27a881da4d6e63523e1942b65ec4a21429fffcac
[sfrench/cifs-2.6.git] / drivers / mfd / db8500-prcmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include "db8500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE           0x2FC
43 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE                0
58 #define PRCM_AVS_VOLTAGE_MASK           0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP          6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE           7
62 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS        0xFFF
65 #define PRCM_ROMCODE_A2P        0xFFE
66 #define PRCM_ROMCODE_P2A        0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS          0
98 #define MB0H_CONFIG_WAKEUPS_EXE         1
99 #define MB0H_READ_WAKEUP_ACK            3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF    0x1
135 #define PLL_SOC0_ON     0x2
136 #define PLL_SOC1_OFF    0x4
137 #define PLL_SOC1_ON     0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS        0x0
147 #define MB2H_AUTO_PWR   0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC        0x0
167 #define MB3H_SIDETONE   0x1
168 #define MB3H_SYSCLK     0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT   0x0
181 #define MB4H_MEM_ST     0x1
182 #define MB4H_HOTDOG     0x12
183 #define MB4H_HOTMON     0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW                       BIT(0)
201 #define HOTMON_CONFIG_HIGH                      BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS                     0
208 #define A9WDOG_ID_MASK                          0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN               BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230  * Wakeups/IRQs
231  */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264         bool valid;
265         struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307         IRQ_ENTRY(RTC),
308         IRQ_ENTRY(RTT0),
309         IRQ_ENTRY(RTT1),
310         IRQ_ENTRY(HSI0),
311         IRQ_ENTRY(HSI1),
312         IRQ_ENTRY(CA_WAKE),
313         IRQ_ENTRY(USB),
314         IRQ_ENTRY(ABB),
315         IRQ_ENTRY(ABB_FIFO),
316         IRQ_ENTRY(CA_SLEEP),
317         IRQ_ENTRY(ARM),
318         IRQ_ENTRY(HOTMON_LOW),
319         IRQ_ENTRY(HOTMON_HIGH),
320         IRQ_ENTRY(MODEM_SW_RESET_REQ),
321         IRQ_ENTRY(GPIO0),
322         IRQ_ENTRY(GPIO1),
323         IRQ_ENTRY(GPIO2),
324         IRQ_ENTRY(GPIO3),
325         IRQ_ENTRY(GPIO4),
326         IRQ_ENTRY(GPIO5),
327         IRQ_ENTRY(GPIO6),
328         IRQ_ENTRY(GPIO7),
329         IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335         WAKEUP_ENTRY(RTC),
336         WAKEUP_ENTRY(RTT0),
337         WAKEUP_ENTRY(RTT1),
338         WAKEUP_ENTRY(HSI0),
339         WAKEUP_ENTRY(HSI1),
340         WAKEUP_ENTRY(USB),
341         WAKEUP_ENTRY(ABB),
342         WAKEUP_ENTRY(ABB_FIFO),
343         WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:               The transaction lock.
349  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
350  *                      the request data.
351  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
352  * @req:                Request data that need to persist between requests.
353  */
354 static struct {
355         spinlock_t lock;
356         spinlock_t dbb_irqs_lock;
357         struct work_struct mask_work;
358         struct mutex ac_wake_lock;
359         struct completion ac_wake_work;
360         struct {
361                 u32 dbb_irqs;
362                 u32 dbb_wakeups;
363                 u32 abb_events;
364         } req;
365 } mb0_transfer;
366
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:       The transaction lock.
370  * @work:       The transaction completion structure.
371  * @ape_opp:    The current APE OPP.
372  * @ack:        Reply ("acknowledge") data.
373  */
374 static struct {
375         struct mutex lock;
376         struct completion work;
377         u8 ape_opp;
378         struct {
379                 u8 header;
380                 u8 arm_opp;
381                 u8 ape_opp;
382                 u8 ape_voltage_status;
383         } ack;
384 } mb1_transfer;
385
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396         struct mutex lock;
397         struct completion work;
398         spinlock_t auto_pm_lock;
399         bool auto_pm_enabled;
400         struct {
401                 u8 status;
402         } ack;
403 } mb2_transfer;
404
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:               The request lock.
408  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:        Work structure used for sysclk requests.
410  */
411 static struct {
412         spinlock_t lock;
413         struct mutex sysclk_lock;
414         struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:       The transaction lock.
420  * @work:       The transaction completion structure.
421  */
422 static struct {
423         struct mutex lock;
424         struct completion work;
425 } mb4_transfer;
426
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:       The transaction lock.
430  * @work:       The transaction completion structure.
431  * @ack:        Reply ("acknowledge") data.
432  */
433 static struct {
434         struct mutex lock;
435         struct completion work;
436         struct {
437                 u8 status;
438                 u8 value;
439         } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453         u32 offset;
454         u32 pllsw;
455         int branch;
456         bool clk38div;
457 };
458
459 enum {
460         PLL_RAW,
461         PLL_FIX,
462         PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502         u32 divsel_mask;
503         u32 divsel_shift;
504         u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508         {
509                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512         },
513         {
514                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517         }
518 };
519
520 struct dsiescclk {
521         u32 en;
522         u32 div_mask;
523         u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527         {
528                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531         },
532         {
533                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536         },
537         {
538                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541         }
542 };
543
544 u32 db8500_prcmu_read(unsigned int reg)
545 {
546         return readl(prcmu_base + reg);
547 }
548
549 void db8500_prcmu_write(unsigned int reg, u32 value)
550 {
551         unsigned long flags;
552
553         spin_lock_irqsave(&prcmu_lock, flags);
554         writel(value, (prcmu_base + reg));
555         spin_unlock_irqrestore(&prcmu_lock, flags);
556 }
557
558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559 {
560         u32 val;
561         unsigned long flags;
562
563         spin_lock_irqsave(&prcmu_lock, flags);
564         val = readl(prcmu_base + reg);
565         val = ((val & ~mask) | (value & mask));
566         writel(val, (prcmu_base + reg));
567         spin_unlock_irqrestore(&prcmu_lock, flags);
568 }
569
570 struct prcmu_fw_version *prcmu_get_fw_version(void)
571 {
572         return fw_info.valid ? &fw_info.version : NULL;
573 }
574
575 static bool prcmu_is_ulppll_disabled(void)
576 {
577         struct prcmu_fw_version *ver;
578
579         ver = prcmu_get_fw_version();
580         return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581 }
582
583 bool prcmu_has_arm_maxopp(void)
584 {
585         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587 }
588
589 /**
590  * prcmu_set_rc_a2p - This function is used to run few power state sequences
591  * @val: Value to be set, i.e. transition requested
592  * Returns: 0 on success, -EINVAL on invalid argument
593  *
594  * This function is used to run the following power state sequences -
595  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596  */
597 int prcmu_set_rc_a2p(enum romcode_write val)
598 {
599         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600                 return -EINVAL;
601         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602         return 0;
603 }
604
605 /**
606  * prcmu_get_rc_p2a - This function is used to get power state sequences
607  * Returns: the power transition that has last happened
608  *
609  * This function can return the following transitions-
610  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611  */
612 enum romcode_read prcmu_get_rc_p2a(void)
613 {
614         return readb(tcdm_base + PRCM_ROMCODE_P2A);
615 }
616
617 /**
618  * prcmu_get_xp70_current_state - Return the current XP70 power mode
619  * Returns: Returns the current AP(ARM) power mode: init,
620  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621  */
622 enum ap_pwrst prcmu_get_xp70_current_state(void)
623 {
624         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625 }
626
627 /**
628  * prcmu_config_clkout - Configure one of the programmable clock outputs.
629  * @clkout:     The CLKOUT number (0 or 1).
630  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
631  * @div:        The divider to be applied.
632  *
633  * Configures one of the programmable clock outputs (CLKOUTs).
634  * @div should be in the range [1,63] to request a configuration, or 0 to
635  * inform that the configuration is no longer requested.
636  */
637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638 {
639         static int requests[2];
640         int r = 0;
641         unsigned long flags;
642         u32 val;
643         u32 bits;
644         u32 mask;
645         u32 div_mask;
646
647         BUG_ON(clkout > 1);
648         BUG_ON(div > 63);
649         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650
651         if (!div && !requests[clkout])
652                 return -EINVAL;
653
654         if (clkout == 0) {
655                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659         } else {
660                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662                         PRCM_CLKOCR_CLK1TYPE);
663                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665         }
666         bits &= mask;
667
668         spin_lock_irqsave(&clkout_lock, flags);
669
670         val = readl(PRCM_CLKOCR);
671         if (val & div_mask) {
672                 if (div) {
673                         if ((val & mask) != bits) {
674                                 r = -EBUSY;
675                                 goto unlock_and_return;
676                         }
677                 } else {
678                         if ((val & mask & ~div_mask) != bits) {
679                                 r = -EINVAL;
680                                 goto unlock_and_return;
681                         }
682                 }
683         }
684         writel((bits | (val & ~mask)), PRCM_CLKOCR);
685         requests[clkout] += (div ? 1 : -1);
686
687 unlock_and_return:
688         spin_unlock_irqrestore(&clkout_lock, flags);
689
690         return r;
691 }
692
693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694 {
695         unsigned long flags;
696
697         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698
699         spin_lock_irqsave(&mb0_transfer.lock, flags);
700
701         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702                 cpu_relax();
703
704         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707         writeb((keep_ulp_clk ? 1 : 0),
708                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711
712         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713
714         return 0;
715 }
716
717 u8 db8500_prcmu_get_power_state_result(void)
718 {
719         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720 }
721
722 /* This function should only be called while mb0_transfer.lock is held. */
723 static void config_wakeups(void)
724 {
725         const u8 header[2] = {
726                 MB0H_CONFIG_WAKEUPS_EXE,
727                 MB0H_CONFIG_WAKEUPS_SLEEP
728         };
729         static u32 last_dbb_events;
730         static u32 last_abb_events;
731         u32 dbb_events;
732         u32 abb_events;
733         unsigned int i;
734
735         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737
738         abb_events = mb0_transfer.req.abb_events;
739
740         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741                 return;
742
743         for (i = 0; i < 2; i++) {
744                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745                         cpu_relax();
746                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750         }
751         last_dbb_events = dbb_events;
752         last_abb_events = abb_events;
753 }
754
755 void db8500_prcmu_enable_wakeups(u32 wakeups)
756 {
757         unsigned long flags;
758         u32 bits;
759         int i;
760
761         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762
763         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764                 if (wakeups & BIT(i))
765                         bits |= prcmu_wakeup_bit[i];
766         }
767
768         spin_lock_irqsave(&mb0_transfer.lock, flags);
769
770         mb0_transfer.req.dbb_wakeups = bits;
771         config_wakeups();
772
773         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774 }
775
776 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777 {
778         unsigned long flags;
779
780         spin_lock_irqsave(&mb0_transfer.lock, flags);
781
782         mb0_transfer.req.abb_events = abb_events;
783         config_wakeups();
784
785         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786 }
787
788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789 {
790         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792         else
793                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794 }
795
796 /**
797  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798  * @opp: The new ARM operating point to which transition is to be made
799  * Returns: 0 on success, non-zero on failure
800  *
801  * This function sets the operating point of the ARM.
802  */
803 int db8500_prcmu_set_arm_opp(u8 opp)
804 {
805         int r;
806
807         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808                 return -EINVAL;
809
810         r = 0;
811
812         mutex_lock(&mb1_transfer.lock);
813
814         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815                 cpu_relax();
816
817         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820
821         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822         wait_for_completion(&mb1_transfer.work);
823
824         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825                 (mb1_transfer.ack.arm_opp != opp))
826                 r = -EIO;
827
828         mutex_unlock(&mb1_transfer.lock);
829
830         return r;
831 }
832
833 /**
834  * db8500_prcmu_get_arm_opp - get the current ARM OPP
835  *
836  * Returns: the current ARM OPP
837  */
838 int db8500_prcmu_get_arm_opp(void)
839 {
840         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841 }
842
843 /**
844  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845  *
846  * Returns: the current DDR OPP
847  */
848 int db8500_prcmu_get_ddr_opp(void)
849 {
850         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851 }
852
853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
854 static void request_even_slower_clocks(bool enable)
855 {
856         u32 clock_reg[] = {
857                 PRCM_ACLK_MGT,
858                 PRCM_DMACLK_MGT
859         };
860         unsigned long flags;
861         unsigned int i;
862
863         spin_lock_irqsave(&clk_mgt_lock, flags);
864
865         /* Grab the HW semaphore. */
866         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867                 cpu_relax();
868
869         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870                 u32 val;
871                 u32 div;
872
873                 val = readl(prcmu_base + clock_reg[i]);
874                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875                 if (enable) {
876                         if ((div <= 1) || (div > 15)) {
877                                 pr_err("prcmu: Bad clock divider %d in %s\n",
878                                         div, __func__);
879                                 goto unlock_and_return;
880                         }
881                         div <<= 1;
882                 } else {
883                         if (div <= 2)
884                                 goto unlock_and_return;
885                         div >>= 1;
886                 }
887                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889                 writel(val, prcmu_base + clock_reg[i]);
890         }
891
892 unlock_and_return:
893         /* Release the HW semaphore. */
894         writel(0, PRCM_SEM);
895
896         spin_unlock_irqrestore(&clk_mgt_lock, flags);
897 }
898
899 /**
900  * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901  * @opp: The new APE operating point to which transition is to be made
902  * Returns: 0 on success, non-zero on failure
903  *
904  * This function sets the operating point of the APE.
905  */
906 int db8500_prcmu_set_ape_opp(u8 opp)
907 {
908         int r = 0;
909
910         if (opp == mb1_transfer.ape_opp)
911                 return 0;
912
913         mutex_lock(&mb1_transfer.lock);
914
915         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916                 request_even_slower_clocks(false);
917
918         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919                 goto skip_message;
920
921         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922                 cpu_relax();
923
924         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
929         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930         wait_for_completion(&mb1_transfer.work);
931
932         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933                 (mb1_transfer.ack.ape_opp != opp))
934                 r = -EIO;
935
936 skip_message:
937         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939                 request_even_slower_clocks(true);
940         if (!r)
941                 mb1_transfer.ape_opp = opp;
942
943         mutex_unlock(&mb1_transfer.lock);
944
945         return r;
946 }
947
948 /**
949  * db8500_prcmu_get_ape_opp - get the current APE OPP
950  *
951  * Returns: the current APE OPP
952  */
953 int db8500_prcmu_get_ape_opp(void)
954 {
955         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956 }
957
958 /**
959  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960  * @enable: true to request the higher voltage, false to drop a request.
961  *
962  * Calls to this function to enable and disable requests must be balanced.
963  */
964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965 {
966         int r = 0;
967         u8 header;
968         static unsigned int requests;
969
970         mutex_lock(&mb1_transfer.lock);
971
972         if (enable) {
973                 if (0 != requests++)
974                         goto unlock_and_return;
975                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
976         } else {
977                 if (requests == 0) {
978                         r = -EIO;
979                         goto unlock_and_return;
980                 } else if (1 != requests--) {
981                         goto unlock_and_return;
982                 }
983                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
984         }
985
986         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987                 cpu_relax();
988
989         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990
991         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992         wait_for_completion(&mb1_transfer.work);
993
994         if ((mb1_transfer.ack.header != header) ||
995                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996                 r = -EIO;
997
998 unlock_and_return:
999         mutex_unlock(&mb1_transfer.lock);
1000
1001         return r;
1002 }
1003
1004 /**
1005  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006  *
1007  * This function releases the power state requirements of a USB wakeup.
1008  */
1009 int prcmu_release_usb_wakeup_state(void)
1010 {
1011         int r = 0;
1012
1013         mutex_lock(&mb1_transfer.lock);
1014
1015         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016                 cpu_relax();
1017
1018         writeb(MB1H_RELEASE_USB_WAKEUP,
1019                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022         wait_for_completion(&mb1_transfer.work);
1023
1024         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026                 r = -EIO;
1027
1028         mutex_unlock(&mb1_transfer.lock);
1029
1030         return r;
1031 }
1032
1033 static int request_pll(u8 clock, bool enable)
1034 {
1035         int r = 0;
1036
1037         if (clock == PRCMU_PLLSOC0)
1038                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039         else if (clock == PRCMU_PLLSOC1)
1040                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041         else
1042                 return -EINVAL;
1043
1044         mutex_lock(&mb1_transfer.lock);
1045
1046         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047                 cpu_relax();
1048
1049         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053         wait_for_completion(&mb1_transfer.work);
1054
1055         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056                 r = -EIO;
1057
1058         mutex_unlock(&mb1_transfer.lock);
1059
1060         return r;
1061 }
1062
1063 /**
1064  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065  * @epod_id: The EPOD to set
1066  * @epod_state: The new EPOD state
1067  *
1068  * This function sets the state of a EPOD (power domain). It may not be called
1069  * from interrupt context.
1070  */
1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072 {
1073         int r = 0;
1074         bool ram_retention = false;
1075         int i;
1076
1077         /* check argument */
1078         BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080         /* set flag if retention is possible */
1081         switch (epod_id) {
1082         case EPOD_ID_SVAMMDSP:
1083         case EPOD_ID_SIAMMDSP:
1084         case EPOD_ID_ESRAM12:
1085         case EPOD_ID_ESRAM34:
1086                 ram_retention = true;
1087                 break;
1088         }
1089
1090         /* check argument */
1091         BUG_ON(epod_state > EPOD_STATE_ON);
1092         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094         /* get lock */
1095         mutex_lock(&mb2_transfer.lock);
1096
1097         /* wait for mailbox */
1098         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099                 cpu_relax();
1100
1101         /* fill in mailbox */
1102         for (i = 0; i < NUM_EPOD_ID; i++)
1103                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110         /*
1111          * The current firmware version does not handle errors correctly,
1112          * and we cannot recover if there is an error.
1113          * This is expected to change when the firmware is updated.
1114          */
1115         if (!wait_for_completion_timeout(&mb2_transfer.work,
1116                         msecs_to_jiffies(20000))) {
1117                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118                         __func__);
1119                 r = -EIO;
1120                 goto unlock_and_return;
1121         }
1122
1123         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124                 r = -EIO;
1125
1126 unlock_and_return:
1127         mutex_unlock(&mb2_transfer.lock);
1128         return r;
1129 }
1130
1131 /**
1132  * prcmu_configure_auto_pm - Configure autonomous power management.
1133  * @sleep: Configuration for ApSleep.
1134  * @idle:  Configuration for ApIdle.
1135  */
1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137         struct prcmu_auto_pm_config *idle)
1138 {
1139         u32 sleep_cfg;
1140         u32 idle_cfg;
1141         unsigned long flags;
1142
1143         BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161         /*
1162          * The autonomous power management configuration is done through
1163          * fields in mailbox 2, but these fields are only used as shared
1164          * variables - i.e. there is no need to send a message.
1165          */
1166         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169         mb2_transfer.auto_pm_enabled =
1170                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176 }
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179 bool prcmu_is_auto_pm_enabled(void)
1180 {
1181         return mb2_transfer.auto_pm_enabled;
1182 }
1183
1184 static int request_sysclk(bool enable)
1185 {
1186         int r;
1187         unsigned long flags;
1188
1189         r = 0;
1190
1191         mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193         spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196                 cpu_relax();
1197
1198         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205         /*
1206          * The firmware only sends an ACK if we want to enable the
1207          * SysClk, and it succeeds.
1208          */
1209         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210                         msecs_to_jiffies(20000))) {
1211                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212                         __func__);
1213                 r = -EIO;
1214         }
1215
1216         mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218         return r;
1219 }
1220
1221 static int request_timclk(bool enable)
1222 {
1223         u32 val;
1224
1225         /*
1226          * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227          * PLL is disabled so we cannot use doze mode, this will
1228          * stop the clock on this firmware.
1229          */
1230         if (prcmu_is_ulppll_disabled())
1231                 val = 0;
1232         else
1233                 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235         if (!enable)
1236                 val |= PRCM_TCR_STOP_TIMERS |
1237                         PRCM_TCR_DOZE_MODE |
1238                         PRCM_TCR_TENSEL_MASK;
1239
1240         writel(val, PRCM_TCR);
1241
1242         return 0;
1243 }
1244
1245 static int request_clock(u8 clock, bool enable)
1246 {
1247         u32 val;
1248         unsigned long flags;
1249
1250         spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252         /* Grab the HW semaphore. */
1253         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254                 cpu_relax();
1255
1256         val = readl(prcmu_base + clk_mgt[clock].offset);
1257         if (enable) {
1258                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259         } else {
1260                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262         }
1263         writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265         /* Release the HW semaphore. */
1266         writel(0, PRCM_SEM);
1267
1268         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270         return 0;
1271 }
1272
1273 static int request_sga_clock(u8 clock, bool enable)
1274 {
1275         u32 val;
1276         int ret;
1277
1278         if (enable) {
1279                 val = readl(PRCM_CGATING_BYPASS);
1280                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281         }
1282
1283         ret = request_clock(clock, enable);
1284
1285         if (!ret && !enable) {
1286                 val = readl(PRCM_CGATING_BYPASS);
1287                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288         }
1289
1290         return ret;
1291 }
1292
1293 static inline bool plldsi_locked(void)
1294 {
1295         return (readl(PRCM_PLLDSI_LOCKP) &
1296                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300 }
1301
1302 static int request_plldsi(bool enable)
1303 {
1304         int r = 0;
1305         u32 val;
1306
1307         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311         val = readl(PRCM_PLLDSI_ENABLE);
1312         if (enable)
1313                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314         else
1315                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316         writel(val, PRCM_PLLDSI_ENABLE);
1317
1318         if (enable) {
1319                 unsigned int i;
1320                 bool locked = plldsi_locked();
1321
1322                 for (i = 10; !locked && (i > 0); --i) {
1323                         udelay(100);
1324                         locked = plldsi_locked();
1325                 }
1326                 if (locked) {
1327                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328                                 PRCM_APE_RESETN_SET);
1329                 } else {
1330                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332                                 PRCM_MMIP_LS_CLAMP_SET);
1333                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334                         writel(val, PRCM_PLLDSI_ENABLE);
1335                         r = -EAGAIN;
1336                 }
1337         } else {
1338                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339         }
1340         return r;
1341 }
1342
1343 static int request_dsiclk(u8 n, bool enable)
1344 {
1345         u32 val;
1346
1347         val = readl(PRCM_DSI_PLLOUT_SEL);
1348         val &= ~dsiclk[n].divsel_mask;
1349         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350                 dsiclk[n].divsel_shift);
1351         writel(val, PRCM_DSI_PLLOUT_SEL);
1352         return 0;
1353 }
1354
1355 static int request_dsiescclk(u8 n, bool enable)
1356 {
1357         u32 val;
1358
1359         val = readl(PRCM_DSITVCLK_DIV);
1360         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361         writel(val, PRCM_DSITVCLK_DIV);
1362         return 0;
1363 }
1364
1365 /**
1366  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367  * @clock:      The clock for which the request is made.
1368  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369  *
1370  * This function should only be used by the clock implementation.
1371  * Do not use it from any other place!
1372  */
1373 int db8500_prcmu_request_clock(u8 clock, bool enable)
1374 {
1375         if (clock == PRCMU_SGACLK)
1376                 return request_sga_clock(clock, enable);
1377         else if (clock < PRCMU_NUM_REG_CLOCKS)
1378                 return request_clock(clock, enable);
1379         else if (clock == PRCMU_TIMCLK)
1380                 return request_timclk(enable);
1381         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385         else if (clock == PRCMU_PLLDSI)
1386                 return request_plldsi(enable);
1387         else if (clock == PRCMU_SYSCLK)
1388                 return request_sysclk(enable);
1389         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390                 return request_pll(clock, enable);
1391         else
1392                 return -EINVAL;
1393 }
1394
1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396         int branch)
1397 {
1398         u64 rate;
1399         u32 val;
1400         u32 d;
1401         u32 div = 1;
1402
1403         val = readl(reg);
1404
1405         rate = src_rate;
1406         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409         if (d > 1)
1410                 div *= d;
1411
1412         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413         if (d > 1)
1414                 div *= d;
1415
1416         if (val & PRCM_PLL_FREQ_SELDIV2)
1417                 div *= 2;
1418
1419         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1421                 ((reg == PRCM_PLLSOC0_FREQ) ||
1422                  (reg == PRCM_PLLARM_FREQ) ||
1423                  (reg == PRCM_PLLDDR_FREQ))))
1424                 div *= 2;
1425
1426         (void)do_div(rate, div);
1427
1428         return (unsigned long)rate;
1429 }
1430
1431 #define ROOT_CLOCK_RATE 38400000
1432
1433 static unsigned long clock_rate(u8 clock)
1434 {
1435         u32 val;
1436         u32 pllsw;
1437         unsigned long rate = ROOT_CLOCK_RATE;
1438
1439         val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441         if (val & PRCM_CLK_MGT_CLK38) {
1442                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443                         rate /= 2;
1444                 return rate;
1445         }
1446
1447         val |= clk_mgt[clock].pllsw;
1448         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456         else
1457                 return 0;
1458
1459         if ((clock == PRCMU_SGACLK) &&
1460                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461                 u64 r = (rate * 10);
1462
1463                 (void)do_div(r, 25);
1464                 return (unsigned long)r;
1465         }
1466         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467         if (val)
1468                 return rate / val;
1469         else
1470                 return 0;
1471 }
1472
1473 static unsigned long armss_rate(void)
1474 {
1475         u32 r;
1476         unsigned long rate;
1477
1478         r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481                 /* External ARMCLKFIX clock */
1482
1483                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485                 /* Check PRCM_ARM_CHGCLKREQ divider */
1486                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487                         rate /= 2;
1488
1489                 /* Check PRCM_ARMCLKFIX_MGT divider */
1490                 r = readl(PRCM_ARMCLKFIX_MGT);
1491                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492                 rate /= r;
1493
1494         } else {/* ARM PLL */
1495                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496         }
1497
1498         return rate;
1499 }
1500
1501 static unsigned long dsiclk_rate(u8 n)
1502 {
1503         u32 divsel;
1504         u32 div = 1;
1505
1506         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510                 divsel = dsiclk[n].divsel;
1511         else
1512                 dsiclk[n].divsel = divsel;
1513
1514         switch (divsel) {
1515         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516                 div *= 2;
1517                 fallthrough;
1518         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519                 div *= 2;
1520                 fallthrough;
1521         case PRCM_DSI_PLLOUT_SEL_PHI:
1522                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523                         PLL_RAW) / div;
1524         default:
1525                 return 0;
1526         }
1527 }
1528
1529 static unsigned long dsiescclk_rate(u8 n)
1530 {
1531         u32 div;
1532
1533         div = readl(PRCM_DSITVCLK_DIV);
1534         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536 }
1537
1538 unsigned long prcmu_clock_rate(u8 clock)
1539 {
1540         if (clock < PRCMU_NUM_REG_CLOCKS)
1541                 return clock_rate(clock);
1542         else if (clock == PRCMU_TIMCLK)
1543                 return prcmu_is_ulppll_disabled() ?
1544                         32768 : ROOT_CLOCK_RATE / 16;
1545         else if (clock == PRCMU_SYSCLK)
1546                 return ROOT_CLOCK_RATE;
1547         else if (clock == PRCMU_PLLSOC0)
1548                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549         else if (clock == PRCMU_PLLSOC1)
1550                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551         else if (clock == PRCMU_ARMSS)
1552                 return armss_rate();
1553         else if (clock == PRCMU_PLLDDR)
1554                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555         else if (clock == PRCMU_PLLDSI)
1556                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557                         PLL_RAW);
1558         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562         else
1563                 return 0;
1564 }
1565
1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567 {
1568         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569                 return ROOT_CLOCK_RATE;
1570         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577         else
1578                 return 0;
1579 }
1580
1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582 {
1583         u32 div;
1584
1585         div = (src_rate / rate);
1586         if (div == 0)
1587                 return 1;
1588         if (rate < (src_rate / div))
1589                 div++;
1590         return div;
1591 }
1592
1593 static long round_clock_rate(u8 clock, unsigned long rate)
1594 {
1595         u32 val;
1596         u32 div;
1597         unsigned long src_rate;
1598         long rounded_rate;
1599
1600         val = readl(prcmu_base + clk_mgt[clock].offset);
1601         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602                 clk_mgt[clock].branch);
1603         div = clock_divider(src_rate, rate);
1604         if (val & PRCM_CLK_MGT_CLK38) {
1605                 if (clk_mgt[clock].clk38div) {
1606                         if (div > 2)
1607                                 div = 2;
1608                 } else {
1609                         div = 1;
1610                 }
1611         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612                 u64 r = (src_rate * 10);
1613
1614                 (void)do_div(r, 25);
1615                 if (r <= rate)
1616                         return (unsigned long)r;
1617         }
1618         rounded_rate = (src_rate / min(div, (u32)31));
1619
1620         return rounded_rate;
1621 }
1622
1623 static const unsigned long db8500_armss_freqs[] = {
1624         199680000,
1625         399360000,
1626         798720000,
1627         998400000
1628 };
1629
1630 /* The DB8520 has slightly higher ARMSS max frequency */
1631 static const unsigned long db8520_armss_freqs[] = {
1632         199680000,
1633         399360000,
1634         798720000,
1635         1152000000
1636 };
1637
1638 static long round_armss_rate(unsigned long rate)
1639 {
1640         unsigned long freq = 0;
1641         const unsigned long *freqs;
1642         int nfreqs;
1643         int i;
1644
1645         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646                 freqs = db8520_armss_freqs;
1647                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648         } else {
1649                 freqs = db8500_armss_freqs;
1650                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651         }
1652
1653         /* Find the corresponding arm opp from the cpufreq table. */
1654         for (i = 0; i < nfreqs; i++) {
1655                 freq = freqs[i];
1656                 if (rate <= freq)
1657                         break;
1658         }
1659
1660         /* Return the last valid value, even if a match was not found. */
1661         return freq;
1662 }
1663
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667 static long round_plldsi_rate(unsigned long rate)
1668 {
1669         long rounded_rate = 0;
1670         unsigned long src_rate;
1671         unsigned long rem;
1672         u32 r;
1673
1674         src_rate = clock_rate(PRCMU_HDMICLK);
1675         rem = rate;
1676
1677         for (r = 7; (rem > 0) && (r > 0); r--) {
1678                 u64 d;
1679
1680                 d = (r * rate);
1681                 (void)do_div(d, src_rate);
1682                 if (d < 6)
1683                         d = 6;
1684                 else if (d > 255)
1685                         d = 255;
1686                 d *= src_rate;
1687                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689                         continue;
1690                 (void)do_div(d, r);
1691                 if (rate < d) {
1692                         if (rounded_rate == 0)
1693                                 rounded_rate = (long)d;
1694                         break;
1695                 }
1696                 if ((rate - d) < rem) {
1697                         rem = (rate - d);
1698                         rounded_rate = (long)d;
1699                 }
1700         }
1701         return rounded_rate;
1702 }
1703
1704 static long round_dsiclk_rate(unsigned long rate)
1705 {
1706         u32 div;
1707         unsigned long src_rate;
1708         long rounded_rate;
1709
1710         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711                 PLL_RAW);
1712         div = clock_divider(src_rate, rate);
1713         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715         return rounded_rate;
1716 }
1717
1718 static long round_dsiescclk_rate(unsigned long rate)
1719 {
1720         u32 div;
1721         unsigned long src_rate;
1722         long rounded_rate;
1723
1724         src_rate = clock_rate(PRCMU_TVCLK);
1725         div = clock_divider(src_rate, rate);
1726         rounded_rate = (src_rate / min(div, (u32)255));
1727
1728         return rounded_rate;
1729 }
1730
1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732 {
1733         if (clock < PRCMU_NUM_REG_CLOCKS)
1734                 return round_clock_rate(clock, rate);
1735         else if (clock == PRCMU_ARMSS)
1736                 return round_armss_rate(rate);
1737         else if (clock == PRCMU_PLLDSI)
1738                 return round_plldsi_rate(rate);
1739         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740                 return round_dsiclk_rate(rate);
1741         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742                 return round_dsiescclk_rate(rate);
1743         else
1744                 return (long)prcmu_clock_rate(clock);
1745 }
1746
1747 static void set_clock_rate(u8 clock, unsigned long rate)
1748 {
1749         u32 val;
1750         u32 div;
1751         unsigned long src_rate;
1752         unsigned long flags;
1753
1754         spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756         /* Grab the HW semaphore. */
1757         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758                 cpu_relax();
1759
1760         val = readl(prcmu_base + clk_mgt[clock].offset);
1761         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762                 clk_mgt[clock].branch);
1763         div = clock_divider(src_rate, rate);
1764         if (val & PRCM_CLK_MGT_CLK38) {
1765                 if (clk_mgt[clock].clk38div) {
1766                         if (div > 1)
1767                                 val |= PRCM_CLK_MGT_CLK38DIV;
1768                         else
1769                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1770                 }
1771         } else if (clock == PRCMU_SGACLK) {
1772                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774                 if (div == 3) {
1775                         u64 r = (src_rate * 10);
1776
1777                         (void)do_div(r, 25);
1778                         if (r <= rate) {
1779                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780                                 div = 0;
1781                         }
1782                 }
1783                 val |= min(div, (u32)31);
1784         } else {
1785                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786                 val |= min(div, (u32)31);
1787         }
1788         writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790         /* Release the HW semaphore. */
1791         writel(0, PRCM_SEM);
1792
1793         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794 }
1795
1796 static int set_armss_rate(unsigned long rate)
1797 {
1798         unsigned long freq;
1799         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800         const unsigned long *freqs;
1801         int nfreqs;
1802         int i;
1803
1804         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805                 freqs = db8520_armss_freqs;
1806                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807         } else {
1808                 freqs = db8500_armss_freqs;
1809                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810         }
1811
1812         /* Find the corresponding arm opp from the cpufreq table. */
1813         for (i = 0; i < nfreqs; i++) {
1814                 freq = freqs[i];
1815                 if (rate == freq)
1816                         break;
1817         }
1818
1819         if (rate != freq)
1820                 return -EINVAL;
1821
1822         /* Set the new arm opp. */
1823         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824         return db8500_prcmu_set_arm_opp(opps[i]);
1825 }
1826
1827 static int set_plldsi_rate(unsigned long rate)
1828 {
1829         unsigned long src_rate;
1830         unsigned long rem;
1831         u32 pll_freq = 0;
1832         u32 r;
1833
1834         src_rate = clock_rate(PRCMU_HDMICLK);
1835         rem = rate;
1836
1837         for (r = 7; (rem > 0) && (r > 0); r--) {
1838                 u64 d;
1839                 u64 hwrate;
1840
1841                 d = (r * rate);
1842                 (void)do_div(d, src_rate);
1843                 if (d < 6)
1844                         d = 6;
1845                 else if (d > 255)
1846                         d = 255;
1847                 hwrate = (d * src_rate);
1848                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850                         continue;
1851                 (void)do_div(hwrate, r);
1852                 if (rate < hwrate) {
1853                         if (pll_freq == 0)
1854                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1856                         break;
1857                 }
1858                 if ((rate - hwrate) < rem) {
1859                         rem = (rate - hwrate);
1860                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1862                 }
1863         }
1864         if (pll_freq == 0)
1865                 return -EINVAL;
1866
1867         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868         writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870         return 0;
1871 }
1872
1873 static void set_dsiclk_rate(u8 n, unsigned long rate)
1874 {
1875         u32 val;
1876         u32 div;
1877
1878         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885         val = readl(PRCM_DSI_PLLOUT_SEL);
1886         val &= ~dsiclk[n].divsel_mask;
1887         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888         writel(val, PRCM_DSI_PLLOUT_SEL);
1889 }
1890
1891 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892 {
1893         u32 val;
1894         u32 div;
1895
1896         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897         val = readl(PRCM_DSITVCLK_DIV);
1898         val &= ~dsiescclk[n].div_mask;
1899         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900         writel(val, PRCM_DSITVCLK_DIV);
1901 }
1902
1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904 {
1905         if (clock < PRCMU_NUM_REG_CLOCKS)
1906                 set_clock_rate(clock, rate);
1907         else if (clock == PRCMU_ARMSS)
1908                 return set_armss_rate(rate);
1909         else if (clock == PRCMU_PLLDSI)
1910                 return set_plldsi_rate(rate);
1911         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915         return 0;
1916 }
1917
1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919 {
1920         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922                 return -EINVAL;
1923
1924         mutex_lock(&mb4_transfer.lock);
1925
1926         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927                 cpu_relax();
1928
1929         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932         writeb(DDR_PWR_STATE_ON,
1933                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937         wait_for_completion(&mb4_transfer.work);
1938
1939         mutex_unlock(&mb4_transfer.lock);
1940
1941         return 0;
1942 }
1943
1944 int db8500_prcmu_config_hotdog(u8 threshold)
1945 {
1946         mutex_lock(&mb4_transfer.lock);
1947
1948         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949                 cpu_relax();
1950
1951         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955         wait_for_completion(&mb4_transfer.work);
1956
1957         mutex_unlock(&mb4_transfer.lock);
1958
1959         return 0;
1960 }
1961
1962 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963 {
1964         mutex_lock(&mb4_transfer.lock);
1965
1966         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967                 cpu_relax();
1968
1969         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976         wait_for_completion(&mb4_transfer.work);
1977
1978         mutex_unlock(&mb4_transfer.lock);
1979
1980         return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984 static int config_hot_period(u16 val)
1985 {
1986         mutex_lock(&mb4_transfer.lock);
1987
1988         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989                 cpu_relax();
1990
1991         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995         wait_for_completion(&mb4_transfer.work);
1996
1997         mutex_unlock(&mb4_transfer.lock);
1998
1999         return 0;
2000 }
2001
2002 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003 {
2004         if (cycles32k == 0xFFFF)
2005                 return -EINVAL;
2006
2007         return config_hot_period(cycles32k);
2008 }
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011 int db8500_prcmu_stop_temp_sense(void)
2012 {
2013         return config_hot_period(0xFFFF);
2014 }
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018 {
2019
2020         mutex_lock(&mb4_transfer.lock);
2021
2022         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023                 cpu_relax();
2024
2025         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033         wait_for_completion(&mb4_transfer.work);
2034
2035         mutex_unlock(&mb4_transfer.lock);
2036
2037         return 0;
2038
2039 }
2040
2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042 {
2043         BUG_ON(num == 0 || num > 0xf);
2044         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046                             A9WDOG_AUTO_OFF_DIS);
2047 }
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050 int db8500_prcmu_enable_a9wdog(u8 id)
2051 {
2052         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053 }
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056 int db8500_prcmu_disable_a9wdog(u8 id)
2057 {
2058         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059 }
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062 int db8500_prcmu_kick_a9wdog(u8 id)
2063 {
2064         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065 }
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068 /*
2069  * timeout is 28 bit, in ms.
2070  */
2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072 {
2073         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074                             (id & A9WDOG_ID_MASK) |
2075                             /*
2076                              * Put the lowest 28 bits of timeout at
2077                              * offset 4. Four first bits are used for id.
2078                              */
2079                             (u8)((timeout << 4) & 0xf0),
2080                             (u8)((timeout >> 4) & 0xff),
2081                             (u8)((timeout >> 12) & 0xff),
2082                             (u8)((timeout >> 20) & 0xff));
2083 }
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086 /**
2087  * prcmu_abb_read() - Read register value(s) from the ABB.
2088  * @slave:      The I2C slave address.
2089  * @reg:        The (start) register address.
2090  * @value:      The read out value(s).
2091  * @size:       The number of registers to read.
2092  *
2093  * Reads register value(s) from the ABB.
2094  * @size has to be 1 for the current firmware version.
2095  */
2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097 {
2098         int r;
2099
2100         if (size != 1)
2101                 return -EINVAL;
2102
2103         mutex_lock(&mb5_transfer.lock);
2104
2105         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106                 cpu_relax();
2107
2108         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116         if (!wait_for_completion_timeout(&mb5_transfer.work,
2117                                 msecs_to_jiffies(20000))) {
2118                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119                         __func__);
2120                 r = -EIO;
2121         } else {
2122                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123         }
2124
2125         if (!r)
2126                 *value = mb5_transfer.ack.value;
2127
2128         mutex_unlock(&mb5_transfer.lock);
2129
2130         return r;
2131 }
2132
2133 /**
2134  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135  * @slave:      The I2C slave address.
2136  * @reg:        The (start) register address.
2137  * @value:      The value(s) to write.
2138  * @mask:       The mask(s) to use.
2139  * @size:       The number of registers to write.
2140  *
2141  * Writes masked register value(s) to the ABB.
2142  * For each @value, only the bits set to 1 in the corresponding @mask
2143  * will be written. The other bits are not changed.
2144  * @size has to be 1 for the current firmware version.
2145  */
2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147 {
2148         int r;
2149
2150         if (size != 1)
2151                 return -EINVAL;
2152
2153         mutex_lock(&mb5_transfer.lock);
2154
2155         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156                 cpu_relax();
2157
2158         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166         if (!wait_for_completion_timeout(&mb5_transfer.work,
2167                                 msecs_to_jiffies(20000))) {
2168                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169                         __func__);
2170                 r = -EIO;
2171         } else {
2172                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173         }
2174
2175         mutex_unlock(&mb5_transfer.lock);
2176
2177         return r;
2178 }
2179
2180 /**
2181  * prcmu_abb_write() - Write register value(s) to the ABB.
2182  * @slave:      The I2C slave address.
2183  * @reg:        The (start) register address.
2184  * @value:      The value(s) to write.
2185  * @size:       The number of registers to write.
2186  *
2187  * Writes register value(s) to the ABB.
2188  * @size has to be 1 for the current firmware version.
2189  */
2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191 {
2192         u8 mask = ~0;
2193
2194         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195 }
2196
2197 /**
2198  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199  */
2200 int prcmu_ac_wake_req(void)
2201 {
2202         u32 val;
2203         int ret = 0;
2204
2205         mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207         val = readl(PRCM_HOSTACCESS_REQ);
2208         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209                 goto unlock_and_return;
2210
2211         atomic_set(&ac_wake_req_state, 1);
2212
2213         /*
2214          * Force Modem Wake-up before hostaccess_req ping-pong.
2215          * It prevents Modem to enter in Sleep while acking the hostaccess
2216          * request. The 31us delay has been calculated by HWI.
2217          */
2218         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219         writel(val, PRCM_HOSTACCESS_REQ);
2220
2221         udelay(31);
2222
2223         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224         writel(val, PRCM_HOSTACCESS_REQ);
2225
2226         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227                         msecs_to_jiffies(5000))) {
2228                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229                         __func__);
2230                 ret = -EFAULT;
2231         }
2232
2233 unlock_and_return:
2234         mutex_unlock(&mb0_transfer.ac_wake_lock);
2235         return ret;
2236 }
2237
2238 /**
2239  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240  */
2241 void prcmu_ac_sleep_req(void)
2242 {
2243         u32 val;
2244
2245         mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247         val = readl(PRCM_HOSTACCESS_REQ);
2248         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249                 goto unlock_and_return;
2250
2251         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252                 PRCM_HOSTACCESS_REQ);
2253
2254         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255                         msecs_to_jiffies(5000))) {
2256                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257                         __func__);
2258         }
2259
2260         atomic_set(&ac_wake_req_state, 0);
2261
2262 unlock_and_return:
2263         mutex_unlock(&mb0_transfer.ac_wake_lock);
2264 }
2265
2266 bool db8500_prcmu_is_ac_wake_requested(void)
2267 {
2268         return (atomic_read(&ac_wake_req_state) != 0);
2269 }
2270
2271 /**
2272  * db8500_prcmu_system_reset - System reset
2273  *
2274  * Saves the reset reason code and then sets the APE_SOFTRST register which
2275  * fires interrupt to fw
2276  *
2277  * @reset_code: The reason for system reset
2278  */
2279 void db8500_prcmu_system_reset(u16 reset_code)
2280 {
2281         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282         writel(1, PRCM_APE_SOFTRST);
2283 }
2284
2285 /**
2286  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287  *
2288  * Retrieves the reset reason code stored by prcmu_system_reset() before
2289  * last restart.
2290  */
2291 u16 db8500_prcmu_get_reset_code(void)
2292 {
2293         return readw(tcdm_base + PRCM_SW_RST_REASON);
2294 }
2295
2296 /**
2297  * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298  */
2299 void db8500_prcmu_modem_reset(void)
2300 {
2301         mutex_lock(&mb1_transfer.lock);
2302
2303         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304                 cpu_relax();
2305
2306         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308         wait_for_completion(&mb1_transfer.work);
2309
2310         /*
2311          * No need to check return from PRCMU as modem should go in reset state
2312          * This state is already managed by upper layer
2313          */
2314
2315         mutex_unlock(&mb1_transfer.lock);
2316 }
2317
2318 static void ack_dbb_wakeup(void)
2319 {
2320         unsigned long flags;
2321
2322         spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325                 cpu_relax();
2326
2327         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331 }
2332
2333 static inline void print_unknown_header_warning(u8 n, u8 header)
2334 {
2335         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336                 header, n);
2337 }
2338
2339 static bool read_mailbox_0(void)
2340 {
2341         bool r;
2342         u32 ev;
2343         unsigned int n;
2344         u8 header;
2345
2346         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347         switch (header) {
2348         case MB0H_WAKEUP_EXE:
2349         case MB0H_WAKEUP_SLEEP:
2350                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352                 else
2353                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356                         complete(&mb0_transfer.ac_wake_work);
2357                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2358                         complete(&mb3_transfer.sysclk_work);
2359
2360                 ev &= mb0_transfer.req.dbb_irqs;
2361
2362                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363                         if (ev & prcmu_irq_bit[n])
2364                                 generic_handle_domain_irq(db8500_irq_domain, n);
2365                 }
2366                 r = true;
2367                 break;
2368         default:
2369                 print_unknown_header_warning(0, header);
2370                 r = false;
2371                 break;
2372         }
2373         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374         return r;
2375 }
2376
2377 static bool read_mailbox_1(void)
2378 {
2379         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2384         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387         complete(&mb1_transfer.work);
2388         return false;
2389 }
2390
2391 static bool read_mailbox_2(void)
2392 {
2393         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395         complete(&mb2_transfer.work);
2396         return false;
2397 }
2398
2399 static bool read_mailbox_3(void)
2400 {
2401         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402         return false;
2403 }
2404
2405 static bool read_mailbox_4(void)
2406 {
2407         u8 header;
2408         bool do_complete = true;
2409
2410         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411         switch (header) {
2412         case MB4H_MEM_ST:
2413         case MB4H_HOTDOG:
2414         case MB4H_HOTMON:
2415         case MB4H_HOT_PERIOD:
2416         case MB4H_A9WDOG_CONF:
2417         case MB4H_A9WDOG_EN:
2418         case MB4H_A9WDOG_DIS:
2419         case MB4H_A9WDOG_LOAD:
2420         case MB4H_A9WDOG_KICK:
2421                 break;
2422         default:
2423                 print_unknown_header_warning(4, header);
2424                 do_complete = false;
2425                 break;
2426         }
2427
2428         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430         if (do_complete)
2431                 complete(&mb4_transfer.work);
2432
2433         return false;
2434 }
2435
2436 static bool read_mailbox_5(void)
2437 {
2438         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441         complete(&mb5_transfer.work);
2442         return false;
2443 }
2444
2445 static bool read_mailbox_6(void)
2446 {
2447         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448         return false;
2449 }
2450
2451 static bool read_mailbox_7(void)
2452 {
2453         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454         return false;
2455 }
2456
2457 static bool (* const read_mailbox[NUM_MB])(void) = {
2458         read_mailbox_0,
2459         read_mailbox_1,
2460         read_mailbox_2,
2461         read_mailbox_3,
2462         read_mailbox_4,
2463         read_mailbox_5,
2464         read_mailbox_6,
2465         read_mailbox_7
2466 };
2467
2468 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469 {
2470         u32 bits;
2471         u8 n;
2472         irqreturn_t r;
2473
2474         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475         if (unlikely(!bits))
2476                 return IRQ_NONE;
2477
2478         r = IRQ_HANDLED;
2479         for (n = 0; bits; n++) {
2480                 if (bits & MBOX_BIT(n)) {
2481                         bits -= MBOX_BIT(n);
2482                         if (read_mailbox[n]())
2483                                 r = IRQ_WAKE_THREAD;
2484                 }
2485         }
2486         return r;
2487 }
2488
2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490 {
2491         ack_dbb_wakeup();
2492         return IRQ_HANDLED;
2493 }
2494
2495 static void prcmu_mask_work(struct work_struct *work)
2496 {
2497         unsigned long flags;
2498
2499         spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501         config_wakeups();
2502
2503         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504 }
2505
2506 static void prcmu_irq_mask(struct irq_data *d)
2507 {
2508         unsigned long flags;
2509
2510         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517                 schedule_work(&mb0_transfer.mask_work);
2518 }
2519
2520 static void prcmu_irq_unmask(struct irq_data *d)
2521 {
2522         unsigned long flags;
2523
2524         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531                 schedule_work(&mb0_transfer.mask_work);
2532 }
2533
2534 static void noop(struct irq_data *d)
2535 {
2536 }
2537
2538 static struct irq_chip prcmu_irq_chip = {
2539         .name           = "prcmu",
2540         .irq_disable    = prcmu_irq_mask,
2541         .irq_ack        = noop,
2542         .irq_mask       = prcmu_irq_mask,
2543         .irq_unmask     = prcmu_irq_unmask,
2544 };
2545
2546 static char *fw_project_name(u32 project)
2547 {
2548         switch (project) {
2549         case PRCMU_FW_PROJECT_U8500:
2550                 return "U8500";
2551         case PRCMU_FW_PROJECT_U8400:
2552                 return "U8400";
2553         case PRCMU_FW_PROJECT_U9500:
2554                 return "U9500";
2555         case PRCMU_FW_PROJECT_U8500_MBB:
2556                 return "U8500 MBB";
2557         case PRCMU_FW_PROJECT_U8500_C1:
2558                 return "U8500 C1";
2559         case PRCMU_FW_PROJECT_U8500_C2:
2560                 return "U8500 C2";
2561         case PRCMU_FW_PROJECT_U8500_C3:
2562                 return "U8500 C3";
2563         case PRCMU_FW_PROJECT_U8500_C4:
2564                 return "U8500 C4";
2565         case PRCMU_FW_PROJECT_U9500_MBL:
2566                 return "U9500 MBL";
2567         case PRCMU_FW_PROJECT_U8500_SSG1:
2568                 return "U8500 Samsung 1";
2569         case PRCMU_FW_PROJECT_U8500_MBL2:
2570                 return "U8500 MBL2";
2571         case PRCMU_FW_PROJECT_U8520:
2572                 return "U8520 MBL";
2573         case PRCMU_FW_PROJECT_U8420:
2574                 return "U8420";
2575         case PRCMU_FW_PROJECT_U8500_SSG2:
2576                 return "U8500 Samsung 2";
2577         case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578                 return "U8420-sysclk";
2579         case PRCMU_FW_PROJECT_U9540:
2580                 return "U9540";
2581         case PRCMU_FW_PROJECT_A9420:
2582                 return "A9420";
2583         case PRCMU_FW_PROJECT_L8540:
2584                 return "L8540";
2585         case PRCMU_FW_PROJECT_L8580:
2586                 return "L8580";
2587         default:
2588                 return "Unknown";
2589         }
2590 }
2591
2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593                                 irq_hw_number_t hwirq)
2594 {
2595         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596                                 handle_simple_irq);
2597
2598         return 0;
2599 }
2600
2601 static const struct irq_domain_ops db8500_irq_ops = {
2602         .map    = db8500_irq_map,
2603         .xlate  = irq_domain_xlate_twocell,
2604 };
2605
2606 static int db8500_irq_init(struct device_node *np)
2607 {
2608         int i;
2609
2610         db8500_irq_domain = irq_domain_add_simple(
2611                 np, NUM_PRCMU_WAKEUPS, 0,
2612                 &db8500_irq_ops, NULL);
2613
2614         if (!db8500_irq_domain) {
2615                 pr_err("Failed to create irqdomain\n");
2616                 return -ENOSYS;
2617         }
2618
2619         /* All wakeups will be used, so create mappings for all */
2620         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621                 irq_create_mapping(db8500_irq_domain, i);
2622
2623         return 0;
2624 }
2625
2626 static void dbx500_fw_version_init(struct device_node *np)
2627 {
2628         void __iomem *tcpm_base;
2629         u32 version;
2630
2631         tcpm_base = of_iomap(np, 1);
2632         if (!tcpm_base) {
2633                 pr_err("no prcmu tcpm mem region provided\n");
2634                 return;
2635         }
2636
2637         version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638         fw_info.version.project = (version & 0xFF);
2639         fw_info.version.api_version = (version >> 8) & 0xFF;
2640         fw_info.version.func_version = (version >> 16) & 0xFF;
2641         fw_info.version.errata = (version >> 24) & 0xFF;
2642         strncpy(fw_info.version.project_name,
2643                 fw_project_name(fw_info.version.project),
2644                 PRCMU_FW_PROJECT_NAME_LEN);
2645         fw_info.valid = true;
2646         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647                 fw_info.version.project_name,
2648                 fw_info.version.project,
2649                 fw_info.version.api_version,
2650                 fw_info.version.func_version,
2651                 fw_info.version.errata);
2652         iounmap(tcpm_base);
2653 }
2654
2655 void __init db8500_prcmu_early_init(void)
2656 {
2657         /*
2658          * This is a temporary remap to bring up the clocks. It is
2659          * subsequently replaces with a real remap. After the merge of
2660          * the mailbox subsystem all of this early code goes away, and the
2661          * clock driver can probe independently. An early initcall will
2662          * still be needed, but it can be diverted into drivers/clk/ux500.
2663          */
2664         struct device_node *np;
2665
2666         np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667         prcmu_base = of_iomap(np, 0);
2668         if (!prcmu_base) {
2669                 of_node_put(np);
2670                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671                 return;
2672         }
2673         dbx500_fw_version_init(np);
2674         of_node_put(np);
2675
2676         spin_lock_init(&mb0_transfer.lock);
2677         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678         mutex_init(&mb0_transfer.ac_wake_lock);
2679         init_completion(&mb0_transfer.ac_wake_work);
2680         mutex_init(&mb1_transfer.lock);
2681         init_completion(&mb1_transfer.work);
2682         mb1_transfer.ape_opp = APE_NO_CHANGE;
2683         mutex_init(&mb2_transfer.lock);
2684         init_completion(&mb2_transfer.work);
2685         spin_lock_init(&mb2_transfer.auto_pm_lock);
2686         spin_lock_init(&mb3_transfer.lock);
2687         mutex_init(&mb3_transfer.sysclk_lock);
2688         init_completion(&mb3_transfer.sysclk_work);
2689         mutex_init(&mb4_transfer.lock);
2690         init_completion(&mb4_transfer.work);
2691         mutex_init(&mb5_transfer.lock);
2692         init_completion(&mb5_transfer.work);
2693
2694         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695 }
2696
2697 static void init_prcm_registers(void)
2698 {
2699         u32 val;
2700
2701         val = readl(PRCM_A9PL_FORCE_CLKEN);
2702         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705 }
2706
2707 /*
2708  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709  */
2710 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711         REGULATOR_SUPPLY("v-ape", NULL),
2712         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717         /* "v-mmc" changed to "vcore" in the mainline kernel */
2718         REGULATOR_SUPPLY("vcore", "sdi0"),
2719         REGULATOR_SUPPLY("vcore", "sdi1"),
2720         REGULATOR_SUPPLY("vcore", "sdi2"),
2721         REGULATOR_SUPPLY("vcore", "sdi3"),
2722         REGULATOR_SUPPLY("vcore", "sdi4"),
2723         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725         /* "v-uart" changed to "vcore" in the mainline kernel */
2726         REGULATOR_SUPPLY("vcore", "uart0"),
2727         REGULATOR_SUPPLY("vcore", "uart1"),
2728         REGULATOR_SUPPLY("vcore", "uart2"),
2729         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732 };
2733
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736         /* AV8100 regulator */
2737         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738 };
2739
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742         REGULATOR_SUPPLY("vsupply", "mcde"),
2743 };
2744
2745 /* SVA MMDSP regulator switch */
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748 };
2749
2750 /* SVA pipe regulator switch */
2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753 };
2754
2755 /* SIA MMDSP regulator switch */
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758 };
2759
2760 /* SIA pipe regulator switch */
2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763 };
2764
2765 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766         REGULATOR_SUPPLY("v-mali", NULL),
2767 };
2768
2769 /* ESRAM1 and 2 regulator switch */
2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771         REGULATOR_SUPPLY("esram12", "cm_control"),
2772 };
2773
2774 /* ESRAM3 and 4 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776         REGULATOR_SUPPLY("v-esram34", "mcde"),
2777         REGULATOR_SUPPLY("esram34", "cm_control"),
2778         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779 };
2780
2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782         [DB8500_REGULATOR_VAPE] = {
2783                 .constraints = {
2784                         .name = "db8500-vape",
2785                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786                         .always_on = true,
2787                 },
2788                 .consumer_supplies = db8500_vape_consumers,
2789                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790         },
2791         [DB8500_REGULATOR_VARM] = {
2792                 .constraints = {
2793                         .name = "db8500-varm",
2794                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795                 },
2796         },
2797         [DB8500_REGULATOR_VMODEM] = {
2798                 .constraints = {
2799                         .name = "db8500-vmodem",
2800                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801                 },
2802         },
2803         [DB8500_REGULATOR_VPLL] = {
2804                 .constraints = {
2805                         .name = "db8500-vpll",
2806                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807                 },
2808         },
2809         [DB8500_REGULATOR_VSMPS1] = {
2810                 .constraints = {
2811                         .name = "db8500-vsmps1",
2812                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813                 },
2814         },
2815         [DB8500_REGULATOR_VSMPS2] = {
2816                 .constraints = {
2817                         .name = "db8500-vsmps2",
2818                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819                 },
2820                 .consumer_supplies = db8500_vsmps2_consumers,
2821                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822         },
2823         [DB8500_REGULATOR_VSMPS3] = {
2824                 .constraints = {
2825                         .name = "db8500-vsmps3",
2826                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827                 },
2828         },
2829         [DB8500_REGULATOR_VRF1] = {
2830                 .constraints = {
2831                         .name = "db8500-vrf1",
2832                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833                 },
2834         },
2835         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836                 /* dependency to u8500-vape is handled outside regulator framework */
2837                 .constraints = {
2838                         .name = "db8500-sva-mmdsp",
2839                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840                 },
2841                 .consumer_supplies = db8500_svammdsp_consumers,
2842                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843         },
2844         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845                 .constraints = {
2846                         /* "ret" means "retention" */
2847                         .name = "db8500-sva-mmdsp-ret",
2848                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849                 },
2850         },
2851         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852                 /* dependency to u8500-vape is handled outside regulator framework */
2853                 .constraints = {
2854                         .name = "db8500-sva-pipe",
2855                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856                 },
2857                 .consumer_supplies = db8500_svapipe_consumers,
2858                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859         },
2860         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861                 /* dependency to u8500-vape is handled outside regulator framework */
2862                 .constraints = {
2863                         .name = "db8500-sia-mmdsp",
2864                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865                 },
2866                 .consumer_supplies = db8500_siammdsp_consumers,
2867                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868         },
2869         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870                 .constraints = {
2871                         .name = "db8500-sia-mmdsp-ret",
2872                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873                 },
2874         },
2875         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876                 /* dependency to u8500-vape is handled outside regulator framework */
2877                 .constraints = {
2878                         .name = "db8500-sia-pipe",
2879                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880                 },
2881                 .consumer_supplies = db8500_siapipe_consumers,
2882                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883         },
2884         [DB8500_REGULATOR_SWITCH_SGA] = {
2885                 .supply_regulator = "db8500-vape",
2886                 .constraints = {
2887                         .name = "db8500-sga",
2888                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889                 },
2890                 .consumer_supplies = db8500_sga_consumers,
2891                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893         },
2894         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895                 .supply_regulator = "db8500-vape",
2896                 .constraints = {
2897                         .name = "db8500-b2r2-mcde",
2898                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899                 },
2900                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2901                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902         },
2903         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904                 /*
2905                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906                  * no need to hold Vape
2907                  */
2908                 .constraints = {
2909                         .name = "db8500-esram12",
2910                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911                 },
2912                 .consumer_supplies = db8500_esram12_consumers,
2913                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914         },
2915         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916                 .constraints = {
2917                         .name = "db8500-esram12-ret",
2918                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919                 },
2920         },
2921         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922                 /*
2923                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924                  * no need to hold Vape
2925                  */
2926                 .constraints = {
2927                         .name = "db8500-esram34",
2928                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929                 },
2930                 .consumer_supplies = db8500_esram34_consumers,
2931                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932         },
2933         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934                 .constraints = {
2935                         .name = "db8500-esram34-ret",
2936                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937                 },
2938         },
2939 };
2940
2941 static const struct mfd_cell common_prcmu_devs[] = {
2942         MFD_CELL_NAME("db8500_wdt"),
2943         MFD_CELL_NAME("db8500-cpuidle"),
2944 };
2945
2946 static const struct mfd_cell db8500_prcmu_devs[] = {
2947         MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948                     &db8500_regulators, sizeof(db8500_regulators), 0,
2949                     "stericsson,db8500-prcmu-regulator"),
2950         MFD_CELL_OF("db8500-thermal",
2951                     NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952 };
2953
2954 static int db8500_prcmu_register_ab8500(struct device *parent)
2955 {
2956         struct device_node *np;
2957         struct resource ab850x_resource;
2958         const struct mfd_cell ab8500_cell = {
2959                 .name = "ab8500-core",
2960                 .of_compatible = "stericsson,ab8500",
2961                 .id = AB8500_VERSION_AB8500,
2962                 .resources = &ab850x_resource,
2963                 .num_resources = 1,
2964         };
2965         const struct mfd_cell ab8505_cell = {
2966                 .name = "ab8505-core",
2967                 .of_compatible = "stericsson,ab8505",
2968                 .id = AB8500_VERSION_AB8505,
2969                 .resources = &ab850x_resource,
2970                 .num_resources = 1,
2971         };
2972         const struct mfd_cell *ab850x_cell;
2973
2974         if (!parent->of_node)
2975                 return -ENODEV;
2976
2977         /* Look up the device node, sneak the IRQ out of it */
2978         for_each_child_of_node(parent->of_node, np) {
2979                 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980                         ab850x_cell = &ab8500_cell;
2981                         break;
2982                 }
2983                 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984                         ab850x_cell = &ab8505_cell;
2985                         break;
2986                 }
2987         }
2988         if (!np) {
2989                 dev_info(parent, "could not find AB850X node in the device tree\n");
2990                 return -ENODEV;
2991         }
2992         of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994         return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995 }
2996
2997 static int db8500_prcmu_probe(struct platform_device *pdev)
2998 {
2999         struct device_node *np = pdev->dev.of_node;
3000         int irq = 0, err = 0;
3001         struct resource *res;
3002
3003         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004         if (!res) {
3005                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006                 return -EINVAL;
3007         }
3008         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009         if (!prcmu_base) {
3010                 dev_err(&pdev->dev,
3011                         "failed to ioremap prcmu register memory\n");
3012                 return -ENOMEM;
3013         }
3014         init_prcm_registers();
3015         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016         if (!res) {
3017                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018                 return -EINVAL;
3019         }
3020         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021                         resource_size(res));
3022         if (!tcdm_base) {
3023                 dev_err(&pdev->dev,
3024                         "failed to ioremap prcmu-tcdm register memory\n");
3025                 return -ENOMEM;
3026         }
3027
3028         /* Clean up the mailbox interrupts after pre-kernel code. */
3029         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031         irq = platform_get_irq(pdev, 0);
3032         if (irq <= 0)
3033                 return irq;
3034
3035         err = request_threaded_irq(irq, prcmu_irq_handler,
3036                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037         if (err < 0) {
3038                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039                 return err;
3040         }
3041
3042         db8500_irq_init(np);
3043
3044         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048         if (err) {
3049                 pr_err("prcmu: Failed to add subdevices\n");
3050                 return err;
3051         }
3052
3053         /* TODO: Remove restriction when clk definitions are available. */
3054         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057                                       db8500_irq_domain);
3058                 if (err) {
3059                         mfd_remove_devices(&pdev->dev);
3060                         pr_err("prcmu: Failed to add subdevices\n");
3061                         return err;
3062                 }
3063         }
3064
3065         err = db8500_prcmu_register_ab8500(&pdev->dev);
3066         if (err) {
3067                 mfd_remove_devices(&pdev->dev);
3068                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069                 return err;
3070         }
3071
3072         pr_info("DB8500 PRCMU initialized\n");
3073         return err;
3074 }
3075 static const struct of_device_id db8500_prcmu_match[] = {
3076         { .compatible = "stericsson,db8500-prcmu"},
3077         { },
3078 };
3079
3080 static struct platform_driver db8500_prcmu_driver = {
3081         .driver = {
3082                 .name = "db8500-prcmu",
3083                 .of_match_table = db8500_prcmu_match,
3084         },
3085         .probe = db8500_prcmu_probe,
3086 };
3087
3088 static int __init db8500_prcmu_init(void)
3089 {
3090         return platform_driver_register(&db8500_prcmu_driver);
3091 }
3092 core_initcall(db8500_prcmu_init);