->pagesets[(*pset_idx)++];
1320                 if (pset->count) {
1321                         hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1322                                      pset->addr, trdma_pset_order(pset));
1323                 } else {
1324                         hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1325                 }
1326                 npages += pset->count;
1327
1328                 rcventry -= rcd->expected_base;
1329                 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1330                 /*
1331                  * A single TID entry will be used to use a rcvarr pair (with
1332                  * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1333                  * (b) the group map shows current and the next bits as free
1334                  * indicating two consecutive rcvarry entries are available (c)
1335                  * we actually need 2 more entries
1336                  */
1337                 pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1338                         node->cnt >= cnt + 2;
1339                 if (!pair) {
1340                         if (!pset->count)
1341                                 tidctrl = 0x1;
1342                         flow->tid_entry[flow->tidcnt++] =
1343                                 EXP_TID_SET(IDX, rcventry >> 1) |
1344                                 EXP_TID_SET(CTRL, tidctrl) |
1345                                 EXP_TID_SET(LEN, npages);
1346                         trace_hfi1_tid_entry_alloc(/* entry */
1347                            flow->req->qp, flow->tidcnt - 1,
1348                            flow->tid_entry[flow->tidcnt - 1]);
1349
1350                         /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1351                         flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1352                         npages = 0;
1353                 }
1354
1355                 if (grp->used == grp->size - 1)
1356                         tid_group_move(grp, &rcd->tid_used_list,
1357                                        &rcd->tid_full_list);
1358                 else if (!grp->used)
1359                         tid_group_move(grp, &rcd->tid_group_list,
1360                                        &rcd->tid_used_list);
1361
1362                 grp->used++;
1363                 grp->map |= BIT(i);
1364                 cnt++;
1365         }
1366 }
1367
1368 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1369 {
1370         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1371         struct hfi1_devdata *dd = rcd->dd;
1372         struct kern_tid_node *node = &flow->tnode[grp_num];
1373         struct tid_group *grp = node->grp;
1374         u32 rcventry;
1375         u8 i, cnt = 0;
1376
1377         for (i = 0; i < grp->size; i++) {
1378                 rcventry = grp->base + i;
1379
1380                 if (node->map & BIT(i) || cnt >= node->cnt) {
1381                         rcv_array_wc_fill(dd, rcventry);
1382                         continue;
1383                 }
1384
1385                 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1386
1387                 grp->used--;
1388                 grp->map &= ~BIT(i);
1389                 cnt++;
1390
1391                 if (grp->used == grp->size - 1)
1392                         tid_group_move(grp, &rcd->tid_full_list,
1393                                        &rcd->tid_used_list);
1394                 else if (!grp->used)
1395                         tid_group_move(grp, &rcd->tid_used_list,
1396                                        &rcd->tid_group_list);
1397         }
1398         if (WARN_ON_ONCE(cnt & 1)) {
1399                 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1400                 struct hfi1_devdata *dd = rcd->dd;
1401
1402                 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1403                            cnt, grp->map, grp->used);
1404         }
1405 }
1406
1407 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1408 {
1409         u32 pset_idx = 0;
1410         int i;
1411
1412         flow->npkts = 0;
1413         flow->tidcnt = 0;
1414         for (i = 0; i < flow->tnode_cnt; i++)
1415                 kern_program_rcv_group(flow, i, &pset_idx);
1416         trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1417 }
1418
1419 /**
1420  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1421  * TID RDMA request
1422  *
1423  * @req: TID RDMA request for which the segment/flow is being set up
1424  * @ss: sge state, maintains state across successive segments of a sge
1425  * @last: set to true after the last sge segment has been processed
1426  *
1427  * This function
1428  * (1) finds a free flow entry in the flow circular buffer
1429  * (2) finds pages and continuous physical chunks constituing one segment
1430  *     of an sge
1431  * (3) allocates TID group entries for those chunks
1432  * (4) programs rcvarray entries in the hardware corresponding to those
1433  *     TID's
1434  * (5) computes a tidarray with formatted TID entries which can be sent
1435  *     to the sender
1436  * (6) Reserves and programs HW flows.
1437  * (7) It also manages queueing the QP when TID/flow resources are not
1438  *     available.
1439  *
1440  * @req points to struct tid_rdma_request of which the segments are a part. The
1441  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1442  * req->flow_idx is the index of the flow which has been prepared in this
1443  * invocation of function call. With flow = &req->flows[req->flow_idx],
1444  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1445  * sends and flow->npkts contains number of packets required to send the
1446  * segment.
1447  *
1448  * hfi1_check_sge_align should be called prior to calling this function and if
1449  * it signals error TID RDMA cannot be used for this sge and this function
1450  * should not be called.
1451  *
1452  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1453  * engine and the function will procure the exp_lock.
1454  *
1455  * Return:
1456  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1457  * map the segment could not be allocated. In this case the function should be
1458  * called again with previous arguments to retry the TID allocation. There are
1459  * no other error returns. The function returns 0 on success.
1460  */
1461 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1462                             struct rvt_sge_state *ss, bool *last)
1463         __must_hold(&req->qp->s_lock)
1464 {
1465         struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1466         struct hfi1_ctxtdata *rcd = req->rcd;
1467         struct hfi1_qp_priv *qpriv = req->qp->priv;
1468         unsigned long flags;
1469         struct rvt_qp *fqp;
1470         u16 clear_tail = req->clear_tail;
1471
1472         lockdep_assert_held(&req->qp->s_lock);
1473         /*
1474          * We return error if either (a) we don't have space in the flow
1475          * circular buffer, or (b) we already have max entries in the buffer.
1476          * Max entries depend on the type of request we are processing and the
1477          * negotiated TID RDMA parameters.
1478          */
1479         if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1480             CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1481             req->n_flows)
1482                 return -EINVAL;
1483
1484         /*
1485          * Get pages, identify contiguous physical memory chunks for the segment
1486          * If we can not determine a DMA address mapping we will treat it just
1487          * like if we ran out of space above.
1488          */
1489         if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1490                 hfi1_wait_kmem(flow->req->qp);
1491                 return -ENOMEM;
1492         }
1493
1494         spin_lock_irqsave(&rcd->exp_lock, flags);
1495         if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1496                 goto queue;
1497
1498         /*
1499          * At this point we know the number of pagesets and hence the number of
1500          * TID's to map the segment. Allocate the TID's from the TID groups. If
1501          * we cannot allocate the required number we exit and try again later
1502          */
1503         if (kern_alloc_tids(flow))
1504                 goto queue;
1505         /*
1506          * Finally program the TID entries with the pagesets, compute the
1507          * tidarray and enable the HW flow
1508          */
1509         kern_program_rcvarray(flow);
1510
1511         /*
1512          * Setup the flow state with relevant information.
1513          * This information is used for tracking the sequence of data packets
1514          * for the segment.
1515          * The flow is setup here as this is the most accurate time and place
1516          * to do so. Doing at a later time runs the risk of the flow data in
1517          * qpriv getting out of sync.
1518          */
1519         memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1520         flow->idx = qpriv->flow_state.index;
1521         flow->flow_state.generation = qpriv->flow_state.generation;
1522         flow->flow_state.spsn = qpriv->flow_state.psn;
1523         flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1524         flow->flow_state.r_next_psn =
1525                 full_flow_psn(flow, flow->flow_state.spsn);
1526         qpriv->flow_state.psn += flow->npkts;
1527
1528         dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1529         /* get head before dropping lock */
1530         fqp = first_qp(rcd, &rcd->rarr_queue);
1531         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532         tid_rdma_schedule_tid_wakeup(fqp);
1533
1534         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1535         return 0;
1536 queue:
1537         queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1538         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1539         return -EAGAIN;
1540 }
1541
1542 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1543 {
1544         flow->npagesets = 0;
1545 }
1546
1547 /*
1548  * This function is called after one segment has been successfully sent to
1549  * release the flow and TID HW/SW resources for that segment. The segments for a
1550  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1551  * circular buffer.
1552  */
1553 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1554         __must_hold(&req->qp->s_lock)
1555 {
1556         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1557         struct hfi1_ctxtdata *rcd = req->rcd;
1558         unsigned long flags;
1559         int i;
1560         struct rvt_qp *fqp;
1561
1562         lockdep_assert_held(&req->qp->s_lock);
1563         /* Exit if we have nothing in the flow circular buffer */
1564         if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1565                 return -EINVAL;
1566
1567         spin_lock_irqsave(&rcd->exp_lock, flags);
1568
1569         for (i = 0; i < flow->tnode_cnt; i++)
1570                 kern_unprogram_rcv_group(flow, i);
1571         /* To prevent double unprogramming */
1572         flow->tnode_cnt = 0;
1573         /* get head before dropping lock */
1574         fqp = first_qp(rcd, &rcd->rarr_queue);
1575         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1576
1577         dma_unmap_flow(flow);
1578
1579         hfi1_tid_rdma_reset_flow(flow);
1580         req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1581
1582         if (fqp == req->qp) {
1583                 __trigger_tid_waiter(fqp);
1584                 rvt_put_qp(fqp);
1585         } else {
1586                 tid_rdma_schedule_tid_wakeup(fqp);
1587         }
1588
1589         return 0;
1590 }
1591
1592 /*
1593  * This function is called to release all the tid entries for
1594  * a request.
1595  */
1596 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1597         __must_hold(&req->qp->s_lock)
1598 {
1599         /* Use memory barrier for proper ordering */
1600         while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1601                 if (hfi1_kern_exp_rcv_clear(req))
1602                         break;
1603         }
1604 }
1605
1606 /**
1607  * hfi1_kern_exp_rcv_free_flows - free previously allocated flow information
1608  * @req: the tid rdma request to be cleaned
1609  */
1610 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1611 {
1612         kfree(req->flows);
1613         req->flows = NULL;
1614 }
1615
1616 /**
1617  * __trdma_clean_swqe - clean up for large sized QPs
1618  * @qp: the queue patch
1619  * @wqe: the send wqe
1620  */
1621 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1622 {
1623         struct hfi1_swqe_priv *p = wqe->priv;
1624
1625         hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1626 }
1627
1628 /*
1629  * This can be called at QP create time or in the data path.
1630  */
1631 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1632                                          gfp_t gfp)
1633 {
1634         struct tid_rdma_flow *flows;
1635         int i;
1636
1637         if (likely(req->flows))
1638                 return 0;
1639         flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1640                              req->rcd->numa_id);
1641         if (!flows)
1642                 return -ENOMEM;
1643         /* mini init */
1644         for (i = 0; i < MAX_FLOWS; i++) {
1645                 flows[i].req = req;
1646                 flows[i].npagesets = 0;
1647                 flows[i].pagesets[0].mapped =  0;
1648                 flows[i].resync_npkts = 0;
1649         }
1650         req->flows = flows;
1651         return 0;
1652 }
1653
1654 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1655                                 struct tid_rdma_request *req)
1656 {
1657         struct hfi1_qp_priv *qpriv = qp->priv;
1658
1659         /*
1660          * Initialize various TID RDMA request variables.
1661          * These variables are "static", which is why they
1662          * can be pre-initialized here before the WRs has
1663          * even been submitted.
1664          * However, non-NULL values for these variables do not
1665          * imply that this WQE has been enabled for TID RDMA.
1666          * Drivers should check the WQE's opcode to determine
1667          * if a request is a TID RDMA one or not.
1668          */
1669         req->qp = qp;
1670         req->rcd = qpriv->rcd;
1671 }
1672
1673 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1674                             void *context, int vl, int mode, u64 data)
1675 {
1676         struct hfi1_devdata *dd = context;
1677
1678         return dd->verbs_dev.n_tidwait;
1679 }
1680
1681 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1682                                           u32 psn, u16 *fidx)
1683 {
1684         u16 head, tail;
1685         struct tid_rdma_flow *flow;
1686
1687         head = req->setup_head;
1688         tail = req->clear_tail;
1689         for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1690              tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1691                 flow = &req->flows[tail];
1692                 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1693                     cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1694                         if (fidx)
1695                                 *fidx = tail;
1696                         return flow;
1697                 }
1698         }
1699         return NULL;
1700 }
1701
1702 /* TID RDMA READ functions */
1703 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1704                                     struct ib_other_headers *ohdr, u32 *bth1,
1705                                     u32 *bth2, u32 *len)
1706 {
1707         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1708         struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1709         struct rvt_qp *qp = req->qp;
1710         struct hfi1_qp_priv *qpriv = qp->priv;
1711         struct hfi1_swqe_priv *wpriv = wqe->priv;
1712         struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1713         struct tid_rdma_params *remote;
1714         u32 req_len = 0;
1715         void *req_addr = NULL;
1716
1717         /* This is the IB psn used to send the request */
1718         *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1719         trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1720
1721         /* TID Entries for TID RDMA READ payload */
1722         req_addr = &flow->tid_entry[flow->tid_idx];
1723         req_len = sizeof(*flow->tid_entry) *
1724                         (flow->tidcnt - flow->tid_idx);
1725
1726         memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1727         wpriv->ss.sge.vaddr = req_addr;
1728         wpriv->ss.sge.sge_length = req_len;
1729         wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1730         /*
1731          * We can safely zero these out. Since the first SGE covers the
1732          * entire packet, nothing else should even look at the MR.
1733          */
1734         wpriv->ss.sge.mr = NULL;
1735         wpriv->ss.sge.m = 0;
1736         wpriv->ss.sge.n = 0;
1737
1738         wpriv->ss.sg_list = NULL;
1739         wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1740         wpriv->ss.num_sge = 1;
1741
1742         /* Construct the TID RDMA READ REQ packet header */
1743         rcu_read_lock();
1744         remote = rcu_dereference(qpriv->tid_rdma.remote);
1745
1746         KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1747         KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1748         rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1749                            req->cur_seg * req->seg_len + flow->sent);
1750         rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1751         rreq->reth.length = cpu_to_be32(*len);
1752         rreq->tid_flow_psn =
1753                 cpu_to_be32((flow->flow_state.generation <<
1754                              HFI1_KDETH_BTH_SEQ_SHIFT) |
1755                             ((flow->flow_state.spsn + flow->pkt) &
1756                              HFI1_KDETH_BTH_SEQ_MASK));
1757         rreq->tid_flow_qp =
1758                 cpu_to_be32(qpriv->tid_rdma.local.qp |
1759                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1760                              TID_RDMA_DESTQP_FLOW_SHIFT) |
1761                             qpriv->rcd->ctxt);
1762         rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1763         *bth1 &= ~RVT_QPN_MASK;
1764         *bth1 |= remote->qp;
1765         *bth2 |= IB_BTH_REQ_ACK;
1766         rcu_read_unlock();
1767
1768         /* We are done with this segment */
1769         flow->sent += *len;
1770         req->cur_seg++;
1771         qp->s_state = TID_OP(READ_REQ);
1772         req->ack_pending++;
1773         req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1774         qpriv->pending_tid_r_segs++;
1775         qp->s_num_rd_atomic++;
1776
1777         /* Set the TID RDMA READ request payload size */
1778         *len = req_len;
1779
1780         return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1781 }
1782
1783 /*
1784  * @len: contains the data length to read upon entry and the read request
1785  *       payload length upon exit.
1786  */
1787 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1788                                  struct ib_other_headers *ohdr, u32 *bth1,
1789                                  u32 *bth2, u32 *len)
1790         __must_hold(&qp->s_lock)
1791 {
1792         struct hfi1_qp_priv *qpriv = qp->priv;
1793         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1794         struct tid_rdma_flow *flow = NULL;
1795         u32 hdwords = 0;
1796         bool last;
1797         bool retry = true;
1798         u32 npkts = rvt_div_round_up_mtu(qp, *len);
1799
1800         trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1801                                           wqe->lpsn, req);
1802         /*
1803          * Check sync conditions. Make sure that there are no pending
1804          * segments before freeing the flow.
1805          */
1806 sync_check:
1807         if (req->state == TID_REQUEST_SYNC) {
1808                 if (qpriv->pending_tid_r_segs)
1809                         goto done;
1810
1811                 hfi1_kern_clear_hw_flow(req->rcd, qp);
1812                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1813                 req->state = TID_REQUEST_ACTIVE;
1814         }
1815
1816         /*
1817          * If the request for this segment is resent, the tid resources should
1818          * have been allocated before. In this case, req->flow_idx should
1819          * fall behind req->setup_head.
1820          */
1821         if (req->flow_idx == req->setup_head) {
1822                 retry = false;
1823                 if (req->state == TID_REQUEST_RESEND) {
1824                         /*
1825                          * This is the first new segment for a request whose
1826                          * earlier segments have been re-sent. We need to
1827                          * set up the sge pointer correctly.
1828                          */
1829                         restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1830                                     qp->pmtu);
1831                         req->isge = 0;
1832                         req->state = TID_REQUEST_ACTIVE;
1833                 }
1834
1835                 /*
1836                  * Check sync. The last PSN of each generation is reserved for
1837                  * RESYNC.
1838                  */
1839                 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1840                         req->state = TID_REQUEST_SYNC;
1841                         goto sync_check;
1842                 }
1843
1844                 /* Allocate the flow if not yet */
1845                 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1846                         goto done;
1847
1848                 /*
1849                  * The following call will advance req->setup_head after
1850                  * allocating the tid entries.
1851                  */
1852                 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1853                         req->state = TID_REQUEST_QUEUED;
1854
1855                         /*
1856                          * We don't have resources for this segment. The QP has
1857                          * already been queued.
1858                          */
1859                         goto done;
1860                 }
1861         }
1862
1863         /* req->flow_idx should only be one slot behind req->setup_head */
1864         flow = &req->flows[req->flow_idx];
1865         flow->pkt = 0;
1866         flow->tid_idx = 0;
1867         flow->sent = 0;
1868         if (!retry) {
1869                 /* Set the first and last IB PSN for the flow in use.*/
1870                 flow->flow_state.ib_spsn = req->s_next_psn;
1871                 flow->flow_state.ib_lpsn =
1872                         flow->flow_state.ib_spsn + flow->npkts - 1;
1873         }
1874
1875         /* Calculate the next segment start psn.*/
1876         req->s_next_psn += flow->npkts;
1877
1878         /* Build the packet header */
1879         hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1880 done:
1881         return hdwords;
1882 }
1883
1884 /*
1885  * Validate and accept the TID RDMA READ request parameters.
1886  * Return 0 if the request is accepted successfully;
1887  * Return 1 otherwise.
1888  */
1889 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1890                                      struct rvt_ack_entry *e,
1891                                      struct hfi1_packet *packet,
1892                                      struct ib_other_headers *ohdr,
1893                                      u32 bth0, u32 psn, u64 vaddr, u32 len)
1894 {
1895         struct hfi1_qp_priv *qpriv = qp->priv;
1896         struct tid_rdma_request *req;
1897         struct tid_rdma_flow *flow;
1898         u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1899
1900         req = ack_to_tid_req(e);
1901
1902         /* Validate the payload first */
1903         flow = &req->flows[req->setup_head];
1904
1905         /* payload length = packet length - (header length + ICRC length) */
1906         pktlen = packet->tlen - (packet->hlen + 4);
1907         if (pktlen > sizeof(flow->tid_entry))
1908                 return 1;
1909         memcpy(flow->tid_entry, packet->ebuf, pktlen);
1910         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1911
1912         /*
1913          * Walk the TID_ENTRY list to make sure we have enough space for a
1914          * complete segment. Also calculate the number of required packets.
1915          */
1916         flow->npkts = rvt_div_round_up_mtu(qp, len);
1917         for (i = 0; i < flow->tidcnt; i++) {
1918                 trace_hfi1_tid_entry_rcv_read_req(qp, i,
1919                                                   flow->tid_entry[i]);
1920                 tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1921                 if (!tlen)
1922                         return 1;
1923
1924                 /*
1925                  * For tid pair (tidctr == 3), the buffer size of the pair
1926                  * should be the sum of the buffer size described by each
1927                  * tid entry. However, only the first entry needs to be
1928                  * specified in the request (see WFR HAS Section 8.5.7.1).
1929                  */
1930                 tidlen += tlen;
1931         }
1932         if (tidlen * PAGE_SIZE < len)
1933                 return 1;
1934
1935         /* Empty the flow array */
1936         req->clear_tail = req->setup_head;
1937         flow->pkt = 0;
1938         flow->tid_idx = 0;
1939         flow->tid_offset = 0;
1940         flow->sent = 0;
1941         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1942         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1943                     TID_RDMA_DESTQP_FLOW_MASK;
1944         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1945         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1946         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1947         flow->length = len;
1948
1949         flow->flow_state.lpsn = flow->flow_state.spsn +
1950                 flow->npkts - 1;
1951         flow->flow_state.ib_spsn = psn;
1952         flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1953
1954         trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1955         /* Set the initial flow index to the current flow. */
1956         req->flow_idx = req->setup_head;
1957
1958         /* advance circular buffer head */
1959         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1960
1961         /*
1962          * Compute last PSN for request.
1963          */
1964         e->opcode = (bth0 >> 24) & 0xff;
1965         e->psn = psn;
1966         e->lpsn = psn + flow->npkts - 1;
1967         e->sent = 0;
1968
1969         req->n_flows = qpriv->tid_rdma.local.max_read;
1970         req->state = TID_REQUEST_ACTIVE;
1971         req->cur_seg = 0;
1972         req->comp_seg = 0;
1973         req->ack_seg = 0;
1974         req->isge = 0;
1975         req->seg_len = qpriv->tid_rdma.local.max_len;
1976         req->total_len = len;
1977         req->total_segs = 1;
1978         req->r_flow_psn = e->psn;
1979
1980         trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1981                                         req);
1982         return 0;
1983 }
1984
1985 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1986                               struct ib_other_headers *ohdr,
1987                               struct rvt_qp *qp, u32 psn, int diff)
1988 {
1989         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1990         struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1991         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1992         struct hfi1_qp_priv *qpriv = qp->priv;
1993         struct rvt_ack_entry *e;
1994         struct tid_rdma_request *req;
1995         unsigned long flags;
1996         u8 prev;
1997         bool old_req;
1998
1999         trace_hfi1_rsp_tid_rcv_error(qp, psn);
2000         trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
2001         if (diff > 0) {
2002                 /* sequence error */
2003                 if (!qp->r_nak_state) {
2004                         ibp->rvp.n_rc_seqnak++;
2005                         qp->r_nak_state = IB_NAK_PSN_ERROR;
2006                         qp->r_ack_psn = qp->r_psn;
2007                         rc_defered_ack(rcd, qp);
2008                 }
2009                 goto done;
2010         }
2011
2012         ibp->rvp.n_rc_dupreq++;
2013
2014         spin_lock_irqsave(&qp->s_lock, flags);
2015         e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2016         if (!e || (e->opcode != TID_OP(READ_REQ) &&
2017                    e->opcode != TID_OP(WRITE_REQ)))
2018                 goto unlock;
2019
2020         req = ack_to_tid_req(e);
2021         req->r_flow_psn = psn;
2022         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2023         if (e->opcode == TID_OP(READ_REQ)) {
2024                 struct ib_reth *reth;
2025                 u32 len;
2026                 u32 rkey;
2027                 u64 vaddr;
2028                 int ok;
2029                 u32 bth0;
2030
2031                 reth = &ohdr->u.tid_rdma.r_req.reth;
2032                 /*
2033                  * The requester always restarts from the start of the original
2034                  * request.
2035                  */
2036                 len = be32_to_cpu(reth->length);
2037                 if (psn != e->psn || len != req->total_len)
2038                         goto unlock;
2039
2040                 release_rdma_sge_mr(e);
2041
2042                 rkey = be32_to_cpu(reth->rkey);
2043                 vaddr = get_ib_reth_vaddr(reth);
2044
2045                 qp->r_len = len;
2046                 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2047                                  IB_ACCESS_REMOTE_READ);
2048                 if (unlikely(!ok))
2049                         goto unlock;
2050
2051                 /*
2052                  * If all the response packets for the current request have
2053                  * been sent out and this request is complete (old_request
2054                  * == false) and the TID flow may be unusable (the
2055                  * req->clear_tail is advanced). However, when an earlier
2056                  * request is received, this request will not be complete any
2057                  * more (qp->s_tail_ack_queue is moved back, see below).
2058                  * Consequently, we need to update the TID flow info every time
2059                  * a duplicate request is received.
2060                  */
2061                 bth0 = be32_to_cpu(ohdr->bth[0]);
2062                 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2063                                               vaddr, len))
2064                         goto unlock;
2065
2066                 /*
2067                  * True if the request is already scheduled (between
2068                  * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2069                  */
2070                 if (old_req)
2071                         goto unlock;
2072         } else {
2073                 struct flow_state *fstate;
2074                 bool schedule = false;
2075                 u8 i;
2076
2077                 if (req->state == TID_REQUEST_RESEND) {
2078                         req->state = TID_REQUEST_RESEND_ACTIVE;
2079                 } else if (req->state == TID_REQUEST_INIT_RESEND) {
2080                         req->state = TID_REQUEST_INIT;
2081                         schedule = true;
2082                 }
2083
2084                 /*
2085                  * True if the request is already scheduled (between
2086                  * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2087                  * Also, don't change requests, which are at the SYNC
2088                  * point and haven't generated any responses yet.
2089                  * There is nothing to retransmit for them yet.
2090                  */
2091                 if (old_req || req->state == TID_REQUEST_INIT ||
2092                     (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2093                         for (i = prev + 1; ; i++) {
2094                                 if (i > rvt_size_atomic(&dev->rdi))
2095                                         i = 0;
2096                                 if (i == qp->r_head_ack_queue)
2097                                         break;
2098                                 e = &qp->s_ack_queue[i];
2099                                 req = ack_to_tid_req(e);
2100                                 if (e->opcode == TID_OP(WRITE_REQ) &&
2101                                     req->state == TID_REQUEST_INIT)
2102                                         req->state = TID_REQUEST_INIT_RESEND;
2103                         }
2104                         /*
2105                          * If the state of the request has been changed,
2106                          * the first leg needs to get scheduled in order to
2107                          * pick up the change. Otherwise, normal response
2108                          * processing should take care of it.
2109                          */
2110                         if (!schedule)
2111                                 goto unlock;
2112                 }
2113
2114                 /*
2115                  * If there is no more allocated segment, just schedule the qp
2116                  * without changing any state.
2117                  */
2118                 if (req->clear_tail == req->setup_head)
2119                         goto schedule;
2120                 /*
2121                  * If this request has sent responses for segments, which have
2122                  * not received data yet (flow_idx != clear_tail), the flow_idx
2123                  * pointer needs to be adjusted so the same responses can be
2124                  * re-sent.
2125                  */
2126                 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2127                         fstate = &req->flows[req->clear_tail].flow_state;
2128                         qpriv->pending_tid_w_segs -=
2129                                 CIRC_CNT(req->flow_idx, req->clear_tail,
2130                                          MAX_FLOWS);
2131                         req->flow_idx =
2132                                 CIRC_ADD(req->clear_tail,
2133                                          delta_psn(psn, fstate->resp_ib_psn),
2134                                          MAX_FLOWS);
2135                         qpriv->pending_tid_w_segs +=
2136                                 delta_psn(psn, fstate->resp_ib_psn);
2137                         /*
2138                          * When flow_idx == setup_head, we've gotten a duplicate
2139                          * request for a segment, which has not been allocated
2140                          * yet. In that case, don't adjust this request.
2141                          * However, we still want to go through the loop below
2142                          * to adjust all subsequent requests.
2143                          */
2144                         if (CIRC_CNT(req->setup_head, req->flow_idx,
2145                                      MAX_FLOWS)) {
2146                                 req->cur_seg = delta_psn(psn, e->psn);
2147                                 req->state = TID_REQUEST_RESEND_ACTIVE;
2148                         }
2149                 }
2150
2151                 for (i = prev + 1; ; i++) {
2152                         /*
2153                          * Look at everything up to and including
2154                          * s_tail_ack_queue
2155                          */
2156                         if (i > rvt_size_atomic(&dev->rdi))
2157                                 i = 0;
2158                         if (i == qp->r_head_ack_queue)
2159                                 break;
2160                         e = &qp->s_ack_queue[i];
2161                         req = ack_to_tid_req(e);
2162                         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2163                                                    e->lpsn, req);
2164                         if (e->opcode != TID_OP(WRITE_REQ) ||
2165                             req->cur_seg == req->comp_seg ||
2166                             req->state == TID_REQUEST_INIT ||
2167                             req->state == TID_REQUEST_INIT_RESEND) {
2168                                 if (req->state == TID_REQUEST_INIT)
2169                                         req->state = TID_REQUEST_INIT_RESEND;
2170                                 continue;
2171                         }
2172                         qpriv->pending_tid_w_segs -=
2173                                 CIRC_CNT(req->flow_idx,
2174                                          req->clear_tail,
2175                                          MAX_FLOWS);
2176                         req->flow_idx = req->clear_tail;
2177                         req->state = TID_REQUEST_RESEND;
2178                         req->cur_seg = req->comp_seg;
2179                 }
2180                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2181         }
2182         /* Re-process old requests.*/
2183         if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2184                 qp->s_acked_ack_queue = prev;
2185         qp->s_tail_ack_queue = prev;
2186         /*
2187          * Since the qp->s_tail_ack_queue is modified, the
2188          * qp->s_ack_state must be changed to re-initialize
2189          * qp->s_ack_rdma_sge; Otherwise, we will end up in
2190          * wrong memory region.
2191          */
2192         qp->s_ack_state = OP(ACKNOWLEDGE);
2193 schedule:
2194         /*
2195          * It's possible to receive a retry psn that is earlier than an RNRNAK
2196          * psn. In this case, the rnrnak state should be cleared.
2197          */
2198         if (qpriv->rnr_nak_state) {
2199                 qp->s_nak_state = 0;
2200                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2201                 qp->r_psn = e->lpsn + 1;
2202                 hfi1_tid_write_alloc_resources(qp, true);
2203         }
2204
2205         qp->r_state = e->opcode;
2206         qp->r_nak_state = 0;
2207         qp->s_flags |= RVT_S_RESP_PENDING;
2208         hfi1_schedule_send(qp);
2209 unlock:
2210         spin_unlock_irqrestore(&qp->s_lock, flags);
2211 done:
2212         return 1;
2213 }
2214
2215 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2216 {
2217         /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2218
2219         /*
2220          * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2221          *    (see hfi1_rc_rcv())
2222          * 2. Put TID RDMA READ REQ into the response queue (s_ack_queue)
2223          *     - Setup struct tid_rdma_req with request info
2224          *     - Initialize struct tid_rdma_flow info;
2225          *     - Copy TID entries;
2226          * 3. Set the qp->s_ack_state.
2227          * 4. Set RVT_S_RESP_PENDING in s_flags.
2228          * 5. Kick the send engine (hfi1_schedule_send())
2229          */
2230         struct hfi1_ctxtdata *rcd = packet->rcd;
2231         struct rvt_qp *qp = packet->qp;
2232         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2233         struct ib_other_headers *ohdr = packet->ohdr;
2234         struct rvt_ack_entry *e;
2235         unsigned long flags;
2236         struct ib_reth *reth;
2237         struct hfi1_qp_priv *qpriv = qp->priv;
2238         u32 bth0, psn, len, rkey;
2239         bool fecn;
2240         u8 next;
2241         u64 vaddr;
2242         int diff;
2243         u8 nack_state = IB_NAK_INVALID_REQUEST;
2244
2245         bth0 = be32_to_cpu(ohdr->bth[0]);
2246         if (hfi1_ruc_check_hdr(ibp, packet))
2247                 return;
2248
2249         fecn = process_ecn(qp, packet);
2250         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2251         trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2252
2253         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2254                 rvt_comm_est(qp);
2255
2256         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2257                 goto nack_inv;
2258
2259         reth = &ohdr->u.tid_rdma.r_req.reth;
2260         vaddr = be64_to_cpu(reth->vaddr);
2261         len = be32_to_cpu(reth->length);
2262         /* The length needs to be in multiples of PAGE_SIZE */
2263         if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2264                 goto nack_inv;
2265
2266         diff = delta_psn(psn, qp->r_psn);
2267         if (unlikely(diff)) {
2268                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2269                 return;
2270         }
2271
2272         /* We've verified the request, insert it into the ack queue. */
2273         next = qp->r_head_ack_queue + 1;
2274         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2275                 next = 0;
2276         spin_lock_irqsave(&qp->s_lock, flags);
2277         if (unlikely(next == qp->s_tail_ack_queue)) {
2278                 if (!qp->s_ack_queue[next].sent) {
2279                         nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2280                         goto nack_inv_unlock;
2281                 }
2282                 update_ack_queue(qp, next);
2283         }
2284         e = &qp->s_ack_queue[qp->r_head_ack_queue];
2285         release_rdma_sge_mr(e);
2286
2287         rkey = be32_to_cpu(reth->rkey);
2288         qp->r_len = len;
2289
2290         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2291                                   rkey, IB_ACCESS_REMOTE_READ)))
2292                 goto nack_acc;
2293
2294         /* Accept the request parameters */
2295         if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2296                                       len))
2297                 goto nack_inv_unlock;
2298
2299         qp->r_state = e->opcode;
2300         qp->r_nak_state = 0;
2301         /*
2302          * We need to increment the MSN here instead of when we
2303          * finish sending the result since a duplicate request would
2304          * increment it more than once.
2305          */
2306         qp->r_msn++;
2307         qp->r_psn += e->lpsn - e->psn + 1;
2308
2309         qp->r_head_ack_queue = next;
2310
2311         /*
2312          * For all requests other than TID WRITE which are added to the ack
2313          * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2314          * do this because of interlocks between these and TID WRITE
2315          * requests. The same change has also been made in hfi1_rc_rcv().
2316          */
2317         qpriv->r_tid_alloc = qp->r_head_ack_queue;
2318
2319         /* Schedule the send tasklet. */
2320         qp->s_flags |= RVT_S_RESP_PENDING;
2321         if (fecn)
2322                 qp->s_flags |= RVT_S_ECN;
2323         hfi1_schedule_send(qp);
2324
2325         spin_unlock_irqrestore(&qp->s_lock, flags);
2326         return;
2327
2328 nack_inv_unlock:
2329         spin_unlock_irqrestore(&qp->s_lock, flags);
2330 nack_inv:
2331         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2332         qp->r_nak_state = nack_state;
2333         qp->r_ack_psn = qp->r_psn;
2334         /* Queue NAK for later */
2335         rc_defered_ack(rcd, qp);
2336         return;
2337 nack_acc:
2338         spin_unlock_irqrestore(&qp->s_lock, flags);
2339         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2340         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2341         qp->r_ack_psn = qp->r_psn;
2342 }
2343
2344 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2345                                   struct ib_other_headers *ohdr, u32 *bth0,
2346                                   u32 *bth1, u32 *bth2, u32 *len, bool *last)
2347 {
2348         struct hfi1_ack_priv *epriv = e->priv;
2349         struct tid_rdma_request *req = &epriv->tid_req;
2350         struct hfi1_qp_priv *qpriv = qp->priv;
2351         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2352         u32 tidentry = flow->tid_entry[flow->tid_idx];
2353         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2354         struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2355         u32 next_offset, om = KDETH_OM_LARGE;
2356         bool last_pkt;
2357         u32 hdwords = 0;
2358         struct tid_rdma_params *remote;
2359
2360         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2361         flow->sent += *len;
2362         next_offset = flow->tid_offset + *len;
2363         last_pkt = (flow->sent >= flow->length);
2364
2365         trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2366         trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2367
2368         rcu_read_lock();
2369         remote = rcu_dereference(qpriv->tid_rdma.remote);
2370         if (!remote) {
2371                 rcu_read_unlock();
2372                 goto done;
2373         }
2374         KDETH_RESET(resp->kdeth0, KVER, 0x1);
2375         KDETH_SET(resp->kdeth0, SH, !last_pkt);
2376         KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2377         KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2378         KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2379         KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2380         KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2381         KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2382         resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2383         rcu_read_unlock();
2384
2385         resp->aeth = rvt_compute_aeth(qp);
2386         resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2387                                                flow->pkt));
2388
2389         *bth0 = TID_OP(READ_RESP) << 24;
2390         *bth1 = flow->tid_qpn;
2391         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2392                           HFI1_KDETH_BTH_SEQ_MASK) |
2393                          (flow->flow_state.generation <<
2394                           HFI1_KDETH_BTH_SEQ_SHIFT));
2395         *last = last_pkt;
2396         if (last_pkt)
2397                 /* Advance to next flow */
2398                 req->clear_tail = (req->clear_tail + 1) &
2399                                   (MAX_FLOWS - 1);
2400
2401         if (next_offset >= tidlen) {
2402                 flow->tid_offset = 0;
2403                 flow->tid_idx++;
2404         } else {
2405                 flow->tid_offset = next_offset;
2406         }
2407
2408         hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2409
2410 done:
2411         return hdwords;
2412 }
2413
2414 static inline struct tid_rdma_request *
2415 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2416         __must_hold(&qp->s_lock)
2417 {
2418         struct rvt_swqe *wqe;
2419         struct tid_rdma_request *req = NULL;
2420         u32 i, end;
2421
2422         end = qp->s_cur + 1;
2423         if (end == qp->s_size)
2424                 end = 0;
2425         for (i = qp->s_acked; i != end;) {
2426                 wqe = rvt_get_swqe_ptr(qp, i);
2427                 if (cmp_psn(psn, wqe->psn) >= 0 &&
2428                     cmp_psn(psn, wqe->lpsn) <= 0) {
2429                         if (wqe->wr.opcode == opcode)
2430                                 req = wqe_to_tid_req(wqe);
2431                         break;
2432                 }
2433                 if (++i == qp->s_size)
2434                         i = 0;
2435         }
2436
2437         return req;
2438 }
2439
2440 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2441 {
2442         /* HANDLER FOR TID RDMA READ RESPONSE packet (Requester side) */
2443
2444         /*
2445          * 1. Find matching SWQE
2446          * 2. Check that the entire segment has been read.
2447          * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2448          * 4. Free the TID flow resources.
2449          * 5. Kick the send engine (hfi1_schedule_send())
2450          */
2451         struct ib_other_headers *ohdr = packet->ohdr;
2452         struct rvt_qp *qp = packet->qp;
2453         struct hfi1_qp_priv *priv = qp->priv;
2454         struct hfi1_ctxtdata *rcd = packet->rcd;
2455         struct tid_rdma_request *req;
2456         struct tid_rdma_flow *flow;
2457         u32 opcode, aeth;
2458         bool fecn;
2459         unsigned long flags;
2460         u32 kpsn, ipsn;
2461
2462         trace_hfi1_sender_rcv_tid_read_resp(qp);
2463         fecn = process_ecn(qp, packet);
2464         kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2465         aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2466         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2467
2468         spin_lock_irqsave(&qp->s_lock, flags);
2469         ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2470         req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2471         if (unlikely(!req))
2472                 goto ack_op_err;
2473
2474         flow = &req->flows[req->clear_tail];
2475         /* When header suppression is disabled */
2476         if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2477                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2478
2479                 if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2480                         goto ack_done;
2481                 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2482                 /*
2483                  * Copy the payload to destination buffer if this packet is
2484                  * delivered as an eager packet due to RSM rule and FECN.
2485                  * The RSM rule selects FECN bit in BTH and SH bit in
2486                  * KDETH header and therefore will not match the last
2487                  * packet of each segment that has SH bit cleared.
2488                  */
2489                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2490                         struct rvt_sge_state ss;
2491                         u32 len;
2492                         u32 tlen = packet->tlen;
2493                         u16 hdrsize = packet->hlen;
2494                         u8 pad = packet->pad;
2495                         u8 extra_bytes = pad + packet->extra_byte +
2496                                 (SIZE_OF_CRC << 2);
2497                         u32 pmtu = qp->pmtu;
2498
2499                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2500                                 goto ack_op_err;
2501                         len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2502                         if (unlikely(len < pmtu))
2503                                 goto ack_op_err;
2504                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2505                                      false);
2506                         /* Raise the sw sequence check flag for next packet */
2507                         priv->s_flags |= HFI1_R_TID_SW_PSN;
2508                 }
2509
2510                 goto ack_done;
2511         }
2512         flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2513         req->ack_pending--;
2514         priv->pending_tid_r_segs--;
2515         qp->s_num_rd_atomic--;
2516         if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2517             !qp->s_num_rd_atomic) {
2518                 qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2519                                  RVT_S_WAIT_ACK);
2520                 hfi1_schedule_send(qp);
2521         }
2522         if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2523                 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2524                 hfi1_schedule_send(qp);
2525         }
2526
2527         trace_hfi1_ack(qp, ipsn);
2528         trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2529                                          req->e.swqe->psn, req->e.swqe->lpsn,
2530                                          req);
2531         trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2532
2533         /* Release the tid resources */
2534         hfi1_kern_exp_rcv_clear(req);
2535
2536         if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2537                 goto ack_done;
2538
2539         /* If not done yet, build next read request */
2540         if (++req->comp_seg >= req->total_segs) {
2541                 priv->tid_r_comp++;
2542                 req->state = TID_REQUEST_COMPLETE;
2543         }
2544
2545         /*
2546          * Clear the hw flow under two conditions:
2547          * 1. This request is a sync point and it is complete;
2548          * 2. Current request is completed and there are no more requests.
2549          */
2550         if ((req->state == TID_REQUEST_SYNC &&
2551              req->comp_seg == req->cur_seg) ||
2552             priv->tid_r_comp == priv->tid_r_reqs) {
2553                 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2554                 priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2555                 if (req->state == TID_REQUEST_SYNC)
2556                         req->state = TID_REQUEST_ACTIVE;
2557         }
2558
2559         hfi1_schedule_send(qp);
2560         goto ack_done;
2561
2562 ack_op_err:
2563         /*
2564          * The test indicates that the send engine has finished its cleanup
2565          * after sending the request and it's now safe to put the QP into error
2566          * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2567          * == qp->s_head), it would be unsafe to complete the wqe pointed by
2568          * qp->s_acked here. Putting the qp into error state will safely flush
2569          * all remaining requests.
2570          */
2571         if (qp->s_last == qp->s_acked)
2572                 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2573
2574 ack_done:
2575         spin_unlock_irqrestore(&qp->s_lock, flags);
2576 }
2577
2578 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2579         __must_hold(&qp->s_lock)
2580 {
2581         u32 n = qp->s_acked;
2582         struct rvt_swqe *wqe;
2583         struct tid_rdma_request *req;
2584         struct hfi1_qp_priv *priv = qp->priv;
2585
2586         lockdep_assert_held(&qp->s_lock);
2587         /* Free any TID entries */
2588         while (n != qp->s_tail) {
2589                 wqe = rvt_get_swqe_ptr(qp, n);
2590                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2591                         req = wqe_to_tid_req(wqe);
2592                         hfi1_kern_exp_rcv_clear_all(req);
2593                 }
2594
2595                 if (++n == qp->s_size)
2596                         n = 0;
2597         }
2598         /* Free flow */
2599         hfi1_kern_clear_hw_flow(priv->rcd, qp);
2600 }
2601
2602 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2603 {
2604         struct rvt_qp *qp = packet->qp;
2605
2606         if (rcv_type >= RHF_RCV_TYPE_IB)
2607                 goto done;
2608
2609         spin_lock(&qp->s_lock);
2610
2611         /*
2612          * We've ran out of space in the eager buffer.
2613          * Eagerly received KDETH packets which require space in the
2614          * Eager buffer (packet that have payload) are TID RDMA WRITE
2615          * response packets. In this case, we have to re-transmit the
2616          * TID RDMA WRITE request.
2617          */
2618         if (rcv_type == RHF_RCV_TYPE_EAGER) {
2619                 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2620                 hfi1_schedule_send(qp);
2621         }
2622
2623         /* Since no payload is delivered, just drop the packet */
2624         spin_unlock(&qp->s_lock);
2625 done:
2626         return true;
2627 }
2628
2629 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2630                                       struct rvt_qp *qp, struct rvt_swqe *wqe)
2631 {
2632         struct tid_rdma_request *req;
2633         struct tid_rdma_flow *flow;
2634
2635         /* Start from the right segment */
2636         qp->r_flags |= RVT_R_RDMAR_SEQ;
2637         req = wqe_to_tid_req(wqe);
2638         flow = &req->flows[req->clear_tail];
2639         hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2640         if (list_empty(&qp->rspwait)) {
2641                 qp->r_flags |= RVT_R_RSP_SEND;
2642                 rvt_get_qp(qp);
2643                 list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2644         }
2645 }
2646
2647 /*
2648  * Handle the KDETH eflags for TID RDMA READ response.
2649  *
2650  * Return true if the last packet for a segment has been received and it is
2651  * time to process the response normally; otherwise, return true.
2652  *
2653  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2654  */
2655 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2656                                      struct hfi1_packet *packet, u8 rcv_type,
2657                                      u8 rte, u32 psn, u32 ibpsn)
2658         __must_hold(&packet->qp->r_lock) __must_hold(RCU)
2659 {
2660         struct hfi1_pportdata *ppd = rcd->ppd;
2661         struct hfi1_devdata *dd = ppd->dd;
2662         struct hfi1_ibport *ibp;
2663         struct rvt_swqe *wqe;
2664         struct tid_rdma_request *req;
2665         struct tid_rdma_flow *flow;
2666         u32 ack_psn;
2667         struct rvt_qp *qp = packet->qp;
2668         struct hfi1_qp_priv *priv = qp->priv;
2669         bool ret = true;
2670         int diff = 0;
2671         u32 fpsn;
2672
2673         lockdep_assert_held(&qp->r_lock);
2674         trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2675         trace_hfi1_sender_read_kdeth_eflags(qp);
2676         trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2677         spin_lock(&qp->s_lock);
2678         /* If the psn is out of valid range, drop the packet */
2679         if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2680             cmp_psn(ibpsn, qp->s_psn) > 0)
2681                 goto s_unlock;
2682
2683         /*
2684          * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2685          * requests and implicitly NAK RDMA read and atomic requests issued
2686          * before the NAK'ed request.
2687          */
2688         ack_psn = ibpsn - 1;
2689         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2690         ibp = to_iport(qp->ibqp.device, qp->port_num);
2691
2692         /* Complete WQEs that the PSN finishes. */
2693         while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2694                 /*
2695                  * If this request is a RDMA read or atomic, and the NACK is
2696                  * for a later operation, this NACK NAKs the RDMA read or
2697                  * atomic.
2698                  */
2699                 if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2700                     wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2701                     wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2702                     wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2703                         /* Retry this request. */
2704                         if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2705                                 qp->r_flags |= RVT_R_RDMAR_SEQ;
2706                                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2707                                         restart_tid_rdma_read_req(rcd, qp,
2708                                                                   wqe);
2709                                 } else {
2710                                         hfi1_restart_rc(qp, qp->s_last_psn + 1,
2711                                                         0);
2712                                         if (list_empty(&qp->rspwait)) {
2713                                                 qp->r_flags |= RVT_R_RSP_SEND;
2714                                                 rvt_get_qp(qp);
2715                                                 list_add_tail(/* wait */
2716                                                    &qp->rspwait,
2717                                                    &rcd->qp_wait_list);
2718                                         }
2719                                 }
2720                         }
2721                         /*
2722                          * No need to process the NAK since we are
2723                          * restarting an earlier request.
2724                          */
2725                         break;
2726                 }
2727
2728                 wqe = do_rc_completion(qp, wqe, ibp);
2729                 if (qp->s_acked == qp->s_tail)
2730                         goto s_unlock;
2731         }
2732
2733         if (qp->s_acked == qp->s_tail)
2734                 goto s_unlock;
2735
2736         /* Handle the eflags for the request */
2737         if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2738                 goto s_unlock;
2739
2740         req = wqe_to_tid_req(wqe);
2741         trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2742                                              wqe->lpsn, req);
2743         switch (rcv_type) {
2744         case RHF_RCV_TYPE_EXPECTED:
2745                 switch (rte) {
2746                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2747                         /*
2748                          * On the first occurrence of a Flow Sequence error,
2749                          * the flag TID_FLOW_SW_PSN is set.
2750                          *
2751                          * After that, the flow is *not* reprogrammed and the
2752                          * protocol falls back to SW PSN checking. This is done
2753                          * to prevent continuous Flow Sequence errors for any
2754                          * packets that could be still in the fabric.
2755                          */
2756                         flow = &req->flows[req->clear_tail];
2757                         trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2758                                                               req->clear_tail,
2759                                                               flow);
2760                         if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2761                                 diff = cmp_psn(psn,
2762                                                flow->flow_state.r_next_psn);
2763                                 if (diff > 0) {
2764                                         /* Drop the packet.*/
2765                                         goto s_unlock;
2766                                 } else if (diff < 0) {
2767                                         /*
2768                                          * If a response packet for a restarted
2769                                          * request has come back, reset the
2770                                          * restart flag.
2771                                          */
2772                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2773                                                 qp->r_flags &=
2774                                                         ~RVT_R_RDMAR_SEQ;
2775
2776                                         /* Drop the packet.*/
2777                                         goto s_unlock;
2778                                 }
2779
2780                                 /*
2781                                  * If SW PSN verification is successful and
2782                                  * this is the last packet in the segment, tell
2783                                  * the caller to process it as a normal packet.
2784                                  */
2785                                 fpsn = full_flow_psn(flow,
2786                                                      flow->flow_state.lpsn);
2787                                 if (cmp_psn(fpsn, psn) == 0) {
2788                                         ret = false;
2789                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2790                                                 qp->r_flags &=
2791                                                         ~RVT_R_RDMAR_SEQ;
2792                                 }
2793                                 flow->flow_state.r_next_psn =
2794                                         mask_psn(psn + 1);
2795                         } else {
2796                                 u32 last_psn;
2797
2798                                 last_psn = read_r_next_psn(dd, rcd->ctxt,
2799                                                            flow->idx);
2800                                 flow->flow_state.r_next_psn = last_psn;
2801                                 priv->s_flags |= HFI1_R_TID_SW_PSN;
2802                                 /*
2803                                  * If no request has been restarted yet,
2804                                  * restart the current one.
2805                                  */
2806                                 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2807                                         restart_tid_rdma_read_req(rcd, qp,
2808                                                                   wqe);
2809                         }
2810
2811                         break;
2812
2813                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2814                         /*
2815                          * Since the TID flow is able to ride through
2816                          * generation mismatch, drop this stale packet.
2817                          */
2818                         break;
2819
2820                 default:
2821                         break;
2822                 }
2823                 break;
2824
2825         case RHF_RCV_TYPE_ERROR:
2826                 switch (rte) {
2827                 case RHF_RTE_ERROR_OP_CODE_ERR:
2828                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2829                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2830                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2831                 case RHF_RTE_ERROR_CONTEXT_ERR:
2832                 case RHF_RTE_ERROR_KHDR_TID_ERR:
2833                 default:
2834                         break;
2835                 }
2836                 break;
2837         default:
2838                 break;
2839         }
2840 s_unlock:
2841         spin_unlock(&qp->s_lock);
2842         return ret;
2843 }
2844
2845 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2846                               struct hfi1_pportdata *ppd,
2847                               struct hfi1_packet *packet)
2848 {
2849         struct hfi1_ibport *ibp = &ppd->ibport_data;
2850         struct hfi1_devdata *dd = ppd->dd;
2851         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2852         u8 rcv_type = rhf_rcv_type(packet->rhf);
2853         u8 rte = rhf_rcv_type_err(packet->rhf);
2854         struct ib_header *hdr = packet->hdr;
2855         struct ib_other_headers *ohdr = NULL;
2856         int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2857         u16 lid  = be16_to_cpu(hdr->lrh[1]);
2858         u8 opcode;
2859         u32 qp_num, psn, ibpsn;
2860         struct rvt_qp *qp;
2861         struct hfi1_qp_priv *qpriv;
2862         unsigned long flags;
2863         bool ret = true;
2864         struct rvt_ack_entry *e;
2865         struct tid_rdma_request *req;
2866         struct tid_rdma_flow *flow;
2867         int diff = 0;
2868
2869         trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2870                                            packet->rhf);
2871         if (packet->rhf & RHF_ICRC_ERR)
2872                 return ret;
2873
2874         packet->ohdr = &hdr->u.oth;
2875         ohdr = packet->ohdr;
2876         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2877
2878         /* Get the destination QP number. */
2879         qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2880                 RVT_QPN_MASK;
2881         if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2882                 goto drop;
2883
2884         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2885         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2886
2887         rcu_read_lock();
2888         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2889         if (!qp)
2890                 goto rcu_unlock;
2891
2892         packet->qp = qp;
2893
2894         /* Check for valid receive state. */
2895         spin_lock_irqsave(&qp->r_lock, flags);
2896         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2897                 ibp->rvp.n_pkt_drops++;
2898                 goto r_unlock;
2899         }
2900
2901         if (packet->rhf & RHF_TID_ERR) {
2902                 /* For TIDERR and RC QPs preemptively schedule a NAK */
2903                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2904
2905                 /* Sanity check packet */
2906                 if (tlen < 24)
2907                         goto r_unlock;
2908
2909                 /*
2910                  * Check for GRH. We should never get packets with GRH in this
2911                  * path.
2912                  */
2913                 if (lnh == HFI1_LRH_GRH)
2914                         goto r_unlock;
2915
2916                 if (tid_rdma_tid_err(packet, rcv_type))
2917                         goto r_unlock;
2918         }
2919
2920         /* handle TID RDMA READ */
2921         if (opcode == TID_OP(READ_RESP)) {
2922                 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2923                 ibpsn = mask_psn(ibpsn);
2924                 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2925                                                ibpsn);
2926                 goto r_unlock;
2927         }
2928
2929         /*
2930          * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2931          * processed. These a completed sequentially so we can be sure that
2932          * the pointer will not change until the entire request has completed.
2933          */
2934         spin_lock(&qp->s_lock);
2935         qpriv = qp->priv;
2936         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2937             qpriv->r_tid_tail == qpriv->r_tid_head)
2938                 goto unlock;
2939         e = &qp->s_ack_queue[qpriv->r_tid_tail];
2940         if (e->opcode != TID_OP(WRITE_REQ))
2941                 goto unlock;
2942         req = ack_to_tid_req(e);
2943         if (req->comp_seg == req->cur_seg)
2944                 goto unlock;
2945         flow = &req->flows[req->clear_tail];
2946         trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2947         trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2948         trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2949         trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2950                                                e->lpsn, req);
2951         trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2952
2953         switch (rcv_type) {
2954         case RHF_RCV_TYPE_EXPECTED:
2955                 switch (rte) {
2956                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2957                         if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2958                                 qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2959                                 flow->flow_state.r_next_psn =
2960                                         read_r_next_psn(dd, rcd->ctxt,
2961                                                         flow->idx);
2962                                 qpriv->r_next_psn_kdeth =
2963                                         flow->flow_state.r_next_psn;
2964                                 goto nak_psn;
2965                         } else {
2966                                 /*
2967                                  * If the received PSN does not match the next
2968                                  * expected PSN, NAK the packet.
2969                                  * However, only do that if we know that the a
2970                                  * NAK has already been sent. Otherwise, this
2971                                  * mismatch could be due to packets that were
2972                                  * already in flight.
2973                                  */
2974                                 diff = cmp_psn(psn,
2975                                                flow->flow_state.r_next_psn);
2976                                 if (diff > 0)
2977                                         goto nak_psn;
2978                                 else if (diff < 0)
2979                                         break;
2980
2981                                 qpriv->s_nak_state = 0;
2982                                 /*
2983                                  * If SW PSN verification is successful and this
2984                                  * is the last packet in the segment, tell the
2985                                  * caller to process it as a normal packet.
2986                                  */
2987                                 if (psn == full_flow_psn(flow,
2988                                                          flow->flow_state.lpsn))
2989                                         ret = false;
2990                                 flow->flow_state.r_next_psn =
2991                                         mask_psn(psn + 1);
2992                                 qpriv->r_next_psn_kdeth =
2993                                         flow->flow_state.r_next_psn;
2994                         }
2995                         break;
2996
2997                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2998                         goto nak_psn;
2999
3000                 default:
3001                         break;
3002                 }
3003                 break;
3004
3005         case RHF_RCV_TYPE_ERROR:
3006                 switch (rte) {
3007                 case RHF_RTE_ERROR_OP_CODE_ERR:
3008                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3009                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3010                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
3011                 case RHF_RTE_ERROR_CONTEXT_ERR:
3012                 case RHF_RTE_ERROR_KHDR_TID_ERR:
3013                 default:
3014                         break;
3015                 }
3016                 break;
3017         default:
3018                 break;
3019         }
3020
3021 unlock:
3022         spin_unlock(&qp->s_lock);
3023 r_unlock:
3024         spin_unlock_irqrestore(&qp->r_lock, flags);
3025 rcu_unlock:
3026         rcu_read_unlock();
3027 drop:
3028         return ret;
3029 nak_psn:
3030         ibp->rvp.n_rc_seqnak++;
3031         if (!qpriv->s_nak_state) {
3032                 qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3033                 /* We are NAK'ing the next expected PSN */
3034                 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3035                 tid_rdma_trigger_ack(qp);
3036         }
3037         goto unlock;
3038 }
3039
3040 /*
3041  * "Rewind" the TID request information.
3042  * This means that we reset the state back to ACTIVE,
3043  * find the proper flow, set the flow index to that flow,
3044  * and reset the flow information.
3045  */
3046 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3047                                u32 *bth2)
3048 {
3049         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3050         struct tid_rdma_flow *flow;
3051         struct hfi1_qp_priv *qpriv = qp->priv;
3052         int diff, delta_pkts;
3053         u32 tididx = 0, i;
3054         u16 fidx;
3055
3056         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3057                 *bth2 = mask_psn(qp->s_psn);
3058                 flow = find_flow_ib(req, *bth2, &fidx);
3059                 if (!flow) {
3060                         trace_hfi1_msg_tid_restart_req(/* msg */
3061                            qp, "!!!!!! Could not find flow to restart: bth2 ",
3062                            (u64)*bth2);
3063                         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3064                                                        wqe->psn, wqe->lpsn,
3065                                                        req);
3066                         return;
3067                 }
3068         } else {
3069                 fidx = req->acked_tail;
3070                 flow = &req->flows[fidx];
3071                 *bth2 = mask_psn(req->r_ack_psn);
3072         }
3073
3074         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3075                 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3076         else
3077                 delta_pkts = delta_psn(*bth2,
3078                                        full_flow_psn(flow,
3079                                                      flow->flow_state.spsn));
3080
3081         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3082         diff = delta_pkts + flow->resync_npkts;
3083
3084         flow->sent = 0;
3085         flow->pkt = 0;
3086         flow->tid_idx = 0;
3087         flow->tid_offset = 0;
3088         if (diff) {
3089                 for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3090                         u32 tidentry = flow->tid_entry[tididx], tidlen,
3091                                 tidnpkts, npkts;
3092
3093                         flow->tid_offset = 0;
3094                         tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3095                         tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3096                         npkts = min_t(u32, diff, tidnpkts);
3097                         flow->pkt += npkts;
3098                         flow->sent += (npkts == tidnpkts ? tidlen :
3099                                        npkts * qp->pmtu);
3100                         flow->tid_offset += npkts * qp->pmtu;
3101                         diff -= npkts;
3102                         if (!diff)
3103                                 break;
3104                 }
3105         }
3106         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3107                 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3108                              flow->sent, 0);
3109                 /*
3110                  * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3111                  * during a RESYNC, the generation is incremented and the
3112                  * sequence is reset to 0. Since we've adjusted the npkts in the
3113                  * flow and the SGE has been sufficiently advanced, we have to
3114                  * adjust flow->pkt in order to calculate the correct PSN.
3115                  */
3116                 flow->pkt -= flow->resync_npkts;
3117         }
3118
3119         if (flow->tid_offset ==
3120             EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3121                 tididx++;
3122                 flow->tid_offset = 0;
3123         }
3124         flow->tid_idx = tididx;
3125         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3126                 /* Move flow_idx to correct index */
3127                 req->flow_idx = fidx;
3128         else
3129                 req->clear_tail = fidx;
3130
3131         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3132         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3133                                        wqe->lpsn, req);
3134         req->state = TID_REQUEST_ACTIVE;
3135         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3136                 /* Reset all the flows that we are going to resend */
3137                 fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3138                 i = qpriv->s_tid_tail;
3139                 do {
3140                         for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3141                               fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3142                                 req->flows[fidx].sent = 0;
3143                                 req->flows[fidx].pkt = 0;
3144                                 req->flows[fidx].tid_idx = 0;
3145                                 req->flows[fidx].tid_offset = 0;
3146                                 req->flows[fidx].resync_npkts = 0;
3147                         }
3148                         if (i == qpriv->s_tid_cur)
3149                                 break;
3150                         do {
3151                                 i = (++i == qp->s_size ? 0 : i);
3152                                 wqe = rvt_get_swqe_ptr(qp, i);
3153                         } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3154                         req = wqe_to_tid_req(wqe);
3155                         req->cur_seg = req->ack_seg;
3156                         fidx = req->acked_tail;
3157                         /* Pull req->clear_tail back */
3158                         req->clear_tail = fidx;
3159                 } while (1);
3160         }
3161 }
3162
3163 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3164 {
3165         int i, ret;
3166         struct hfi1_qp_priv *qpriv = qp->priv;
3167         struct tid_flow_state *fs;
3168
3169         if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3170                 return;
3171
3172         /*
3173          * First, clear the flow to help prevent any delayed packets from
3174          * being delivered.
3175          */
3176         fs = &qpriv->flow_state;
3177         if (fs->index != RXE_NUM_TID_FLOWS)
3178                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3179
3180         for (i = qp->s_acked; i != qp->s_head;) {
3181                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3182
3183                 if (++i == qp->s_size)
3184                         i = 0;
3185                 /* Free only locally allocated TID entries */
3186                 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3187                         continue;
3188                 do {
3189                         struct hfi1_swqe_priv *priv = wqe->priv;
3190
3191                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3192                 } while (!ret);
3193         }
3194         for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3195                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3196
3197                 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3198                         i = 0;
3199                 /* Free only locally allocated TID entries */
3200                 if (e->opcode != TID_OP(WRITE_REQ))
3201                         continue;
3202                 do {
3203                         struct hfi1_ack_priv *priv = e->priv;
3204
3205                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3206                 } while (!ret);
3207         }
3208 }
3209
3210 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3211 {
3212         struct rvt_swqe *prev;
3213         struct hfi1_qp_priv *priv = qp->priv;
3214         u32 s_prev;
3215         struct tid_rdma_request *req;
3216
3217         s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3218         prev = rvt_get_swqe_ptr(qp, s_prev);
3219
3220         switch (wqe->wr.opcode) {
3221         case IB_WR_SEND:
3222         case IB_WR_SEND_WITH_IMM:
3223         case IB_WR_SEND_WITH_INV:
3224         case IB_WR_ATOMIC_CMP_AND_SWP:
3225         case IB_WR_ATOMIC_FETCH_AND_ADD:
3226         case IB_WR_RDMA_WRITE:
3227         case IB_WR_RDMA_WRITE_WITH_IMM:
3228                 switch (prev->wr.opcode) {
3229                 case IB_WR_TID_RDMA_WRITE:
3230                         req = wqe_to_tid_req(prev);
3231                         if (req->ack_seg != req->total_segs)
3232                                 goto interlock;
3233                         break;
3234                 default:
3235                         break;
3236                 }
3237                 break;
3238         case IB_WR_RDMA_READ:
3239                 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3240                         break;
3241                 fallthrough;
3242         case IB_WR_TID_RDMA_READ:
3243                 switch (prev->wr.opcode) {
3244                 case IB_WR_RDMA_READ:
3245                         if (qp->s_acked != qp->s_cur)
3246                                 goto interlock;
3247                         break;
3248                 case IB_WR_TID_RDMA_WRITE:
3249                         req = wqe_to_tid_req(prev);
3250                         if (req->ack_seg != req->total_segs)
3251                                 goto interlock;
3252                         break;
3253                 default:
3254                         break;
3255                 }
3256                 break;
3257         default:
3258                 break;
3259         }
3260         return false;
3261
3262 interlock:
3263         priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3264         return true;
3265 }
3266
3267 /* Does @sge meet the alignment requirements for tid rdma? */
3268 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3269                                         struct rvt_sge *sge, int num_sge)
3270 {
3271         int i;
3272
3273         for (i = 0; i < num_sge; i++, sge++) {
3274                 trace_hfi1_sge_check_align(qp, i, sge);
3275                 if ((u64)sge->vaddr & ~PAGE_MASK ||
3276                     sge->sge_length & ~PAGE_MASK)
3277                         return false;
3278         }
3279         return true;
3280 }
3281
3282 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3283 {
3284         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3285         struct hfi1_swqe_priv *priv = wqe->priv;
3286         struct tid_rdma_params *remote;
3287         enum ib_wr_opcode new_opcode;
3288         bool do_tid_rdma = false;
3289         struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3290
3291         if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3292                                 ppd->lid)
3293                 return;
3294         if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3295                 return;
3296
3297         rcu_read_lock();
3298         remote = rcu_dereference(qpriv->tid_rdma.remote);
3299         /*
3300          * If TID RDMA is disabled by the negotiation, don't
3301          * use it.
3302          */
3303         if (!remote)
3304                 goto exit;
3305
3306         if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3307                 if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3308                                          wqe->wr.num_sge)) {
3309                         new_opcode = IB_WR_TID_RDMA_READ;
3310                         do_tid_rdma = true;
3311                 }
3312         } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3313                 /*
3314                  * TID RDMA is enabled for this RDMA WRITE request iff:
3315                  *   1. The remote address is page-aligned,
3316                  *   2. The length is larger than the minimum segment size,
3317                  *   3. The length is page-multiple.
3318                  */
3319                 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3320                     !(wqe->length & ~PAGE_MASK)) {
3321                         new_opcode = IB_WR_TID_RDMA_WRITE;
3322                         do_tid_rdma = true;
3323                 }
3324         }
3325
3326         if (do_tid_rdma) {
3327                 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3328                         goto exit;
3329                 wqe->wr.opcode = new_opcode;
3330                 priv->tid_req.seg_len =
3331                         min_t(u32, remote->max_len, wqe->length);
3332                 priv->tid_req.total_segs =
3333                         DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3334                 /* Compute the last PSN of the request */
3335                 wqe->lpsn = wqe->psn;
3336                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3337                         priv->tid_req.n_flows = remote->max_read;
3338                         qpriv->tid_r_reqs++;
3339                         wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3340                 } else {
3341                         wqe->lpsn += priv->tid_req.total_segs - 1;
3342                         atomic_inc(&qpriv->n_requests);
3343                 }
3344
3345                 priv->tid_req.cur_seg = 0;
3346                 priv->tid_req.comp_seg = 0;
3347                 priv->tid_req.ack_seg = 0;
3348                 priv->tid_req.state = TID_REQUEST_INACTIVE;
3349                 /*
3350                  * Reset acked_tail.
3351                  * TID RDMA READ does not have ACKs so it does not
3352                  * update the pointer. We have to reset it so TID RDMA
3353                  * WRITE does not get confused.
3354                  */
3355                 priv->tid_req.acked_tail = priv->tid_req.setup_head;
3356                 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3357                                                  wqe->psn, wqe->lpsn,
3358                                                  &priv->tid_req);
3359         }
3360 exit:
3361         rcu_read_unlock();
3362 }
3363
3364 /* TID RDMA WRITE functions */
3365
3366 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3367                                   struct ib_other_headers *ohdr,
3368                                   u32 *bth1, u32 *bth2, u32 *len)
3369 {
3370         struct hfi1_qp_priv *qpriv = qp->priv;
3371         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3372         struct tid_rdma_params *remote;
3373
3374         rcu_read_lock();
3375         remote = rcu_dereference(qpriv->tid_rdma.remote);
3376         /*
3377          * Set the number of flow to be used based on negotiated
3378          * parameters.
3379          */
3380         req->n_flows = remote->max_write;
3381         req->state = TID_REQUEST_ACTIVE;
3382
3383         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3384         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3385         ohdr->u.tid_rdma.w_req.reth.vaddr =
3386                 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3387         ohdr->u.tid_rdma.w_req.reth.rkey =
3388                 cpu_to_be32(wqe->rdma_wr.rkey);
3389         ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3390         ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3391         *bth1 &= ~RVT_QPN_MASK;
3392         *bth1 |= remote->qp;
3393         qp->s_state = TID_OP(WRITE_REQ);
3394         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3395         *bth2 |= IB_BTH_REQ_ACK;
3396         *len = 0;
3397
3398         rcu_read_unlock();
3399         return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3400 }
3401
3402 static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3403 {
3404         /*
3405          * Heuristic for computing the RNR timeout when waiting on the flow
3406          * queue. Rather than a computationaly expensive exact estimate of when
3407          * a flow will be available, we assume that if a QP is at position N in
3408          * the flow queue it has to wait approximately (N + 1) * (number of
3409          * segments between two sync points). The rationale for this is that
3410          * flows are released and recycled at each sync point.
3411          */
3412         return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3413 }
3414
3415 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3416                              struct tid_queue *queue)
3417 {
3418         return qpriv->tid_enqueue - queue->dequeue;
3419 }
3420
3421 /*
3422  * @qp: points to rvt_qp context.
3423  * @to_seg: desired RNR timeout in segments.
3424  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3425  */
3426 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3427 {
3428         struct hfi1_qp_priv *qpriv = qp->priv;
3429         u64 timeout;
3430         u32 bytes_per_us;
3431         u8 i;
3432
3433         bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3434         timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3435         /*
3436          * Find the next highest value in the RNR table to the required
3437          * timeout. This gives the responder some padding.
3438          */
3439         for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3440                 if (rvt_rnr_tbl_to_usec(i) >= timeout)
3441                         return i;
3442         return 0;
3443 }
3444
3445 /*
3446  * Central place for resource allocation at TID write responder,
3447  * is called from write_req and write_data interrupt handlers as
3448  * well as the send thread when a queued QP is scheduled for
3449  * resource allocation.
3450  *
3451  * Iterates over (a) segments of a request and then (b) queued requests
3452  * themselves to allocate resources for up to local->max_write
3453  * segments across multiple requests. Stop allocating when we
3454  * hit a sync point, resume allocating after data packets at
3455  * sync point have been received.
3456  *
3457  * Resource allocation and sending of responses is decoupled. The
3458  * request/segment which are being allocated and sent are as follows.
3459  * Resources are allocated for:
3460  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3461  * The send thread sends:
3462  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3463  */
3464 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3465 {
3466         struct tid_rdma_request *req;
3467         struct hfi1_qp_priv *qpriv = qp->priv;
3468         struct hfi1_ctxtdata *rcd = qpriv->rcd;
3469         struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3470         struct rvt_ack_entry *e;
3471         u32 npkts, to_seg;
3472         bool last;
3473         int ret = 0;
3474
3475         lockdep_assert_held(&qp->s_lock);
3476
3477         while (1) {
3478                 trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3479                 trace_hfi1_tid_write_rsp_alloc_res(qp);
3480                 /*
3481                  * Don't allocate more segments if a RNR NAK has already been
3482                  * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3483                  * be sent only when all allocated segments have been sent.
3484                  * However, if more segments are allocated before that, TID RDMA
3485                  * WRITE RESP packets will be sent out for these new segments
3486                  * before the RNR NAK packet. When the requester receives the
3487                  * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3488                  * which does not match qp->r_psn and will be dropped.
3489                  * Consequently, the requester will exhaust its retries and
3490                  * put the qp into error state.
3491                  */
3492                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3493                         break;
3494
3495                 /* No requests left to process */
3496                 if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3497                         /* If all data has been received, clear the flow */
3498                         if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3499                             !qpriv->alloc_w_segs) {
3500                                 hfi1_kern_clear_hw_flow(rcd, qp);
3501                                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3502                         }
3503                         break;
3504                 }
3505
3506                 e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3507                 if (e->opcode != TID_OP(WRITE_REQ))
3508                         goto next_req;
3509                 req = ack_to_tid_req(e);
3510                 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3511                                                    e->lpsn, req);
3512                 /* Finished allocating for all segments of this request */
3513                 if (req->alloc_seg >= req->total_segs)
3514                         goto next_req;
3515
3516                 /* Can allocate only a maximum of local->max_write for a QP */
3517                 if (qpriv->alloc_w_segs >= local->max_write)
3518                         break;
3519
3520                 /* Don't allocate at a sync point with data packets pending */
3521                 if (qpriv->sync_pt && qpriv->alloc_w_segs)
3522                         break;
3523
3524                 /* All data received at the sync point, continue */
3525                 if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3526                         hfi1_kern_clear_hw_flow(rcd, qp);
3527                         qpriv->sync_pt = false;
3528                         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3529                 }
3530
3531                 /* Allocate flow if we don't have one */
3532                 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3533                         ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3534                         if (ret) {
3535                                 to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3536                                         position_in_queue(qpriv,
3537                                                           &rcd->flow_queue);
3538                                 break;
3539                         }
3540                 }
3541
3542                 npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3543
3544                 /*
3545                  * We are at a sync point if we run out of KDETH PSN space.
3546                  * Last PSN of every generation is reserved for RESYNC.
3547                  */
3548                 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3549                         qpriv->sync_pt = true;
3550                         break;
3551                 }
3552
3553                 /*
3554                  * If overtaking req->acked_tail, send an RNR NAK. Because the
3555                  * QP is not queued in this case, and the issue can only be
3556                  * caused by a delay in scheduling the second leg which we
3557                  * cannot estimate, we use a rather arbitrary RNR timeout of
3558                  * (MAX_FLOWS / 2) segments
3559                  */
3560                 if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3561                                 MAX_FLOWS)) {
3562                         ret = -EAGAIN;
3563                         to_seg = MAX_FLOWS >> 1;
3564                         tid_rdma_trigger_ack(qp);
3565                         break;
3566                 }
3567
3568                 /* Try to allocate rcv array / TID entries */
3569                 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3570                 if (ret == -EAGAIN)
3571                         to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3572                 if (ret)
3573                         break;
3574
3575                 qpriv->alloc_w_segs++;
3576                 req->alloc_seg++;
3577                 continue;
3578 next_req:
3579                 /* Begin processing the next request */
3580                 if (++qpriv->r_tid_alloc >
3581                     rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3582                         qpriv->r_tid_alloc = 0;
3583         }
3584
3585         /*
3586          * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3587          * has failed (b) we are called from the rcv handler interrupt context
3588          * (c) an RNR NAK has not already been scheduled
3589          */
3590         if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3591                 goto send_rnr_nak;
3592
3593         return;
3594
3595 send_rnr_nak:
3596         lockdep_assert_held(&qp->r_lock);
3597
3598         /* Set r_nak_state to prevent unrelated events from generating NAK's */
3599         qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3600
3601         /* Pull back r_psn to the segment being RNR NAK'd */
3602         qp->r_psn = e->psn + req->alloc_seg;
3603         qp->r_ack_psn = qp->r_psn;
3604         /*
3605          * Pull back r_head_ack_queue to the ack entry following the request
3606          * being RNR NAK'd. This allows resources to be allocated to the request
3607          * if the queued QP is scheduled.
3608          */
3609         qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3610         if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3611                 qp->r_head_ack_queue = 0;
3612         qpriv->r_tid_head = qp->r_head_ack_queue;
3613         /*
3614          * These send side fields are used in make_rc_ack(). They are set in
3615          * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3616          * for consistency
3617          */
3618         qp->s_nak_state = qp->r_nak_state;
3619         qp->s_ack_psn = qp->r_ack_psn;
3620         /*
3621          * Clear the ACK PENDING flag to prevent unwanted ACK because we
3622          * have modified qp->s_ack_psn here.
3623          */
3624         qp->s_flags &= ~(RVT_S_ACK_PENDING);
3625
3626         trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3627         /*
3628          * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3629          * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3630          * used for this because qp->s_lock is dropped before calling
3631          * hfi1_send_rc_ack() leading to inconsistency between the receive
3632          * interrupt handlers and the send thread in make_rc_ack()
3633          */
3634         qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3635
3636         /*
3637          * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3638          * interrupt handlers but will be sent from the send engine behind any
3639          * previous responses that may have been scheduled
3640          */
3641         rc_defered_ack(rcd, qp);
3642 }
3643
3644 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3645 {
3646         /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3647
3648         /*
3649          * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3650          *    (see hfi1_rc_rcv())
3651          *     - Don't allow 0-length requests.
3652          * 2. Put TID RDMA WRITE REQ into the response queue (s_ack_queue)
3653          *     - Setup struct tid_rdma_req with request info
3654          *     - Prepare struct tid_rdma_flow array?
3655          * 3. Set the qp->s_ack_state as state diagram in design doc.
3656          * 4. Set RVT_S_RESP_PENDING in s_flags.
3657          * 5. Kick the send engine (hfi1_schedule_send())
3658          */
3659         struct hfi1_ctxtdata *rcd = packet->rcd;
3660         struct rvt_qp *qp = packet->qp;
3661         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3662         struct ib_other_headers *ohdr = packet->ohdr;
3663         struct rvt_ack_entry *e;
3664         unsigned long flags;
3665         struct ib_reth *reth;
3666         struct hfi1_qp_priv *qpriv = qp->priv;
3667         struct tid_rdma_request *req;
3668         u32 bth0, psn, len, rkey, num_segs;
3669         bool fecn;
3670         u8 next;
3671         u64 vaddr;
3672         int diff;
3673
3674         bth0 = be32_to_cpu(ohdr->bth[0]);
3675         if (hfi1_ruc_check_hdr(ibp, packet))
3676                 return;
3677
3678         fecn = process_ecn(qp, packet);
3679         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3680         trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3681
3682         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3683                 rvt_comm_est(qp);
3684
3685         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3686                 goto nack_inv;
3687
3688         reth = &ohdr->u.tid_rdma.w_req.reth;
3689         vaddr = be64_to_cpu(reth->vaddr);
3690         len = be32_to_cpu(reth->length);
3691
3692         num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3693         diff = delta_psn(psn, qp->r_psn);
3694         if (unlikely(diff)) {
3695                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3696                 return;
3697         }
3698
3699         /*
3700          * The resent request which was previously RNR NAK'd is inserted at the
3701          * location of the original request, which is one entry behind
3702          * r_head_ack_queue
3703          */
3704         if (qpriv->rnr_nak_state)
3705                 qp->r_head_ack_queue = qp->r_head_ack_queue ?
3706                         qp->r_head_ack_queue - 1 :
3707                         rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3708
3709         /* We've verified the request, insert it into the ack queue. */
3710         next = qp->r_head_ack_queue + 1;
3711         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3712                 next = 0;
3713         spin_lock_irqsave(&qp->s_lock, flags);
3714         if (unlikely(next == qp->s_acked_ack_queue)) {
3715                 if (!qp->s_ack_queue[next].sent)
3716                         goto nack_inv_unlock;
3717                 update_ack_queue(qp, next);
3718         }
3719         e = &qp->s_ack_queue[qp->r_head_ack_queue];
3720         req = ack_to_tid_req(e);
3721
3722         /* Bring previously RNR NAK'd request back to life */
3723         if (qpriv->rnr_nak_state) {
3724                 qp->r_nak_state = 0;
3725                 qp->s_nak_state = 0;
3726                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3727                 qp->r_psn = e->lpsn + 1;
3728                 req->state = TID_REQUEST_INIT;
3729                 goto update_head;
3730         }
3731
3732         release_rdma_sge_mr(e);
3733
3734         /* The length needs to be in multiples of PAGE_SIZE */
3735         if (!len || len & ~PAGE_MASK)
3736                 goto nack_inv_unlock;
3737
3738         rkey = be32_to_cpu(reth->rkey);
3739         qp->r_len = len;
3740
3741         if (e->opcode == TID_OP(WRITE_REQ) &&
3742             (req->setup_head != req->clear_tail ||
3743              req->clear_tail != req->acked_tail))
3744                 goto nack_inv_unlock;
3745
3746         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3747                                   rkey, IB_ACCESS_REMOTE_WRITE)))
3748                 goto nack_acc;
3749
3750         qp->r_psn += num_segs - 1;
3751
3752         e->opcode = (bth0 >> 24) & 0xff;
3753         e->psn = psn;
3754         e->lpsn = qp->r_psn;
3755         e->sent = 0;
3756
3757         req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3758         req->state = TID_REQUEST_INIT;
3759         req->cur_seg = 0;
3760         req->comp_seg = 0;
3761         req->ack_seg = 0;
3762         req->alloc_seg = 0;
3763         req->isge = 0;
3764         req->seg_len = qpriv->tid_rdma.local.max_len;
3765         req->total_len = len;
3766         req->total_segs = num_segs;
3767         req->r_flow_psn = e->psn;
3768         req->ss.sge = e->rdma_sge;
3769         req->ss.num_sge = 1;
3770
3771         req->flow_idx = req->setup_head;
3772         req->clear_tail = req->setup_head;
3773         req->acked_tail = req->setup_head;
3774
3775         qp->r_state = e->opcode;
3776         qp->r_nak_state = 0;
3777         /*
3778          * We need to increment the MSN here instead of when we
3779          * finish sending the result since a duplicate request would
3780          * increment it more than once.
3781          */
3782         qp->r_msn++;
3783         qp->r_psn++;
3784
3785         trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3786                                          req);
3787
3788         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3789                 qpriv->r_tid_tail = qp->r_head_ack_queue;
3790         } else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3791                 struct tid_rdma_request *ptr;
3792
3793                 e = &qp->s_ack_queue[qpriv->r_tid_tail];
3794                 ptr = ack_to_tid_req(e);
3795
3796                 if (e->opcode != TID_OP(WRITE_REQ) ||
3797                     ptr->comp_seg == ptr->total_segs) {
3798                         if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3799                                 qpriv->r_tid_ack = qp->r_head_ack_queue;
3800                         qpriv->r_tid_tail = qp->r_head_ack_queue;
3801                 }
3802         }
3803 update_head:
3804         qp->r_head_ack_queue = next;
3805         qpriv->r_tid_head = qp->r_head_ack_queue;
3806
3807         hfi1_tid_write_alloc_resources(qp, true);
3808         trace_hfi1_tid_write_rsp_rcv_req(qp);
3809
3810         /* Schedule the send tasklet. */
3811         qp->s_flags |= RVT_S_RESP_PENDING;
3812         if (fecn)
3813                 qp->s_flags |= RVT_S_ECN;
3814         hfi1_schedule_send(qp);
3815
3816         spin_unlock_irqrestore(&qp->s_lock, flags);
3817         return;
3818
3819 nack_inv_unlock:
3820         spin_unlock_irqrestore(&qp->s_lock, flags);
3821 nack_inv:
3822         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3823         qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3824         qp->r_ack_psn = qp->r_psn;
3825         /* Queue NAK for later */
3826         rc_defered_ack(rcd, qp);
3827         return;
3828 nack_acc:
3829         spin_unlock_irqrestore(&qp->s_lock, flags);
3830         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3831         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3832         qp->r_ack_psn = qp->r_psn;
3833 }
3834
3835 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3836                                    struct ib_other_headers *ohdr, u32 *bth1,
3837                                    u32 bth2, u32 *len,
3838                                    struct rvt_sge_state **ss)
3839 {
3840         struct hfi1_ack_priv *epriv = e->priv;
3841         struct tid_rdma_request *req = &epriv->tid_req;
3842         struct hfi1_qp_priv *qpriv = qp->priv;
3843         struct tid_rdma_flow *flow = NULL;
3844         u32 resp_len = 0, hdwords = 0;
3845         void *resp_addr = NULL;
3846         struct tid_rdma_params *remote;
3847
3848         trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3849                                             req);
3850         trace_hfi1_tid_write_rsp_build_resp(qp);
3851         trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3852         flow = &req->flows[req->flow_idx];
3853         switch (req->state) {
3854         default:
3855                 /*
3856                  * Try to allocate resources here in case QP was queued and was
3857                  * later scheduled when resources became available
3858                  */
3859                 hfi1_tid_write_alloc_resources(qp, false);
3860
3861                 /* We've already sent everything which is ready */
3862                 if (req->cur_seg >= req->alloc_seg)
3863                         goto done;
3864
3865                 /*
3866                  * Resources can be assigned but responses cannot be sent in
3867                  * rnr_nak state, till the resent request is received
3868                  */
3869                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3870                         goto done;
3871
3872                 req->state = TID_REQUEST_ACTIVE;
3873                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3874                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3875                 hfi1_add_tid_reap_timer(qp);
3876                 break;
3877
3878         case TID_REQUEST_RESEND_ACTIVE:
3879         case TID_REQUEST_RESEND:
3880                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3881                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3882                 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3883                         req->state = TID_REQUEST_ACTIVE;
3884
3885                 hfi1_mod_tid_reap_timer(qp);
3886                 break;
3887         }
3888         flow->flow_state.resp_ib_psn = bth2;
3889         resp_addr = (void *)flow->tid_entry;
3890         resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3891         req->cur_seg++;
3892
3893         memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3894         epriv->ss.sge.vaddr = resp_addr;
3895         epriv->ss.sge.sge_length = resp_len;
3896         epriv->ss.sge.length = epriv->ss.sge.sge_length;
3897         /*
3898          * We can safely zero these out. Since the first SGE covers the
3899          * entire packet, nothing else should even look at the MR.
3900          */
3901         epriv->ss.sge.mr = NULL;
3902         epriv->ss.sge.m = 0;
3903         epriv->ss.sge.n = 0;
3904
3905         epriv->ss.sg_list = NULL;
3906         epriv->ss.total_len = epriv->ss.sge.sge_length;
3907         epriv->ss.num_sge = 1;
3908
3909         *ss = &epriv->ss;
3910         *len = epriv->ss.total_len;
3911
3912         /* Construct the TID RDMA WRITE RESP packet header */
3913         rcu_read_lock();
3914         remote = rcu_dereference(qpriv->tid_rdma.remote);
3915
3916         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3917         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3918         ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3919         ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3920                 cpu_to_be32((flow->flow_state.generation <<
3921                              HFI1_KDETH_BTH_SEQ_SHIFT) |
3922                             (flow->flow_state.spsn &
3923                              HFI1_KDETH_BTH_SEQ_MASK));
3924         ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3925                 cpu_to_be32(qpriv->tid_rdma.local.qp |
3926                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3927                              TID_RDMA_DESTQP_FLOW_SHIFT) |
3928                             qpriv->rcd->ctxt);
3929         ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3930         *bth1 = remote->qp;
3931         rcu_read_unlock();
3932         hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3933         qpriv->pending_tid_w_segs++;
3934 done:
3935         return hdwords;
3936 }
3937
3938 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3939 {
3940         struct hfi1_qp_priv *qpriv = qp->priv;
3941
3942         lockdep_assert_held(&qp->s_lock);
3943         if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3944                 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3945                 qpriv->s_tid_timer.expires = jiffies +
3946                         qpriv->tid_timer_timeout_jiffies;
3947                 add_timer(&qpriv->s_tid_timer);
3948         }
3949 }
3950
3951 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3952 {
3953         struct hfi1_qp_priv *qpriv = qp->priv;
3954
3955         lockdep_assert_held(&qp->s_lock);
3956         qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3957         mod_timer(&qpriv->s_tid_timer, jiffies +
3958                   qpriv->tid_timer_timeout_jiffies);
3959 }
3960
3961 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3962 {
3963         struct hfi1_qp_priv *qpriv = qp->priv;
3964         int rval = 0;
3965
3966         lockdep_assert_held(&qp->s_lock);
3967         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3968                 rval = del_timer(&qpriv->s_tid_timer);
3969                 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3970         }
3971         return rval;
3972 }
3973
3974 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3975 {
3976         struct hfi1_qp_priv *qpriv = qp->priv;
3977
3978         del_timer_sync(&qpriv->s_tid_timer);
3979         qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3980 }
3981
3982 static void hfi1_tid_timeout(struct timer_list *t)
3983 {
3984         struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3985         struct rvt_qp *qp = qpriv->owner;
3986         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3987         unsigned long flags;
3988         u32 i;
3989
3990         spin_lock_irqsave(&qp->r_lock, flags);
3991         spin_lock(&qp->s_lock);
3992         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3993                 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3994                             qp->ibqp.qp_num, __func__, __LINE__);
3995                 trace_hfi1_msg_tid_timeout(/* msg */
3996                         qp, "resource timeout = ",
3997                         (u64)qpriv->tid_timer_timeout_jiffies);
3998                 hfi1_stop_tid_reap_timer(qp);
3999                 /*
4000                  * Go though the entire ack queue and clear any outstanding
4001                  * HW flow and RcvArray resources.
4002                  */
4003                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
4004                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
4005                         struct tid_rdma_request *req =
4006                                 ack_to_tid_req(&qp->s_ack_queue[i]);
4007
4008                         hfi1_kern_exp_rcv_clear_all(req);
4009                 }
4010                 spin_unlock(&qp->s_lock);
4011                 if (qp->ibqp.event_handler) {
4012                         struct ib_event ev;
4013
4014                         ev.device = qp->ibqp.device;
4015                         ev.element.qp = &qp->ibqp;
4016                         ev.event = IB_EVENT_QP_FATAL;
4017                         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4018                 }
4019                 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4020                 goto unlock_r_lock;
4021         }
4022         spin_unlock(&qp->s_lock);
4023 unlock_r_lock:
4024         spin_unlock_irqrestore(&qp->r_lock, flags);
4025 }
4026
4027 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4028 {
4029         /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requester side) */
4030
4031         /*
4032          * 1. Find matching SWQE
4033          * 2. Check that TIDENTRY array has enough space for a complete
4034          *    segment. If not, put QP in error state.
4035          * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4036          * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4037          * 5. Set qp->s_state
4038          * 6. Kick the send engine (hfi1_schedule_send())
4039          */
4040         struct ib_other_headers *ohdr = packet->ohdr;
4041         struct rvt_qp *qp = packet->qp;
4042         struct hfi1_qp_priv *qpriv = qp->priv;
4043         struct hfi1_ctxtdata *rcd = packet->rcd;
4044         struct rvt_swqe *wqe;
4045         struct tid_rdma_request *req;
4046         struct tid_rdma_flow *flow;
4047         enum ib_wc_status status;
4048         u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4049         bool fecn;
4050         unsigned long flags;
4051
4052         fecn = process_ecn(qp, packet);
4053         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4054         aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4055         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4056
4057         spin_lock_irqsave(&qp->s_lock, flags);
4058
4059         /* Ignore invalid responses */
4060         if (cmp_psn(psn, qp->s_next_psn) >= 0)
4061                 goto ack_done;
4062
4063         /* Ignore duplicate responses. */
4064         if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4065                 goto ack_done;
4066
4067         if (unlikely(qp->s_acked == qp->s_tail))
4068                 goto ack_done;
4069
4070         /*
4071          * If we are waiting for a particular packet sequence number
4072          * due to a request being resent, check for it. Otherwise,
4073          * ensure that we haven't missed anything.
4074          */
4075         if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4076                 if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4077                         goto ack_done;
4078                 qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4079         }
4080
4081         wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4082         if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4083                 goto ack_op_err;
4084
4085         req = wqe_to_tid_req(wqe);
4086         /*
4087          * If we've lost ACKs and our acked_tail pointer is too far
4088          * behind, don't overwrite segments. Just drop the packet and
4089          * let the reliability protocol take care of it.
4090          */
4091         if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4092                 goto ack_done;
4093
4094         /*
4095          * The call to do_rc_ack() should be last in the chain of
4096          * packet checks because it will end up updating the QP state.
4097          * Therefore, anything that would prevent the packet from
4098          * being accepted as a successful response should be prior
4099          * to it.
4100          */
4101         if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4102                 goto ack_done;
4103
4104         trace_hfi1_ack(qp, psn);
4105
4106         flow = &req->flows[req->setup_head];
4107         flow->pkt = 0;
4108         flow->tid_idx = 0;
4109         flow->tid_offset = 0;
4110         flow->sent = 0;
4111         flow->resync_npkts = 0;
4112         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4113         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4114                 TID_RDMA_DESTQP_FLOW_MASK;
4115         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4116         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4117         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4118         flow->flow_state.resp_ib_psn = psn;
4119         flow->length = min_t(u32, req->seg_len,
4120                              (wqe->length - (req->comp_seg * req->seg_len)));
4121
4122         flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4123         flow->flow_state.lpsn = flow->flow_state.spsn +
4124                 flow->npkts - 1;
4125         /* payload length = packet length - (header length + ICRC length) */
4126         pktlen = packet->tlen - (packet->hlen + 4);
4127         if (pktlen > sizeof(flow->tid_entry)) {
4128                 status = IB_WC_LOC_LEN_ERR;
4129                 goto ack_err;
4130         }
4131         memcpy(flow->tid_entry, packet->ebuf, pktlen);
4132         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4133         trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4134
4135         req->comp_seg++;
4136         trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4137         /*
4138          * Walk the TID_ENTRY list to make sure we have enough space for a
4139          * complete segment.
4140          */
4141         for (i = 0; i < flow->tidcnt; i++) {
4142                 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4143                         qp, i, flow->tid_entry[i]);
4144                 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4145                         status = IB_WC_LOC_LEN_ERR;
4146                         goto ack_err;
4147                 }
4148                 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4149         }
4150         if (tidlen * PAGE_SIZE < flow->length) {
4151                 status = IB_WC_LOC_LEN_ERR;
4152                 goto ack_err;
4153         }
4154
4155         trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4156                                           wqe->lpsn, req);
4157         /*
4158          * If this is the first response for this request, set the initial
4159          * flow index to the current flow.
4160          */
4161         if (!cmp_psn(psn, wqe->psn)) {
4162                 req->r_last_acked = mask_psn(wqe->psn - 1);
4163                 /* Set acked flow index to head index */
4164                 req->acked_tail = req->setup_head;
4165         }
4166
4167         /* advance circular buffer head */
4168         req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4169         req->state = TID_REQUEST_ACTIVE;
4170
4171         /*
4172          * If all responses for this TID RDMA WRITE request have been received
4173          * advance the pointer to the next one.
4174          * Since TID RDMA requests could be mixed in with regular IB requests,
4175          * they might not appear sequentially in the queue. Therefore, the
4176          * next request needs to be "found".
4177          */
4178         if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4179             req->comp_seg == req->total_segs) {
4180                 for (i = qpriv->s_tid_cur + 1; ; i++) {
4181                         if (i == qp->s_size)
4182                                 i = 0;
4183                         wqe = rvt_get_swqe_ptr(qp, i);
4184                         if (i == qpriv->s_tid_head)
4185                                 break;
4186                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4187                                 break;
4188                 }
4189                 qpriv->s_tid_cur = i;
4190         }
4191         qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4192         hfi1_schedule_tid_send(qp);
4193         goto ack_done;
4194
4195 ack_op_err:
4196         status = IB_WC_LOC_QP_OP_ERR;
4197 ack_err:
4198         rvt_error_qp(qp, status);
4199 ack_done:
4200         if (fecn)
4201                 qp->s_flags |= RVT_S_ECN;
4202         spin_unlock_irqrestore(&qp->s_lock, flags);
4203 }
4204
4205 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4206                                 struct ib_other_headers *ohdr,
4207                                 u32 *bth1, u32 *bth2, u32 *len)
4208 {
4209         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4210         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4211         struct tid_rdma_params *remote;
4212         struct rvt_qp *qp = req->qp;
4213         struct hfi1_qp_priv *qpriv = qp->priv;
4214         u32 tidentry = flow->tid_entry[flow->tid_idx];
4215         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4216         struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4217         u32 next_offset, om = KDETH_OM_LARGE;
4218         bool last_pkt;
4219
4220         if (!tidlen) {
4221                 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4222                 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4223         }
4224
4225         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4226         flow->sent += *len;
4227         next_offset = flow->tid_offset + *len;
4228         last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4229                     next_offset >= tidlen) || (flow->sent >= flow->length);
4230         trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4231         trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4232
4233         rcu_read_lock();
4234         remote = rcu_dereference(qpriv->tid_rdma.remote);
4235         KDETH_RESET(wd->kdeth0, KVER, 0x1);
4236         KDETH_SET(wd->kdeth0, SH, !last_pkt);
4237         KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4238         KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4239         KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4240         KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4241         KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4242         KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4243         wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4244         rcu_read_unlock();
4245
4246         *bth1 = flow->tid_qpn;
4247         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4248                          HFI1_KDETH_BTH_SEQ_MASK) |
4249                          (flow->flow_state.generation <<
4250                           HFI1_KDETH_BTH_SEQ_SHIFT));
4251         if (last_pkt) {
4252                 /* PSNs are zero-based, so +1 to count number of packets */
4253                 if (flow->flow_state.lpsn + 1 +
4254                     rvt_div_round_up_mtu(qp, req->seg_len) >
4255                     MAX_TID_FLOW_PSN)
4256                         req->state = TID_REQUEST_SYNC;
4257                 *bth2 |= IB_BTH_REQ_ACK;
4258         }
4259
4260         if (next_offset >= tidlen) {
4261                 flow->tid_offset = 0;
4262                 flow->tid_idx++;
4263         } else {
4264                 flow->tid_offset = next_offset;
4265         }
4266         return last_pkt;
4267 }
4268
4269 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4270 {
4271         struct rvt_qp *qp = packet->qp;
4272         struct hfi1_qp_priv *priv = qp->priv;
4273         struct hfi1_ctxtdata *rcd = priv->rcd;
4274         struct ib_other_headers *ohdr = packet->ohdr;
4275         struct rvt_ack_entry *e;
4276         struct tid_rdma_request *req;
4277         struct tid_rdma_flow *flow;
4278         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4279         unsigned long flags;
4280         u32 psn, next;
4281         u8 opcode;
4282         bool fecn;
4283
4284         fecn = process_ecn(qp, packet);
4285         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4286         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4287
4288         /*
4289          * All error handling should be done by now. If we are here, the packet
4290          * is either good or been accepted by the error handler.
4291          */
4292         spin_lock_irqsave(&qp->s_lock, flags);
4293         e = &qp->s_ack_queue[priv->r_tid_tail];
4294         req = ack_to_tid_req(e);
4295         flow = &req->flows[req->clear_tail];
4296         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4297                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4298
4299                 if (cmp_psn(psn, flow->flow_state.r_next_psn))
4300                         goto send_nak;
4301
4302                 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4303                 /*
4304                  * Copy the payload to destination buffer if this packet is
4305                  * delivered as an eager packet due to RSM rule and FECN.
4306                  * The RSM rule selects FECN bit in BTH and SH bit in
4307                  * KDETH header and therefore will not match the last
4308                  * packet of each segment that has SH bit cleared.
4309                  */
4310                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4311                         struct rvt_sge_state ss;
4312                         u32 len;
4313                         u32 tlen = packet->tlen;
4314                         u16 hdrsize = packet->hlen;
4315                         u8 pad = packet->pad;
4316                         u8 extra_bytes = pad + packet->extra_byte +
4317                                 (SIZE_OF_CRC << 2);
4318                         u32 pmtu = qp->pmtu;
4319
4320                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4321                                 goto send_nak;
4322                         len = req->comp_seg * req->seg_len;
4323                         len += delta_psn(psn,
4324                                 full_flow_psn(flow, flow->flow_state.spsn)) *
4325                                 pmtu;
4326                         if (unlikely(req->total_len - len < pmtu))
4327                                 goto send_nak;
4328
4329                         /*
4330                          * The e->rdma_sge field is set when TID RDMA WRITE REQ
4331                          * is first received and is never modified thereafter.
4332                          */
4333                         ss.sge = e->rdma_sge;
4334                         ss.sg_list = NULL;
4335                         ss.num_sge = 1;
4336                         ss.total_len = req->total_len;
4337                         rvt_skip_sge(&ss, len, false);
4338                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4339                                      false);
4340                         /* Raise the sw sequence check flag for next packet */
4341                         priv->r_next_psn_kdeth = mask_psn(psn + 1);
4342                         priv->s_flags |= HFI1_R_TID_SW_PSN;
4343                 }
4344                 goto exit;
4345         }
4346         flow->flow_state.r_next_psn = mask_psn(psn + 1);
4347         hfi1_kern_exp_rcv_clear(req);
4348         priv->alloc_w_segs--;
4349         rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4350         req->comp_seg++;
4351         priv->s_nak_state = 0;
4352
4353         /*
4354          * Release the flow if one of the following conditions has been met:
4355          *  - The request has reached a sync point AND all outstanding
4356          *    segments have been completed, or
4357          *  - The entire request is complete and there are no more requests
4358          *    (of any kind) in the queue.
4359          */
4360         trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4361         trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4362                                           req);
4363         trace_hfi1_tid_write_rsp_rcv_data(qp);
4364         validate_r_tid_ack(priv);
4365
4366         if (opcode == TID_OP(WRITE_DATA_LAST)) {
4367                 release_rdma_sge_mr(e);
4368                 for (next = priv->r_tid_tail + 1; ; next++) {
4369                         if (next > rvt_size_atomic(&dev->rdi))
4370                                 next = 0;
4371                         if (next == priv->r_tid_head)
4372                                 break;
4373                         e = &qp->s_ack_queue[next];
4374                         if (e->opcode == TID_OP(WRITE_REQ))
4375                                 break;
4376                 }
4377                 priv->r_tid_tail = next;
4378                 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4379                         qp->s_acked_ack_queue = 0;
4380         }
4381
4382         hfi1_tid_write_alloc_resources(qp, true);
4383
4384         /*
4385          * If we need to generate more responses, schedule the
4386          * send engine.
4387          */
4388         if (req->cur_seg < req->total_segs ||
4389             qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4390                 qp->s_flags |= RVT_S_RESP_PENDING;
4391                 hfi1_schedule_send(qp);
4392         }
4393
4394         priv->pending_tid_w_segs--;
4395         if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4396                 if (priv->pending_tid_w_segs)
4397                         hfi1_mod_tid_reap_timer(req->qp);
4398                 else
4399                         hfi1_stop_tid_reap_timer(req->qp);
4400         }
4401
4402 done:
4403         tid_rdma_schedule_ack(qp);
4404 exit:
4405         priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4406         if (fecn)
4407                 qp->s_flags |= RVT_S_ECN;
4408         spin_unlock_irqrestore(&qp->s_lock, flags);
4409         return;
4410
4411 send_nak:
4412         if (!priv->s_nak_state) {
4413                 priv->s_nak_state = IB_NAK_PSN_ERROR;
4414                 priv->s_nak_psn = flow->flow_state.r_next_psn;
4415                 tid_rdma_trigger_ack(qp);
4416         }
4417         goto done;
4418 }
4419
4420 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4421 {
4422         return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4423                       HFI1_KDETH_BTH_SEQ_MASK);
4424 }
4425
4426 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4427                                   struct ib_other_headers *ohdr, u16 iflow,
4428                                   u32 *bth1, u32 *bth2)
4429 {
4430         struct hfi1_qp_priv *qpriv = qp->priv;
4431         struct tid_flow_state *fs = &qpriv->flow_state;
4432         struct tid_rdma_request *req = ack_to_tid_req(e);
4433         struct tid_rdma_flow *flow = &req->flows[iflow];
4434         struct tid_rdma_params *remote;
4435
4436         rcu_read_lock();
4437         remote = rcu_dereference(qpriv->tid_rdma.remote);
4438         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4439         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4440         *bth1 = remote->qp;
4441         rcu_read_unlock();
4442
4443         if (qpriv->resync) {
4444                 *bth2 = mask_psn((fs->generation <<
4445                                   HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4446                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4447         } else if (qpriv->s_nak_state) {
4448                 *bth2 = mask_psn(qpriv->s_nak_psn);
4449                 ohdr->u.tid_rdma.ack.aeth =
4450                         cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4451                                     (qpriv->s_nak_state <<
4452                                      IB_AETH_CREDIT_SHIFT));
4453         } else {
4454                 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4455                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4456         }
4457         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4458         ohdr->u.tid_rdma.ack.tid_flow_qp =
4459                 cpu_to_be32(qpriv->tid_rdma.local.qp |
4460                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4461                              TID_RDMA_DESTQP_FLOW_SHIFT) |
4462                             qpriv->rcd->ctxt);
4463
4464         ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4465         ohdr->u.tid_rdma.ack.verbs_psn =
4466                 cpu_to_be32(flow->flow_state.resp_ib_psn);
4467
4468         if (qpriv->resync) {
4469                 /*
4470                  * If the PSN before the current expect KDETH PSN is the
4471                  * RESYNC PSN, then we never received a good TID RDMA WRITE
4472                  * DATA packet after a previous RESYNC.
4473                  * In this case, the next expected KDETH PSN stays the same.
4474                  */
4475                 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4476                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4477                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4478                 } else {
4479                         /*
4480                          * Because the KDETH PSNs jump during a RESYNC, it's
4481                          * not possible to infer (or compute) the previous value
4482                          * of r_next_psn_kdeth in the case of back-to-back
4483                          * RESYNC packets. Therefore, we save it.
4484                          */
4485                         qpriv->r_next_psn_kdeth_save =
4486                                 qpriv->r_next_psn_kdeth - 1;
4487                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4488                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4489                         qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4490                 }
4491                 qpriv->resync = false;
4492         }
4493
4494         return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4495 }
4496
4497 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4498 {
4499         struct ib_other_headers *ohdr = packet->ohdr;
4500         struct rvt_qp *qp = packet->qp;
4501         struct hfi1_qp_priv *qpriv = qp->priv;
4502         struct rvt_swqe *wqe;
4503         struct tid_rdma_request *req;
4504         struct tid_rdma_flow *flow;
4505         u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4506         unsigned long flags;
4507         u16 fidx;
4508
4509         trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4510         process_ecn(qp, packet);
4511         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4512         aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4513         req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4514         resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4515
4516         spin_lock_irqsave(&qp->s_lock, flags);
4517         trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4518
4519         /* If we are waiting for an ACK to RESYNC, drop any other packets */
4520         if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4521             cmp_psn(psn, qpriv->s_resync_psn))
4522                 goto ack_op_err;
4523
4524         ack_psn = req_psn;
4525         if (hfi1_tid_rdma_is_resync_psn(psn))
4526                 ack_kpsn = resync_psn;
4527         else
4528                 ack_kpsn = psn;
4529         if (aeth >> 29) {
4530                 ack_psn--;
4531                 ack_kpsn--;
4532         }
4533
4534         if (unlikely(qp->s_acked == qp->s_tail))
4535                 goto ack_op_err;
4536
4537         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4538
4539         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4540                 goto ack_op_err;
4541
4542         req = wqe_to_tid_req(wqe);
4543         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4544                                        wqe->lpsn, req);
4545         flow = &req->flows[req->acked_tail];
4546         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4547
4548         /* Drop stale ACK/NAK */
4549         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4550             cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4551                 goto ack_op_err;
4552
4553         while (cmp_psn(ack_kpsn,
4554                        full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4555                req->ack_seg < req->cur_seg) {
4556                 req->ack_seg++;
4557                 /* advance acked segment pointer */
4558                 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4559                 req->r_last_acked = flow->flow_state.resp_ib_psn;
4560                 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4561                                                wqe->lpsn, req);
4562                 if (req->ack_seg == req->total_segs) {
4563                         req->state = TID_REQUEST_COMPLETE;
4564                         wqe = do_rc_completion(qp, wqe,
4565                                                to_iport(qp->ibqp.device,
4566                                                         qp->port_num));
4567                         trace_hfi1_sender_rcv_tid_ack(qp);
4568                         atomic_dec(&qpriv->n_tid_requests);
4569                         if (qp->s_acked == qp->s_tail)
4570                                 break;
4571                         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4572                                 break;
4573                         req = wqe_to_tid_req(wqe);
4574                 }
4575                 flow = &req->flows[req->acked_tail];
4576                 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4577         }
4578
4579         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4580                                        wqe->lpsn, req);
4581         switch (aeth >> 29) {
4582         case 0:         /* ACK */
4583                 if (qpriv->s_flags & RVT_S_WAIT_ACK)
4584                         qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4585                 if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4586                         /* Check if there is any pending TID ACK */
4587                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4588                             req->ack_seg < req->cur_seg)
4589                                 hfi1_mod_tid_retry_timer(qp);
4590                         else
4591                                 hfi1_stop_tid_retry_timer(qp);
4592                         hfi1_schedule_send(qp);
4593                 } else {
4594                         u32 spsn, fpsn, last_acked, generation;
4595                         struct tid_rdma_request *rptr;
4596
4597                         /* ACK(RESYNC) */
4598                         hfi1_stop_tid_retry_timer(qp);
4599                         /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4600                         qp->s_flags &= ~HFI1_S_WAIT_HALT;
4601                         /*
4602                          * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4603                          * ACK is received after the TID retry timer is fired
4604                          * again. In this case, do not send any more TID
4605                          * RESYNC request or wait for any more TID ACK packet.
4606                          */
4607                         qpriv->s_flags &= ~RVT_S_SEND_ONE;
4608                         hfi1_schedule_send(qp);
4609
4610                         if ((qp->s_acked == qpriv->s_tid_tail &&
4611                              req->ack_seg == req->total_segs) ||
4612                             qp->s_acked == qp->s_tail) {
4613                                 qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4614                                 goto done;
4615                         }
4616
4617                         if (req->ack_seg == req->comp_seg) {
4618                                 qpriv->s_state = TID_OP(WRITE_DATA);
4619                                 goto done;
4620                         }
4621
4622                         /*
4623                          * The PSN to start with is the next PSN after the
4624                          * RESYNC PSN.
4625                          */
4626                         psn = mask_psn(psn + 1);
4627                         generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4628                         spsn = 0;
4629
4630                         /*
4631                          * Update to the correct WQE when we get an ACK(RESYNC)
4632                          * in the middle of a request.
4633                          */
4634                         if (delta_psn(ack_psn, wqe->lpsn))
4635                                 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4636                         req = wqe_to_tid_req(wqe);
4637                         flow = &req->flows[req->acked_tail];
4638                         /*
4639                          * RESYNC re-numbers the PSN ranges of all remaining
4640                          * segments. Also, PSN's start from 0 in the middle of a
4641                          * segment and the first segment size is less than the
4642                          * default number of packets. flow->resync_npkts is used
4643                          * to track the number of packets from the start of the
4644                          * real segment to the point of 0 PSN after the RESYNC
4645                          * in order to later correctly rewind the SGE.
4646                          */
4647                         fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4648                         req->r_ack_psn = psn;
4649                         /*
4650                          * If resync_psn points to the last flow PSN for a
4651                          * segment and the new segment (likely from a new
4652                          * request) starts with a new generation number, we
4653                          * need to adjust resync_psn accordingly.
4654                          */
4655                         if (flow->flow_state.generation !=
4656                             (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4657                                 resync_psn = mask_psn(fpsn - 1);
4658                         flow->resync_npkts +=
4659                                 delta_psn(mask_psn(resync_psn + 1), fpsn);
4660                         /*
4661                          * Renumber all packet sequence number ranges
4662                          * based on the new generation.
4663                          */
4664                         last_acked = qp->s_acked;
4665                         rptr = req;
4666                         while (1) {
4667                                 /* start from last acked segment */
4668                                 for (fidx = rptr->acked_tail;
4669                                      CIRC_CNT(rptr->setup_head, fidx,
4670                                               MAX_FLOWS);
4671                                      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4672                                         u32 lpsn;
4673                                         u32 gen;
4674
4675                                         flow = &rptr->flows[fidx];
4676                                         gen = flow->flow_state.generation;
4677                                         if (WARN_ON(gen == generation &&
4678                                                     flow->flow_state.spsn !=
4679                                                      spsn))
4680                                                 continue;
4681                                         lpsn = flow->flow_state.lpsn;
4682                                         lpsn = full_flow_psn(flow, lpsn);
4683                                         flow->npkts =
4684                                                 delta_psn(lpsn,
4685                                                           mask_psn(resync_psn)
4686                                                           );
4687                                         flow->flow_state.generation =
4688                                                 generation;
4689                                         flow->flow_state.spsn = spsn;
4690                                         flow->flow_state.lpsn =
4691                                                 flow->flow_state.spsn +
4692                                                 flow->npkts - 1;
4693                                         flow->pkt = 0;
4694                                         spsn += flow->npkts;
4695                                         resync_psn += flow->npkts;
4696                                         trace_hfi1_tid_flow_rcv_tid_ack(qp,
4697                                                                         fidx,
4698                                                                         flow);
4699                                 }
4700                                 if (++last_acked == qpriv->s_tid_cur + 1)
4701                                         break;
4702                                 if (last_acked == qp->s_size)
4703                                         last_acked = 0;
4704                                 wqe = rvt_get_swqe_ptr(qp, last_acked);
4705                                 rptr = wqe_to_tid_req(wqe);
4706                         }
4707                         req->cur_seg = req->ack_seg;
4708                         qpriv->s_tid_tail = qp->s_acked;
4709                         qpriv->s_state = TID_OP(WRITE_REQ);
4710                         hfi1_schedule_tid_send(qp);
4711                 }
4712 done:
4713                 qpriv->s_retry = qp->s_retry_cnt;
4714                 break;
4715
4716         case 3:         /* NAK */
4717                 hfi1_stop_tid_retry_timer(qp);
4718                 switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4719                         IB_AETH_CREDIT_MASK) {
4720                 case 0: /* PSN sequence error */
4721                         if (!req->flows)
4722                                 break;
4723                         flow = &req->flows[req->acked_tail];
4724                         flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4725                         if (cmp_psn(psn, flpsn) > 0)
4726                                 break;
4727                         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4728                                                         flow);
4729                         req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4730                         req->cur_seg = req->ack_seg;
4731                         qpriv->s_tid_tail = qp->s_acked;
4732                         qpriv->s_state = TID_OP(WRITE_REQ);
4733                         qpriv->s_retry = qp->s_retry_cnt;
4734                         hfi1_schedule_tid_send(qp);
4735                         break;
4736
4737                 default:
4738                         break;
4739                 }
4740                 break;
4741
4742         default:
4743                 break;
4744         }
4745
4746 ack_op_err:
4747         spin_unlock_irqrestore(&qp->s_lock, flags);
4748 }
4749
4750 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4751 {
4752         struct hfi1_qp_priv *priv = qp->priv;
4753         struct ib_qp *ibqp = &qp->ibqp;
4754         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4755
4756         lockdep_assert_held(&qp->s_lock);
4757         if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4758                 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4759                 priv->s_tid_retry_timer.expires = jiffies +
4760                         priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4761                 add_timer(&priv->s_tid_retry_timer);
4762         }
4763 }
4764
4765 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4766 {
4767         struct hfi1_qp_priv *priv = qp->priv;
4768         struct ib_qp *ibqp = &qp->ibqp;
4769         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4770
4771         lockdep_assert_held(&qp->s_lock);
4772         priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4773         mod_timer(&priv->s_tid_retry_timer, jiffies +
4774                   priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4775 }
4776
4777 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4778 {
4779         struct hfi1_qp_priv *priv = qp->priv;
4780         int rval = 0;
4781
4782         lockdep_assert_held(&qp->s_lock);
4783         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4784                 rval = del_timer(&priv->s_tid_retry_timer);
4785                 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4786         }
4787         return rval;
4788 }
4789
4790 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4791 {
4792         struct hfi1_qp_priv *priv = qp->priv;
4793
4794         del_timer_sync(&priv->s_tid_retry_timer);
4795         priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4796 }
4797
4798 static void hfi1_tid_retry_timeout(struct timer_list *t)
4799 {
4800         struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4801         struct rvt_qp *qp = priv->owner;
4802         struct rvt_swqe *wqe;
4803         unsigned long flags;
4804         struct tid_rdma_request *req;
4805
4806         spin_lock_irqsave(&qp->r_lock, flags);
4807         spin_lock(&qp->s_lock);
4808         trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4809         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4810                 hfi1_stop_tid_retry_timer(qp);
4811                 if (!priv->s_retry) {
4812                         trace_hfi1_msg_tid_retry_timeout(/* msg */
4813                                 qp,
4814                                 "Exhausted retries. Tid retry timeout = ",
4815                                 (u64)priv->tid_retry_timeout_jiffies);
4816
4817                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4818                         hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4819                         rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4820                 } else {
4821                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4822                         req = wqe_to_tid_req(wqe);
4823                         trace_hfi1_tid_req_tid_retry_timeout(/* req */
4824                            qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4825
4826                         priv->s_flags &= ~RVT_S_WAIT_ACK;
4827                         /* Only send one packet (the RESYNC) */
4828                         priv->s_flags |= RVT_S_SEND_ONE;
4829                         /*
4830                          * No additional request shall be made by this QP until
4831                          * the RESYNC has been complete.
4832                          */
4833                         qp->s_flags |= HFI1_S_WAIT_HALT;
4834                         priv->s_state = TID_OP(RESYNC);
4835                         priv->s_retry--;
4836                         hfi1_schedule_tid_send(qp);
4837                 }
4838         }
4839         spin_unlock(&qp->s_lock);
4840         spin_unlock_irqrestore(&qp->r_lock, flags);
4841 }
4842
4843 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4844                                struct ib_other_headers *ohdr, u32 *bth1,
4845                                u32 *bth2, u16 fidx)
4846 {
4847         struct hfi1_qp_priv *qpriv = qp->priv;
4848         struct tid_rdma_params *remote;
4849         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4850         struct tid_rdma_flow *flow = &req->flows[fidx];
4851         u32 generation;
4852
4853         rcu_read_lock();
4854         remote = rcu_dereference(qpriv->tid_rdma.remote);
4855         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4856         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4857         *bth1 = remote->qp;
4858         rcu_read_unlock();
4859
4860         generation = kern_flow_generation_next(flow->flow_state.generation);
4861         *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4862         qpriv->s_resync_psn = *bth2;
4863         *bth2 |= IB_BTH_REQ_ACK;
4864         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4865
4866         return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4867 }
4868
4869 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4870 {
4871         struct ib_other_headers *ohdr = packet->ohdr;
4872         struct rvt_qp *qp = packet->qp;
4873         struct hfi1_qp_priv *qpriv = qp->priv;
4874         struct hfi1_ctxtdata *rcd = qpriv->rcd;
4875         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4876         struct rvt_ack_entry *e;
4877         struct tid_rdma_request *req;
4878         struct tid_rdma_flow *flow;
4879         struct tid_flow_state *fs = &qpriv->flow_state;
4880         u32 psn, generation, idx, gen_next;
4881         bool fecn;
4882         unsigned long flags;
4883
4884         fecn = process_ecn(qp, packet);
4885         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4886
4887         generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4888         spin_lock_irqsave(&qp->s_lock, flags);
4889
4890         gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4891                 generation : kern_flow_generation_next(fs->generation);
4892         /*
4893          * RESYNC packet contains the "next" generation and can only be
4894          * from the current or previous generations
4895          */
4896         if (generation != mask_generation(gen_next - 1) &&
4897             generation != gen_next)
4898                 goto bail;
4899         /* Already processing a resync */
4900         if (qpriv->resync)
4901                 goto bail;
4902
4903         spin_lock(&rcd->exp_lock);
4904         if (fs->index >= RXE_NUM_TID_FLOWS) {
4905                 /*
4906                  * If we don't have a flow, save the generation so it can be
4907                  * applied when a new flow is allocated
4908                  */
4909                 fs->generation = generation;
4910         } else {
4911                 /* Reprogram the QP flow with new generation */
4912                 rcd->flows[fs->index].generation = generation;
4913                 fs->generation = kern_setup_hw_flow(rcd, fs->index);
4914         }
4915         fs->psn = 0;
4916         /*
4917          * Disable SW PSN checking since a RESYNC is equivalent to a
4918          * sync point and the flow has/will be reprogrammed
4919          */
4920         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4921         trace_hfi1_tid_write_rsp_rcv_resync(qp);
4922
4923         /*
4924          * Reset all TID flow information with the new generation.
4925          * This is done for all requests and segments after the
4926          * last received segment
4927          */
4928         for (idx = qpriv->r_tid_tail; ; idx++) {
4929                 u16 flow_idx;
4930
4931                 if (idx > rvt_size_atomic(&dev->rdi))
4932                         idx = 0;
4933                 e = &qp->s_ack_queue[idx];
4934                 if (e->opcode == TID_OP(WRITE_REQ)) {
4935                         req = ack_to_tid_req(e);
4936                         trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4937                                                       e->lpsn, req);
4938
4939                         /* start from last unacked segment */
4940                         for (flow_idx = req->clear_tail;
4941                              CIRC_CNT(req->setup_head, flow_idx,
4942                                       MAX_FLOWS);
4943                              flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4944                                 u32 lpsn;
4945                                 u32 next;
4946
4947                                 flow = &req->flows[flow_idx];
4948                                 lpsn = full_flow_psn(flow,
4949                                                      flow->flow_state.lpsn);
4950                                 next = flow->flow_state.r_next_psn;
4951                                 flow->npkts = delta_psn(lpsn, next - 1);
4952                                 flow->flow_state.generation = fs->generation;
4953                                 flow->flow_state.spsn = fs->psn;
4954                                 flow->flow_state.lpsn =
4955                                         flow->flow_state.spsn + flow->npkts - 1;
4956                                 flow->flow_state.r_next_psn =
4957                                         full_flow_psn(flow,
4958                                                       flow->flow_state.spsn);
4959                                 fs->psn += flow->npkts;
4960                                 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4961                                                                flow);
4962                         }
4963                 }
4964                 if (idx == qp->s_tail_ack_queue)
4965                         break;
4966         }
4967
4968         spin_unlock(&rcd->exp_lock);
4969         qpriv->resync = true;
4970         /* RESYNC request always gets a TID RDMA ACK. */
4971         qpriv->s_nak_state = 0;
4972         tid_rdma_trigger_ack(qp);
4973 bail:
4974         if (fecn)
4975                 qp->s_flags |= RVT_S_ECN;
4976         spin_unlock_irqrestore(&qp->s_lock, flags);
4977 }
4978
4979 /*
4980  * Call this function when the last TID RDMA WRITE DATA packet for a request
4981  * is built.
4982  */
4983 static void update_tid_tail(struct rvt_qp *qp)
4984         __must_hold(&qp->s_lock)
4985 {
4986         struct hfi1_qp_priv *priv = qp->priv;
4987         u32 i;
4988         struct rvt_swqe *wqe;
4989
4990         lockdep_assert_held(&qp->s_lock);
4991         /* Can't move beyond s_tid_cur */
4992         if (priv->s_tid_tail == priv->s_tid_cur)
4993                 return;
4994         for (i = priv->s_tid_tail + 1; ; i++) {
4995                 if (i == qp->s_size)
4996                         i = 0;
4997
4998                 if (i == priv->s_tid_cur)
4999                         break;
5000                 wqe = rvt_get_swqe_ptr(qp, i);
5001                 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
5002                         break;
5003         }
5004         priv->s_tid_tail = i;
5005         priv->s_state = TID_OP(WRITE_RESP);
5006 }
5007
5008 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5009         __must_hold(&qp->s_lock)
5010 {
5011         struct hfi1_qp_priv *priv = qp->priv;
5012         struct rvt_swqe *wqe;
5013         u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5014         struct ib_other_headers *ohdr;
5015         struct rvt_sge_state *ss = &qp->s_sge;
5016         struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5017         struct tid_rdma_request *req = ack_to_tid_req(e);
5018         bool last = false;
5019         u8 opcode = TID_OP(WRITE_DATA);
5020
5021         lockdep_assert_held(&qp->s_lock);
5022         trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5023         /*
5024          * Prioritize the sending of the requests and responses over the
5025          * sending of the TID RDMA data packets.
5026          */
5027         if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5028              atomic_read(&priv->n_requests) &&
5029              !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5030                              HFI1_S_ANY_WAIT_IO))) ||
5031             (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5032              !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5033                 struct iowait_work *iowork;
5034
5035                 iowork = iowait_get_ib_work(&priv->s_iowait);
5036                 ps->s_txreq = get_waiting_verbs_txreq(iowork);
5037                 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5038                         priv->s_flags |= HFI1_S_TID_BUSY_SET;
5039                         return 1;
5040                 }
5041         }
5042
5043         ps->s_txreq = get_txreq(ps->dev, qp);
5044         if (!ps->s_txreq)
5045                 goto bail_no_tx;
5046
5047         ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5048
5049         if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5050             make_tid_rdma_ack(qp, ohdr, ps))
5051                 return 1;
5052
5053         /*
5054          * Bail out if we can't send data.
5055          * Be reminded that this check must been done after the call to
5056          * make_tid_rdma_ack() because the responding QP could be in
5057          * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5058          */
5059         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5060                 goto bail;
5061
5062         if (priv->s_flags & RVT_S_WAIT_ACK)
5063                 goto bail;
5064
5065         /* Check whether there is anything to do. */
5066         if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5067                 goto bail;
5068         wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5069         req = wqe_to_tid_req(wqe);
5070         trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5071                                         wqe->lpsn, req);
5072         switch (priv->s_state) {
5073         case TID_OP(WRITE_REQ):
5074         case TID_OP(WRITE_RESP):
5075                 priv->tid_ss.sge = wqe->sg_list[0];
5076                 priv->tid_ss.sg_list = wqe->sg_list + 1;
5077                 priv->tid_ss.num_sge = wqe->wr.num_sge;
5078                 priv->tid_ss.total_len = wqe->length;
5079
5080                 if (priv->s_state == TID_OP(WRITE_REQ))
5081                         hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5082                 priv->s_state = TID_OP(WRITE_DATA);
5083                 fallthrough;
5084
5085         case TID_OP(WRITE_DATA):
5086                 /*
5087                  * 1. Check whether TID RDMA WRITE RESP available.
5088                  * 2. If no:
5089                  *    2.1 If have more segments and no TID RDMA WRITE RESP,
5090                  *        set HFI1_S_WAIT_TID_RESP
5091                  *    2.2 Return indicating no progress made.
5092                  * 3. If yes:
5093                  *    3.1 Build TID RDMA WRITE DATA packet.
5094                  *    3.2 If last packet in segment:
5095                  *        3.2.1 Change KDETH header bits
5096                  *        3.2.2 Advance RESP pointers.
5097                  *    3.3 Return indicating progress made.
5098                  */
5099                 trace_hfi1_sender_make_tid_pkt(qp);
5100                 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5101                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5102                 req = wqe_to_tid_req(wqe);
5103                 len = wqe->length;
5104
5105                 if (!req->comp_seg || req->cur_seg == req->comp_seg)
5106                         goto bail;
5107
5108                 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5109                                                 wqe->psn, wqe->lpsn, req);
5110                 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5111                                                   &len);
5112
5113                 if (last) {
5114                         /* move pointer to next flow */
5115                         req->clear_tail = CIRC_NEXT(req->clear_tail,
5116                                                     MAX_FLOWS);
5117                         if (++req->cur_seg < req->total_segs) {
5118                                 if (!CIRC_CNT(req->setup_head, req->clear_tail,
5119                                               MAX_FLOWS))
5120                                         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5121                         } else {
5122                                 priv->s_state = TID_OP(WRITE_DATA_LAST);
5123                                 opcode = TID_OP(WRITE_DATA_LAST);
5124
5125                                 /* Advance the s_tid_tail now */
5126                                 update_tid_tail(qp);
5127                         }
5128                 }
5129                 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5130                 ss = &priv->tid_ss;
5131                 break;
5132
5133         case TID_OP(RESYNC):
5134                 trace_hfi1_sender_make_tid_pkt(qp);
5135                 /* Use generation from the most recently received response */
5136                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5137                 req = wqe_to_tid_req(wqe);
5138                 /* If no responses for this WQE look at the previous one */
5139                 if (!req->comp_seg) {
5140                         wqe = rvt_get_swqe_ptr(qp,
5141                                                (!priv->s_tid_cur ? qp->s_size :
5142                                                 priv->s_tid_cur) - 1);
5143                         req = wqe_to_tid_req(wqe);
5144                 }
5145                 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5146                                                      &bth2,
5147                                                      CIRC_PREV(req->setup_head,
5148                                                                MAX_FLOWS));
5149                 ss = NULL;
5150                 len = 0;
5151                 opcode = TID_OP(RESYNC);
5152                 break;
5153
5154         default:
5155                 goto bail;
5156         }
5157         if (priv->s_flags & RVT_S_SEND_ONE) {
5158                 priv->s_flags &= ~RVT_S_SEND_ONE;
5159                 priv->s_flags |= RVT_S_WAIT_ACK;
5160                 bth2 |= IB_BTH_REQ_ACK;
5161         }
5162         qp->s_len -= len;
5163         ps->s_txreq->hdr_dwords = hwords;
5164         ps->s_txreq->sde = priv->s_sde;
5165         ps->s_txreq->ss = ss;
5166         ps->s_txreq->s_cur_size = len;
5167         hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5168                              middle, ps);
5169         return 1;
5170 bail:
5171         hfi1_put_txreq(ps->s_txreq);
5172 bail_no_tx:
5173         ps->s_txreq = NULL;
5174         priv->s_flags &= ~RVT_S_BUSY;
5175         /*
5176          * If we didn't get a txreq, the QP will be woken up later to try
5177          * again, set the flags to the wake up which work item to wake
5178          * up.
5179          * (A better algorithm should be found to do this and generalize the
5180          * sleep/wakeup flags.)
5181          */
5182         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5183         return 0;
5184 }
5185
5186 static int make_tid_rdma_ack(struct rvt_qp *qp,
5187                              struct ib_other_headers *ohdr,
5188                              struct hfi1_pkt_state *ps)
5189 {
5190         struct rvt_ack_entry *e;
5191         struct hfi1_qp_priv *qpriv = qp->priv;
5192         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5193         u32 hwords, next;
5194         u32 len = 0;
5195         u32 bth1 = 0, bth2 = 0;
5196         int middle = 0;
5197         u16 flow;
5198         struct tid_rdma_request *req, *nreq;
5199
5200         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5201         /* Don't send an ACK if we aren't supposed to. */
5202         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5203                 goto bail;
5204
5205         /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5206         hwords = 5;
5207
5208         e = &qp->s_ack_queue[qpriv->r_tid_ack];
5209         req = ack_to_tid_req(e);
5210         /*
5211          * In the RESYNC case, we are exactly one segment past the
5212          * previously sent ack or at the previously sent NAK. So to send
5213          * the resync ack, we go back one segment (which might be part of
5214          * the previous request) and let the do-while loop execute again.
5215          * The advantage of executing the do-while loop is that any data
5216          * received after the previous ack is automatically acked in the
5217          * RESYNC ack. It turns out that for the do-while loop we only need
5218          * to pull back qpriv->r_tid_ack, not the segment
5219          * indices/counters. The scheme works even if the previous request
5220          * was not a TID WRITE request.
5221          */
5222         if (qpriv->resync) {
5223                 if (!req->ack_seg || req->ack_seg == req->total_segs)
5224                         qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5225                                 rvt_size_atomic(&dev->rdi) :
5226                                 qpriv->r_tid_ack - 1;
5227                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5228                 req = ack_to_tid_req(e);
5229         }
5230
5231         trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5232         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5233                                         req);
5234         /*
5235          * If we've sent all the ACKs that we can, we are done
5236          * until we get more segments...
5237          */
5238         if (!qpriv->s_nak_state && !qpriv->resync &&
5239             req->ack_seg == req->comp_seg)
5240                 goto bail;
5241
5242         do {
5243                 /*
5244                  * To deal with coalesced ACKs, the acked_tail pointer
5245                  * into the flow array is used. The distance between it
5246                  * and the clear_tail is the number of flows that are
5247                  * being ACK'ed.
5248                  */
5249                 req->ack_seg +=
5250                         /* Get up-to-date value */
5251                         CIRC_CNT(req->clear_tail, req->acked_tail,
5252                                  MAX_FLOWS);
5253                 /* Advance acked index */
5254                 req->acked_tail = req->clear_tail;
5255
5256                 /*
5257                  * req->clear_tail points to the segment currently being
5258                  * received. So, when sending an ACK, the previous
5259                  * segment is being ACK'ed.
5260                  */
5261                 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5262                 if (req->ack_seg != req->total_segs)
5263                         break;
5264                 req->state = TID_REQUEST_COMPLETE;
5265
5266                 next = qpriv->r_tid_ack + 1;
5267                 if (next > rvt_size_atomic(&dev->rdi))
5268                         next = 0;
5269                 qpriv->r_tid_ack = next;
5270                 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5271                         break;
5272                 nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5273                 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5274                         break;
5275
5276                 /* Move to the next ack entry now */
5277                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5278                 req = ack_to_tid_req(e);
5279         } while (1);
5280
5281         /*
5282          * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5283          * req could be pointing at the previous ack queue entry
5284          */
5285         if (qpriv->s_nak_state ||
5286             (qpriv->resync &&
5287              !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5288              (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5289                       full_flow_psn(&req->flows[flow],
5290                                     req->flows[flow].flow_state.lpsn)) > 0))) {
5291                 /*
5292                  * A NAK will implicitly acknowledge all previous TID RDMA
5293                  * requests. Therefore, we NAK with the req->acked_tail
5294                  * segment for the request at qpriv->r_tid_ack (same at
5295                  * this point as the req->clear_tail segment for the
5296                  * qpriv->r_tid_tail request)
5297                  */
5298                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5299                 req = ack_to_tid_req(e);
5300                 flow = req->acked_tail;
5301         } else if (req->ack_seg == req->total_segs &&
5302                    qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5303                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5304
5305         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5306         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5307                                         req);
5308         hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5309                                                 &bth2);
5310         len = 0;
5311         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5312         ps->s_txreq->hdr_dwords = hwords;
5313         ps->s_txreq->sde = qpriv->s_sde;
5314         ps->s_txreq->s_cur_size = len;
5315         ps->s_txreq->ss = NULL;
5316         hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5317                              ps);
5318         ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5319         return 1;
5320 bail:
5321         /*
5322          * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5323          * RVT_S_RESP_PENDING
5324          */
5325         smp_wmb();
5326         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5327         return 0;
5328 }
5329
5330 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5331 {
5332         struct hfi1_qp_priv *priv = qp->priv;
5333
5334         return !(priv->s_flags & RVT_S_BUSY ||
5335                  qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5336                 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5337                  (priv->s_flags & RVT_S_RESP_PENDING) ||
5338                  !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5339 }
5340
5341 void _hfi1_do_tid_send(struct work_struct *work)
5342 {
5343         struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5344         struct rvt_qp *qp = iowait_to_qp(w->iow);
5345
5346         hfi1_do_tid_send(qp);
5347 }
5348
5349 static void hfi1_do_tid_send(struct rvt_qp *qp)
5350 {
5351         struct hfi1_pkt_state ps;
5352         struct hfi1_qp_priv *priv = qp->priv;
5353
5354         ps.dev = to_idev(qp->ibqp.device);
5355         ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5356         ps.ppd = ppd_from_ibp(ps.ibp);
5357         ps.wait = iowait_get_tid_work(&priv->s_iowait);
5358         ps.in_thread = false;
5359         ps.timeout_int = qp->timeout_jiffies / 8;
5360
5361         trace_hfi1_rc_do_tid_send(qp, false);
5362         spin_lock_irqsave(&qp->s_lock, ps.flags);
5363
5364         /* Return if we are already busy processing a work request. */
5365         if (!hfi1_send_tid_ok(qp)) {
5366                 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5367                         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5368                 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5369                 return;
5370         }
5371
5372         priv->s_flags |= RVT_S_BUSY;
5373
5374         ps.timeout = jiffies + ps.timeout_int;
5375         ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5376                 cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5377         ps.pkts_sent = false;
5378
5379         /* insure a pre-built packet is handled  */
5380         ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5381         do {
5382                 /* Check for a constructed packet to be sent. */
5383                 if (ps.s_txreq) {
5384                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5385                                 qp->s_flags |= RVT_S_BUSY;
5386                                 ps.wait = iowait_get_ib_work(&priv->s_iowait);
5387                         }
5388                         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5389
5390                         /*
5391                          * If the packet cannot be sent now, return and
5392                          * the send tasklet will be woken up later.
5393                          */
5394                         if (hfi1_verbs_send(qp, &ps))
5395                                 return;
5396
5397                         /* allow other tasks to run */
5398                         if (hfi1_schedule_send_yield(qp, &ps, true))
5399                                 return;
5400
5401                         spin_lock_irqsave(&qp->s_lock, ps.flags);
5402                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5403                                 qp->s_flags &= ~RVT_S_BUSY;
5404                                 priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5405                                 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5406                                 if (iowait_flag_set(&priv->s_iowait,
5407                                                     IOWAIT_PENDING_IB))
5408                                         hfi1_schedule_send(qp);
5409                         }
5410                 }
5411         } while (hfi1_make_tid_rdma_pkt(qp, &ps));
5412         iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5413         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5414 }
5415
5416 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5417 {
5418         struct hfi1_qp_priv *priv = qp->priv;
5419         struct hfi1_ibport *ibp =
5420                 to_iport(qp->ibqp.device, qp->port_num);
5421         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5422         struct hfi1_devdata *dd = ppd->dd;
5423
5424         if ((dd->flags & HFI1_SHUTDOWN))
5425                 return true;
5426
5427         return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5428                                    priv->s_sde ?
5429                                    priv->s_sde->cpu :
5430                                    cpumask_first(cpumask_of_node(dd->node)));
5431 }
5432
5433 /**
5434  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5435  * @qp: the QP
5436  *
5437  * This schedules qp progress on the TID RDMA state machine. Caller
5438  * should hold the s_lock.
5439  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5440  * the two state machines can step on each other with respect to the
5441  * RVT_S_BUSY flag.
5442  * Therefore, a modified test is used.
5443  *
5444  * Return: %true if the second leg is scheduled;
5445  *  %false if the second leg is not scheduled.
5446  */
5447 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5448 {
5449         lockdep_assert_held(&qp->s_lock);
5450         if (hfi1_send_tid_ok(qp)) {
5451                 /*
5452                  * The following call returns true if the qp is not on the
5453                  * queue and false if the qp is already on the queue before
5454                  * this call. Either way, the qp will be on the queue when the
5455                  * call returns.
5456                  */
5457                 _hfi1_schedule_tid_send(qp);
5458                 return true;
5459         }
5460         if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5461                 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5462                                 IOWAIT_PENDING_TID);
5463         return false;
5464 }
5465
5466 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5467 {
5468         struct rvt_ack_entry *prev;
5469         struct tid_rdma_request *req;
5470         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5471         struct hfi1_qp_priv *priv = qp->priv;
5472         u32 s_prev;
5473
5474         s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5475                 (qp->s_tail_ack_queue - 1);
5476         prev = &qp->s_ack_queue[s_prev];
5477
5478         if ((e->opcode == TID_OP(READ_REQ) ||
5479              e->opcode == OP(RDMA_READ_REQUEST)) &&
5480             prev->opcode == TID_OP(WRITE_REQ)) {
5481                 req = ack_to_tid_req(prev);
5482                 if (req->ack_seg != req->total_segs) {
5483                         priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5484                         return true;
5485                 }
5486         }
5487         return false;
5488 }
5489
5490 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5491 {
5492         u64 reg;
5493
5494         /*
5495          * The only sane way to get the amount of
5496          * progress is to read the HW flow state.
5497          */
5498         reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5499         return mask_psn(reg);
5500 }
5501
5502 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5503                              struct ib_other_headers *ohdr,
5504                              struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5505 {
5506         unsigned long flags;
5507
5508         tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5509         if (fecn) {
5510                 spin_lock_irqsave(&qp->s_lock, flags);
5511                 qp->s_flags |= RVT_S_ECN;
5512                 spin_unlock_irqrestore(&qp->s_lock, flags);
5513         }
5514 }
5515
5516 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5517                                    struct hfi1_qp_priv *priv,
5518                                    struct hfi1_ctxtdata *rcd,
5519                                    struct tid_rdma_flow *flow,
5520                                    bool fecn)
5521 {
5522         /*
5523          * If a start/middle packet is delivered here due to
5524          * RSM rule and FECN, we need to update the r_next_psn.
5525          */
5526         if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5527             !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5528                 struct hfi1_devdata *dd = rcd->dd;
5529
5530                 flow->flow_state.r_next_psn =
5531                         read_r_next_psn(dd, rcd->ctxt, flow->idx);
5532         }
5533 }