sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / drivers / memory / tegra / tegra20-emc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tegra20 External Memory Controller driver
4  *
5  * Author: Dmitry Osipenko <digetx@gmail.com>
6  */
7
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk/tegra.h>
11 #include <linux/debugfs.h>
12 #include <linux/devfreq.h>
13 #include <linux/err.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_opp.h>
24 #include <linux/slab.h>
25 #include <linux/sort.h>
26 #include <linux/types.h>
27
28 #include <soc/tegra/common.h>
29 #include <soc/tegra/fuse.h>
30
31 #include "../jedec_ddr.h"
32 #include "../of_memory.h"
33
34 #include "mc.h"
35
36 #define EMC_INTSTATUS                           0x000
37 #define EMC_INTMASK                             0x004
38 #define EMC_DBG                                 0x008
39 #define EMC_ADR_CFG_0                           0x010
40 #define EMC_TIMING_CONTROL                      0x028
41 #define EMC_RC                                  0x02c
42 #define EMC_RFC                                 0x030
43 #define EMC_RAS                                 0x034
44 #define EMC_RP                                  0x038
45 #define EMC_R2W                                 0x03c
46 #define EMC_W2R                                 0x040
47 #define EMC_R2P                                 0x044
48 #define EMC_W2P                                 0x048
49 #define EMC_RD_RCD                              0x04c
50 #define EMC_WR_RCD                              0x050
51 #define EMC_RRD                                 0x054
52 #define EMC_REXT                                0x058
53 #define EMC_WDV                                 0x05c
54 #define EMC_QUSE                                0x060
55 #define EMC_QRST                                0x064
56 #define EMC_QSAFE                               0x068
57 #define EMC_RDV                                 0x06c
58 #define EMC_REFRESH                             0x070
59 #define EMC_BURST_REFRESH_NUM                   0x074
60 #define EMC_PDEX2WR                             0x078
61 #define EMC_PDEX2RD                             0x07c
62 #define EMC_PCHG2PDEN                           0x080
63 #define EMC_ACT2PDEN                            0x084
64 #define EMC_AR2PDEN                             0x088
65 #define EMC_RW2PDEN                             0x08c
66 #define EMC_TXSR                                0x090
67 #define EMC_TCKE                                0x094
68 #define EMC_TFAW                                0x098
69 #define EMC_TRPAB                               0x09c
70 #define EMC_TCLKSTABLE                          0x0a0
71 #define EMC_TCLKSTOP                            0x0a4
72 #define EMC_TREFBW                              0x0a8
73 #define EMC_QUSE_EXTRA                          0x0ac
74 #define EMC_ODT_WRITE                           0x0b0
75 #define EMC_ODT_READ                            0x0b4
76 #define EMC_MRR                                 0x0ec
77 #define EMC_FBIO_CFG5                           0x104
78 #define EMC_FBIO_CFG6                           0x114
79 #define EMC_STAT_CONTROL                        0x160
80 #define EMC_STAT_LLMC_CONTROL                   0x178
81 #define EMC_STAT_PWR_CLOCK_LIMIT                0x198
82 #define EMC_STAT_PWR_CLOCKS                     0x19c
83 #define EMC_STAT_PWR_COUNT                      0x1a0
84 #define EMC_AUTO_CAL_INTERVAL                   0x2a8
85 #define EMC_CFG_2                               0x2b8
86 #define EMC_CFG_DIG_DLL                         0x2bc
87 #define EMC_DLL_XFORM_DQS                       0x2c0
88 #define EMC_DLL_XFORM_QUSE                      0x2c4
89 #define EMC_ZCAL_REF_CNT                        0x2e0
90 #define EMC_ZCAL_WAIT_CNT                       0x2e4
91 #define EMC_CFG_CLKTRIM_0                       0x2d0
92 #define EMC_CFG_CLKTRIM_1                       0x2d4
93 #define EMC_CFG_CLKTRIM_2                       0x2d8
94
95 #define EMC_CLKCHANGE_REQ_ENABLE                BIT(0)
96 #define EMC_CLKCHANGE_PD_ENABLE                 BIT(1)
97 #define EMC_CLKCHANGE_SR_ENABLE                 BIT(2)
98
99 #define EMC_TIMING_UPDATE                       BIT(0)
100
101 #define EMC_REFRESH_OVERFLOW_INT                BIT(3)
102 #define EMC_CLKCHANGE_COMPLETE_INT              BIT(4)
103 #define EMC_MRR_DIVLD_INT                       BIT(5)
104
105 #define EMC_DBG_READ_MUX_ASSEMBLY               BIT(0)
106 #define EMC_DBG_WRITE_MUX_ACTIVE                BIT(1)
107 #define EMC_DBG_FORCE_UPDATE                    BIT(2)
108 #define EMC_DBG_READ_DQM_CTRL                   BIT(9)
109 #define EMC_DBG_CFG_PRIORITY                    BIT(24)
110
111 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16            BIT(4)
112 #define EMC_FBIO_CFG5_DRAM_TYPE                 GENMASK(1, 0)
113
114 #define EMC_MRR_DEV_SELECTN                     GENMASK(31, 30)
115 #define EMC_MRR_MRR_MA                          GENMASK(23, 16)
116 #define EMC_MRR_MRR_DATA                        GENMASK(15, 0)
117
118 #define EMC_ADR_CFG_0_EMEM_NUMDEV               GENMASK(25, 24)
119
120 #define EMC_PWR_GATHER_CLEAR                    (1 << 8)
121 #define EMC_PWR_GATHER_DISABLE                  (2 << 8)
122 #define EMC_PWR_GATHER_ENABLE                   (3 << 8)
123
124 enum emc_dram_type {
125         DRAM_TYPE_RESERVED,
126         DRAM_TYPE_DDR1,
127         DRAM_TYPE_LPDDR2,
128         DRAM_TYPE_DDR2,
129 };
130
131 static const u16 emc_timing_registers[] = {
132         EMC_RC,
133         EMC_RFC,
134         EMC_RAS,
135         EMC_RP,
136         EMC_R2W,
137         EMC_W2R,
138         EMC_R2P,
139         EMC_W2P,
140         EMC_RD_RCD,
141         EMC_WR_RCD,
142         EMC_RRD,
143         EMC_REXT,
144         EMC_WDV,
145         EMC_QUSE,
146         EMC_QRST,
147         EMC_QSAFE,
148         EMC_RDV,
149         EMC_REFRESH,
150         EMC_BURST_REFRESH_NUM,
151         EMC_PDEX2WR,
152         EMC_PDEX2RD,
153         EMC_PCHG2PDEN,
154         EMC_ACT2PDEN,
155         EMC_AR2PDEN,
156         EMC_RW2PDEN,
157         EMC_TXSR,
158         EMC_TCKE,
159         EMC_TFAW,
160         EMC_TRPAB,
161         EMC_TCLKSTABLE,
162         EMC_TCLKSTOP,
163         EMC_TREFBW,
164         EMC_QUSE_EXTRA,
165         EMC_FBIO_CFG6,
166         EMC_ODT_WRITE,
167         EMC_ODT_READ,
168         EMC_FBIO_CFG5,
169         EMC_CFG_DIG_DLL,
170         EMC_DLL_XFORM_DQS,
171         EMC_DLL_XFORM_QUSE,
172         EMC_ZCAL_REF_CNT,
173         EMC_ZCAL_WAIT_CNT,
174         EMC_AUTO_CAL_INTERVAL,
175         EMC_CFG_CLKTRIM_0,
176         EMC_CFG_CLKTRIM_1,
177         EMC_CFG_CLKTRIM_2,
178 };
179
180 struct emc_timing {
181         unsigned long rate;
182         u32 data[ARRAY_SIZE(emc_timing_registers)];
183 };
184
185 enum emc_rate_request_type {
186         EMC_RATE_DEVFREQ,
187         EMC_RATE_DEBUG,
188         EMC_RATE_ICC,
189         EMC_RATE_TYPE_MAX,
190 };
191
192 struct emc_rate_request {
193         unsigned long min_rate;
194         unsigned long max_rate;
195 };
196
197 struct tegra_emc {
198         struct device *dev;
199         struct tegra_mc *mc;
200         struct icc_provider provider;
201         struct notifier_block clk_nb;
202         struct clk *clk;
203         void __iomem *regs;
204         unsigned int dram_bus_width;
205
206         struct emc_timing *timings;
207         unsigned int num_timings;
208
209         struct {
210                 struct dentry *root;
211                 unsigned long min_rate;
212                 unsigned long max_rate;
213         } debugfs;
214
215         /*
216          * There are multiple sources in the EMC driver which could request
217          * a min/max clock rate, these rates are contained in this array.
218          */
219         struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
220
221         /* protect shared rate-change code path */
222         struct mutex rate_lock;
223
224         struct devfreq_simple_ondemand_data ondemand_data;
225
226         /* memory chip identity information */
227         union lpddr2_basic_config4 basic_conf4;
228         unsigned int manufacturer_id;
229         unsigned int revision_id1;
230         unsigned int revision_id2;
231
232         bool mrr_error;
233 };
234
235 static irqreturn_t tegra_emc_isr(int irq, void *data)
236 {
237         struct tegra_emc *emc = data;
238         u32 intmask = EMC_REFRESH_OVERFLOW_INT;
239         u32 status;
240
241         status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
242         if (!status)
243                 return IRQ_NONE;
244
245         /* notify about HW problem */
246         if (status & EMC_REFRESH_OVERFLOW_INT)
247                 dev_err_ratelimited(emc->dev,
248                                     "refresh request overflow timeout\n");
249
250         /* clear interrupts */
251         writel_relaxed(status, emc->regs + EMC_INTSTATUS);
252
253         return IRQ_HANDLED;
254 }
255
256 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
257                                                 unsigned long rate)
258 {
259         struct emc_timing *timing = NULL;
260         unsigned int i;
261
262         for (i = 0; i < emc->num_timings; i++) {
263                 if (emc->timings[i].rate >= rate) {
264                         timing = &emc->timings[i];
265                         break;
266                 }
267         }
268
269         if (!timing) {
270                 dev_err(emc->dev, "no timing for rate %lu\n", rate);
271                 return NULL;
272         }
273
274         return timing;
275 }
276
277 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
278 {
279         struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
280         unsigned int i;
281
282         if (!timing)
283                 return -EINVAL;
284
285         dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
286                 __func__, timing->rate, rate);
287
288         /* program shadow registers */
289         for (i = 0; i < ARRAY_SIZE(timing->data); i++)
290                 writel_relaxed(timing->data[i],
291                                emc->regs + emc_timing_registers[i]);
292
293         /* wait until programming has settled */
294         readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
295
296         return 0;
297 }
298
299 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
300 {
301         int err;
302         u32 v;
303
304         dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
305
306         if (flush) {
307                 /* manually initiate memory timing update */
308                 writel_relaxed(EMC_TIMING_UPDATE,
309                                emc->regs + EMC_TIMING_CONTROL);
310                 return 0;
311         }
312
313         err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
314                                                 v & EMC_CLKCHANGE_COMPLETE_INT,
315                                                 1, 100);
316         if (err) {
317                 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
318                 return err;
319         }
320
321         return 0;
322 }
323
324 static int tegra_emc_clk_change_notify(struct notifier_block *nb,
325                                        unsigned long msg, void *data)
326 {
327         struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
328         struct clk_notifier_data *cnd = data;
329         int err;
330
331         switch (msg) {
332         case PRE_RATE_CHANGE:
333                 err = emc_prepare_timing_change(emc, cnd->new_rate);
334                 break;
335
336         case ABORT_RATE_CHANGE:
337                 err = emc_prepare_timing_change(emc, cnd->old_rate);
338                 if (err)
339                         break;
340
341                 err = emc_complete_timing_change(emc, true);
342                 break;
343
344         case POST_RATE_CHANGE:
345                 err = emc_complete_timing_change(emc, false);
346                 break;
347
348         default:
349                 return NOTIFY_DONE;
350         }
351
352         return notifier_from_errno(err);
353 }
354
355 static int load_one_timing_from_dt(struct tegra_emc *emc,
356                                    struct emc_timing *timing,
357                                    struct device_node *node)
358 {
359         u32 rate;
360         int err;
361
362         if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
363                 dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
364                 return -EINVAL;
365         }
366
367         err = of_property_read_u32(node, "clock-frequency", &rate);
368         if (err) {
369                 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
370                         node, err);
371                 return err;
372         }
373
374         err = of_property_read_u32_array(node, "nvidia,emc-registers",
375                                          timing->data,
376                                          ARRAY_SIZE(emc_timing_registers));
377         if (err) {
378                 dev_err(emc->dev,
379                         "timing %pOF: failed to read emc timing data: %d\n",
380                         node, err);
381                 return err;
382         }
383
384         /*
385          * The EMC clock rate is twice the bus rate, and the bus rate is
386          * measured in kHz.
387          */
388         timing->rate = rate * 2 * 1000;
389
390         dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
391                 __func__, node, timing->rate);
392
393         return 0;
394 }
395
396 static int cmp_timings(const void *_a, const void *_b)
397 {
398         const struct emc_timing *a = _a;
399         const struct emc_timing *b = _b;
400
401         if (a->rate < b->rate)
402                 return -1;
403
404         if (a->rate > b->rate)
405                 return 1;
406
407         return 0;
408 }
409
410 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
411                                           struct device_node *node)
412 {
413         struct device_node *child;
414         struct emc_timing *timing;
415         int child_count;
416         int err;
417
418         child_count = of_get_child_count(node);
419         if (!child_count) {
420                 dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
421                 return -EINVAL;
422         }
423
424         emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
425                                     GFP_KERNEL);
426         if (!emc->timings)
427                 return -ENOMEM;
428
429         timing = emc->timings;
430
431         for_each_child_of_node(node, child) {
432                 if (of_node_name_eq(child, "lpddr2"))
433                         continue;
434
435                 err = load_one_timing_from_dt(emc, timing++, child);
436                 if (err) {
437                         of_node_put(child);
438                         return err;
439                 }
440
441                 emc->num_timings++;
442         }
443
444         sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
445              NULL);
446
447         dev_info_once(emc->dev,
448                       "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
449                       emc->num_timings,
450                       tegra_read_ram_code(),
451                       emc->timings[0].rate / 1000000,
452                       emc->timings[emc->num_timings - 1].rate / 1000000);
453
454         return 0;
455 }
456
457 static struct device_node *
458 tegra_emc_find_node_by_ram_code(struct tegra_emc *emc)
459 {
460         struct device *dev = emc->dev;
461         struct device_node *np;
462         u32 value, ram_code;
463         int err;
464
465         if (emc->mrr_error) {
466                 dev_warn(dev, "memory timings skipped due to MRR error\n");
467                 return NULL;
468         }
469
470         if (of_get_child_count(dev->of_node) == 0) {
471                 dev_info_once(dev, "device-tree doesn't have memory timings\n");
472                 return NULL;
473         }
474
475         if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
476                 return of_node_get(dev->of_node);
477
478         ram_code = tegra_read_ram_code();
479
480         for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
481              np = of_find_node_by_name(np, "emc-tables")) {
482                 err = of_property_read_u32(np, "nvidia,ram-code", &value);
483                 if (err || value != ram_code) {
484                         struct device_node *lpddr2_np;
485                         bool cfg_mismatches = false;
486
487                         lpddr2_np = of_find_node_by_name(np, "lpddr2");
488                         if (lpddr2_np) {
489                                 const struct lpddr2_info *info;
490
491                                 info = of_lpddr2_get_info(lpddr2_np, dev);
492                                 if (info) {
493                                         if (info->manufacturer_id >= 0 &&
494                                             info->manufacturer_id != emc->manufacturer_id)
495                                                 cfg_mismatches = true;
496
497                                         if (info->revision_id1 >= 0 &&
498                                             info->revision_id1 != emc->revision_id1)
499                                                 cfg_mismatches = true;
500
501                                         if (info->revision_id2 >= 0 &&
502                                             info->revision_id2 != emc->revision_id2)
503                                                 cfg_mismatches = true;
504
505                                         if (info->density != emc->basic_conf4.density)
506                                                 cfg_mismatches = true;
507
508                                         if (info->io_width != emc->basic_conf4.io_width)
509                                                 cfg_mismatches = true;
510
511                                         if (info->arch_type != emc->basic_conf4.arch_type)
512                                                 cfg_mismatches = true;
513                                 } else {
514                                         dev_err(dev, "failed to parse %pOF\n", lpddr2_np);
515                                         cfg_mismatches = true;
516                                 }
517
518                                 of_node_put(lpddr2_np);
519                         } else {
520                                 cfg_mismatches = true;
521                         }
522
523                         if (cfg_mismatches) {
524                                 of_node_put(np);
525                                 continue;
526                         }
527                 }
528
529                 return np;
530         }
531
532         dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
533                 ram_code);
534
535         return NULL;
536 }
537
538 static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
539                                         unsigned int emem_dev,
540                                         unsigned int register_addr,
541                                         unsigned int *register_data)
542 {
543         u32 memory_dev = emem_dev ? 1 : 2;
544         u32 val, mr_mask = 0xff;
545         int err;
546
547         /* clear data-valid interrupt status */
548         writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
549
550         /* issue mode register read request */
551         val  = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
552         val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
553
554         writel_relaxed(val, emc->regs + EMC_MRR);
555
556         /* wait for the LPDDR2 data-valid interrupt */
557         err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
558                                                 val & EMC_MRR_DIVLD_INT,
559                                                 1, 100);
560         if (err) {
561                 dev_err(emc->dev, "mode register %u read failed: %d\n",
562                         register_addr, err);
563                 emc->mrr_error = true;
564                 return err;
565         }
566
567         /* read out mode register data */
568         val = readl_relaxed(emc->regs + EMC_MRR);
569         *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
570
571         return 0;
572 }
573
574 static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
575                                       unsigned int emem_dev,
576                                       bool print_out)
577 {
578         /* these registers are standard for all LPDDR JEDEC memory chips */
579         emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id);
580         emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1);
581         emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2);
582         emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value);
583
584         if (!print_out)
585                 return;
586
587         dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
588                  emem_dev, emc->manufacturer_id,
589                  lpddr2_jedec_manufacturer(emc->manufacturer_id),
590                  emc->revision_id1, emc->revision_id2,
591                  4 >> emc->basic_conf4.arch_type,
592                  64 << emc->basic_conf4.density,
593                  32 >> emc->basic_conf4.io_width);
594 }
595
596 static int emc_setup_hw(struct tegra_emc *emc)
597 {
598         u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg;
599         u32 intmask = EMC_REFRESH_OVERFLOW_INT;
600         static bool print_sdram_info_once;
601         enum emc_dram_type dram_type;
602         const char *dram_type_str;
603         unsigned int emem_numdev;
604
605         emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
606
607         /*
608          * Depending on a memory type, DRAM should enter either self-refresh
609          * or power-down state on EMC clock change.
610          */
611         if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
612             !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
613                 dev_err(emc->dev,
614                         "bootloader didn't specify DRAM auto-suspend mode\n");
615                 return -EINVAL;
616         }
617
618         /* enable EMC and CAR to handshake on PLL divider/source changes */
619         emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
620         writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
621
622         /* initialize interrupt */
623         writel_relaxed(intmask, emc->regs + EMC_INTMASK);
624         writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
625
626         /* ensure that unwanted debug features are disabled */
627         emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
628         emc_dbg |= EMC_DBG_CFG_PRIORITY;
629         emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
630         emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
631         emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
632         writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
633
634         emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
635
636         if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
637                 emc->dram_bus_width = 16;
638         else
639                 emc->dram_bus_width = 32;
640
641         dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio);
642
643         switch (dram_type) {
644         case DRAM_TYPE_RESERVED:
645                 dram_type_str = "INVALID";
646                 break;
647         case DRAM_TYPE_DDR1:
648                 dram_type_str = "DDR1";
649                 break;
650         case DRAM_TYPE_LPDDR2:
651                 dram_type_str = "LPDDR2";
652                 break;
653         case DRAM_TYPE_DDR2:
654                 dram_type_str = "DDR2";
655                 break;
656         }
657
658         emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0);
659         emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1;
660
661         dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n",
662                       emc->dram_bus_width, emem_numdev, dram_type_str,
663                       emem_numdev == 2 ? "devices" : "device");
664
665         if (dram_type == DRAM_TYPE_LPDDR2) {
666                 while (emem_numdev--)
667                         emc_read_lpddr_sdram_info(emc, emem_numdev,
668                                                   !print_sdram_info_once);
669                 print_sdram_info_once = true;
670         }
671
672         return 0;
673 }
674
675 static long emc_round_rate(unsigned long rate,
676                            unsigned long min_rate,
677                            unsigned long max_rate,
678                            void *arg)
679 {
680         struct emc_timing *timing = NULL;
681         struct tegra_emc *emc = arg;
682         unsigned int i;
683
684         if (!emc->num_timings)
685                 return clk_get_rate(emc->clk);
686
687         min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
688
689         for (i = 0; i < emc->num_timings; i++) {
690                 if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
691                         continue;
692
693                 if (emc->timings[i].rate > max_rate) {
694                         i = max(i, 1u) - 1;
695
696                         if (emc->timings[i].rate < min_rate)
697                                 break;
698                 }
699
700                 if (emc->timings[i].rate < min_rate)
701                         continue;
702
703                 timing = &emc->timings[i];
704                 break;
705         }
706
707         if (!timing) {
708                 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
709                         rate, min_rate, max_rate);
710                 return -EINVAL;
711         }
712
713         return timing->rate;
714 }
715
716 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
717 {
718         unsigned int i;
719
720         for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
721                 emc->requested_rate[i].min_rate = 0;
722                 emc->requested_rate[i].max_rate = ULONG_MAX;
723         }
724 }
725
726 static int emc_request_rate(struct tegra_emc *emc,
727                             unsigned long new_min_rate,
728                             unsigned long new_max_rate,
729                             enum emc_rate_request_type type)
730 {
731         struct emc_rate_request *req = emc->requested_rate;
732         unsigned long min_rate = 0, max_rate = ULONG_MAX;
733         unsigned int i;
734         int err;
735
736         /* select minimum and maximum rates among the requested rates */
737         for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
738                 if (i == type) {
739                         min_rate = max(new_min_rate, min_rate);
740                         max_rate = min(new_max_rate, max_rate);
741                 } else {
742                         min_rate = max(req->min_rate, min_rate);
743                         max_rate = min(req->max_rate, max_rate);
744                 }
745         }
746
747         if (min_rate > max_rate) {
748                 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
749                                     __func__, type, min_rate, max_rate);
750                 return -ERANGE;
751         }
752
753         /*
754          * EMC rate-changes should go via OPP API because it manages voltage
755          * changes.
756          */
757         err = dev_pm_opp_set_rate(emc->dev, min_rate);
758         if (err)
759                 return err;
760
761         emc->requested_rate[type].min_rate = new_min_rate;
762         emc->requested_rate[type].max_rate = new_max_rate;
763
764         return 0;
765 }
766
767 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
768                             enum emc_rate_request_type type)
769 {
770         struct emc_rate_request *req = &emc->requested_rate[type];
771         int ret;
772
773         mutex_lock(&emc->rate_lock);
774         ret = emc_request_rate(emc, rate, req->max_rate, type);
775         mutex_unlock(&emc->rate_lock);
776
777         return ret;
778 }
779
780 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
781                             enum emc_rate_request_type type)
782 {
783         struct emc_rate_request *req = &emc->requested_rate[type];
784         int ret;
785
786         mutex_lock(&emc->rate_lock);
787         ret = emc_request_rate(emc, req->min_rate, rate, type);
788         mutex_unlock(&emc->rate_lock);
789
790         return ret;
791 }
792
793 /*
794  * debugfs interface
795  *
796  * The memory controller driver exposes some files in debugfs that can be used
797  * to control the EMC frequency. The top-level directory can be found here:
798  *
799  *   /sys/kernel/debug/emc
800  *
801  * It contains the following files:
802  *
803  *   - available_rates: This file contains a list of valid, space-separated
804  *     EMC frequencies.
805  *
806  *   - min_rate: Writing a value to this file sets the given frequency as the
807  *       floor of the permitted range. If this is higher than the currently
808  *       configured EMC frequency, this will cause the frequency to be
809  *       increased so that it stays within the valid range.
810  *
811  *   - max_rate: Similarily to the min_rate file, writing a value to this file
812  *       sets the given frequency as the ceiling of the permitted range. If
813  *       the value is lower than the currently configured EMC frequency, this
814  *       will cause the frequency to be decreased so that it stays within the
815  *       valid range.
816  */
817
818 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
819 {
820         unsigned int i;
821
822         for (i = 0; i < emc->num_timings; i++)
823                 if (rate == emc->timings[i].rate)
824                         return true;
825
826         return false;
827 }
828
829 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
830 {
831         struct tegra_emc *emc = s->private;
832         const char *prefix = "";
833         unsigned int i;
834
835         for (i = 0; i < emc->num_timings; i++) {
836                 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
837                 prefix = " ";
838         }
839
840         seq_puts(s, "\n");
841
842         return 0;
843 }
844 DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates);
845
846 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
847 {
848         struct tegra_emc *emc = data;
849
850         *rate = emc->debugfs.min_rate;
851
852         return 0;
853 }
854
855 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
856 {
857         struct tegra_emc *emc = data;
858         int err;
859
860         if (!tegra_emc_validate_rate(emc, rate))
861                 return -EINVAL;
862
863         err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
864         if (err < 0)
865                 return err;
866
867         emc->debugfs.min_rate = rate;
868
869         return 0;
870 }
871
872 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
873                         tegra_emc_debug_min_rate_get,
874                         tegra_emc_debug_min_rate_set, "%llu\n");
875
876 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
877 {
878         struct tegra_emc *emc = data;
879
880         *rate = emc->debugfs.max_rate;
881
882         return 0;
883 }
884
885 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
886 {
887         struct tegra_emc *emc = data;
888         int err;
889
890         if (!tegra_emc_validate_rate(emc, rate))
891                 return -EINVAL;
892
893         err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
894         if (err < 0)
895                 return err;
896
897         emc->debugfs.max_rate = rate;
898
899         return 0;
900 }
901
902 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
903                         tegra_emc_debug_max_rate_get,
904                         tegra_emc_debug_max_rate_set, "%llu\n");
905
906 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
907 {
908         struct device *dev = emc->dev;
909         unsigned int i;
910         int err;
911
912         emc->debugfs.min_rate = ULONG_MAX;
913         emc->debugfs.max_rate = 0;
914
915         for (i = 0; i < emc->num_timings; i++) {
916                 if (emc->timings[i].rate < emc->debugfs.min_rate)
917                         emc->debugfs.min_rate = emc->timings[i].rate;
918
919                 if (emc->timings[i].rate > emc->debugfs.max_rate)
920                         emc->debugfs.max_rate = emc->timings[i].rate;
921         }
922
923         if (!emc->num_timings) {
924                 emc->debugfs.min_rate = clk_get_rate(emc->clk);
925                 emc->debugfs.max_rate = emc->debugfs.min_rate;
926         }
927
928         err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
929                                  emc->debugfs.max_rate);
930         if (err < 0) {
931                 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
932                         emc->debugfs.min_rate, emc->debugfs.max_rate,
933                         emc->clk);
934         }
935
936         emc->debugfs.root = debugfs_create_dir("emc", NULL);
937
938         debugfs_create_file("available_rates", 0444, emc->debugfs.root,
939                             emc, &tegra_emc_debug_available_rates_fops);
940         debugfs_create_file("min_rate", 0644, emc->debugfs.root,
941                             emc, &tegra_emc_debug_min_rate_fops);
942         debugfs_create_file("max_rate", 0644, emc->debugfs.root,
943                             emc, &tegra_emc_debug_max_rate_fops);
944 }
945
946 static inline struct tegra_emc *
947 to_tegra_emc_provider(struct icc_provider *provider)
948 {
949         return container_of(provider, struct tegra_emc, provider);
950 }
951
952 static struct icc_node_data *
953 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
954 {
955         struct icc_provider *provider = data;
956         struct icc_node_data *ndata;
957         struct icc_node *node;
958
959         /* External Memory is the only possible ICC route */
960         list_for_each_entry(node, &provider->nodes, node_list) {
961                 if (node->id != TEGRA_ICC_EMEM)
962                         continue;
963
964                 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
965                 if (!ndata)
966                         return ERR_PTR(-ENOMEM);
967
968                 /*
969                  * SRC and DST nodes should have matching TAG in order to have
970                  * it set by default for a requested path.
971                  */
972                 ndata->tag = TEGRA_MC_ICC_TAG_ISO;
973                 ndata->node = node;
974
975                 return ndata;
976         }
977
978         return ERR_PTR(-EPROBE_DEFER);
979 }
980
981 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
982 {
983         struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
984         unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
985         unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
986         unsigned long long rate = max(avg_bw, peak_bw);
987         unsigned int dram_data_bus_width_bytes;
988         int err;
989
990         /*
991          * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
992          * is sampled on both clock edges.  This means that EMC clock rate
993          * equals to the peak data-rate.
994          */
995         dram_data_bus_width_bytes = emc->dram_bus_width / 8;
996         do_div(rate, dram_data_bus_width_bytes);
997         rate = min_t(u64, rate, U32_MAX);
998
999         err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
1000         if (err)
1001                 return err;
1002
1003         return 0;
1004 }
1005
1006 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
1007 {
1008         const struct tegra_mc_soc *soc;
1009         struct icc_node *node;
1010         int err;
1011
1012         emc->mc = devm_tegra_memory_controller_get(emc->dev);
1013         if (IS_ERR(emc->mc))
1014                 return PTR_ERR(emc->mc);
1015
1016         soc = emc->mc->soc;
1017
1018         emc->provider.dev = emc->dev;
1019         emc->provider.set = emc_icc_set;
1020         emc->provider.data = &emc->provider;
1021         emc->provider.aggregate = soc->icc_ops->aggregate;
1022         emc->provider.xlate_extended = emc_of_icc_xlate_extended;
1023
1024         icc_provider_init(&emc->provider);
1025
1026         /* create External Memory Controller node */
1027         node = icc_node_create(TEGRA_ICC_EMC);
1028         if (IS_ERR(node)) {
1029                 err = PTR_ERR(node);
1030                 goto err_msg;
1031         }
1032
1033         node->name = "External Memory Controller";
1034         icc_node_add(node, &emc->provider);
1035
1036         /* link External Memory Controller to External Memory (DRAM) */
1037         err = icc_link_create(node, TEGRA_ICC_EMEM);
1038         if (err)
1039                 goto remove_nodes;
1040
1041         /* create External Memory node */
1042         node = icc_node_create(TEGRA_ICC_EMEM);
1043         if (IS_ERR(node)) {
1044                 err = PTR_ERR(node);
1045                 goto remove_nodes;
1046         }
1047
1048         node->name = "External Memory (DRAM)";
1049         icc_node_add(node, &emc->provider);
1050
1051         err = icc_provider_register(&emc->provider);
1052         if (err)
1053                 goto remove_nodes;
1054
1055         return 0;
1056
1057 remove_nodes:
1058         icc_nodes_remove(&emc->provider);
1059 err_msg:
1060         dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
1061
1062         return err;
1063 }
1064
1065 static void devm_tegra_emc_unset_callback(void *data)
1066 {
1067         tegra20_clk_set_emc_round_callback(NULL, NULL);
1068 }
1069
1070 static void devm_tegra_emc_unreg_clk_notifier(void *data)
1071 {
1072         struct tegra_emc *emc = data;
1073
1074         clk_notifier_unregister(emc->clk, &emc->clk_nb);
1075 }
1076
1077 static int tegra_emc_init_clk(struct tegra_emc *emc)
1078 {
1079         int err;
1080
1081         tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
1082
1083         err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
1084                                        NULL);
1085         if (err)
1086                 return err;
1087
1088         emc->clk = devm_clk_get(emc->dev, NULL);
1089         if (IS_ERR(emc->clk)) {
1090                 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
1091                 return PTR_ERR(emc->clk);
1092         }
1093
1094         err = clk_notifier_register(emc->clk, &emc->clk_nb);
1095         if (err) {
1096                 dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
1097                 return err;
1098         }
1099
1100         err = devm_add_action_or_reset(emc->dev,
1101                                        devm_tegra_emc_unreg_clk_notifier, emc);
1102         if (err)
1103                 return err;
1104
1105         return 0;
1106 }
1107
1108 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
1109                                     u32 flags)
1110 {
1111         struct tegra_emc *emc = dev_get_drvdata(dev);
1112         struct dev_pm_opp *opp;
1113         unsigned long rate;
1114
1115         opp = devfreq_recommended_opp(dev, freq, flags);
1116         if (IS_ERR(opp)) {
1117                 dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
1118                 return PTR_ERR(opp);
1119         }
1120
1121         rate = dev_pm_opp_get_freq(opp);
1122         dev_pm_opp_put(opp);
1123
1124         return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
1125 }
1126
1127 static int tegra_emc_devfreq_get_dev_status(struct device *dev,
1128                                             struct devfreq_dev_status *stat)
1129 {
1130         struct tegra_emc *emc = dev_get_drvdata(dev);
1131
1132         /* freeze counters */
1133         writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
1134
1135         /*
1136          *  busy_time: number of clocks EMC request was accepted
1137          * total_time: number of clocks PWR_GATHER control was set to ENABLE
1138          */
1139         stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
1140         stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
1141         stat->current_frequency = clk_get_rate(emc->clk);
1142
1143         /* clear counters and restart */
1144         writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
1145         writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
1146
1147         return 0;
1148 }
1149
1150 static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
1151         .polling_ms = 30,
1152         .target = tegra_emc_devfreq_target,
1153         .get_dev_status = tegra_emc_devfreq_get_dev_status,
1154 };
1155
1156 static int tegra_emc_devfreq_init(struct tegra_emc *emc)
1157 {
1158         struct devfreq *devfreq;
1159
1160         /*
1161          * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
1162          * should be less than 50.  Secondly, multiple active memory clients
1163          * may cause over 20% of lost clock cycles due to stalls caused by
1164          * competing memory accesses.  This means that threshold should be
1165          * set to a less than 30 in order to have a properly working governor.
1166          */
1167         emc->ondemand_data.upthreshold = 20;
1168
1169         /*
1170          * Reset statistic gathers state, select global bandwidth for the
1171          * statistics collection mode and set clocks counter saturation
1172          * limit to maximum.
1173          */
1174         writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
1175         writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
1176         writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
1177
1178         devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
1179                                           DEVFREQ_GOV_SIMPLE_ONDEMAND,
1180                                           &emc->ondemand_data);
1181         if (IS_ERR(devfreq)) {
1182                 dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
1183                 return PTR_ERR(devfreq);
1184         }
1185
1186         return 0;
1187 }
1188
1189 static int tegra_emc_probe(struct platform_device *pdev)
1190 {
1191         struct tegra_core_opp_params opp_params = {};
1192         struct device_node *np;
1193         struct tegra_emc *emc;
1194         int irq, err;
1195
1196         irq = platform_get_irq(pdev, 0);
1197         if (irq < 0) {
1198                 dev_err(&pdev->dev, "please update your device tree\n");
1199                 return irq;
1200         }
1201
1202         emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1203         if (!emc)
1204                 return -ENOMEM;
1205
1206         mutex_init(&emc->rate_lock);
1207         emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
1208         emc->dev = &pdev->dev;
1209
1210         emc->regs = devm_platform_ioremap_resource(pdev, 0);
1211         if (IS_ERR(emc->regs))
1212                 return PTR_ERR(emc->regs);
1213
1214         err = emc_setup_hw(emc);
1215         if (err)
1216                 return err;
1217
1218         np = tegra_emc_find_node_by_ram_code(emc);
1219         if (np) {
1220                 err = tegra_emc_load_timings_from_dt(emc, np);
1221                 of_node_put(np);
1222                 if (err)
1223                         return err;
1224         }
1225
1226         err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
1227                                dev_name(&pdev->dev), emc);
1228         if (err) {
1229                 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1230                 return err;
1231         }
1232
1233         err = tegra_emc_init_clk(emc);
1234         if (err)
1235                 return err;
1236
1237         opp_params.init_state = true;
1238
1239         err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
1240         if (err)
1241                 return err;
1242
1243         platform_set_drvdata(pdev, emc);
1244         tegra_emc_rate_requests_init(emc);
1245         tegra_emc_debugfs_init(emc);
1246         tegra_emc_interconnect_init(emc);
1247         tegra_emc_devfreq_init(emc);
1248
1249         /*
1250          * Don't allow the kernel module to be unloaded. Unloading adds some
1251          * extra complexity which doesn't really worth the effort in a case of
1252          * this driver.
1253          */
1254         try_module_get(THIS_MODULE);
1255
1256         return 0;
1257 }
1258
1259 static const struct of_device_id tegra_emc_of_match[] = {
1260         { .compatible = "nvidia,tegra20-emc", },
1261         {},
1262 };
1263 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1264
1265 static struct platform_driver tegra_emc_driver = {
1266         .probe = tegra_emc_probe,
1267         .driver = {
1268                 .name = "tegra20-emc",
1269                 .of_match_table = tegra_emc_of_match,
1270                 .suppress_bind_attrs = true,
1271                 .sync_state = icc_sync_state,
1272         },
1273 };
1274 module_platform_driver(tegra_emc_driver);
1275
1276 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1277 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
1278 MODULE_SOFTDEP("pre: governor_simpleondemand");
1279 MODULE_LICENSE("GPL v2");