fs: smb: common: add missing MODULE_DESCRIPTION() macros
[sfrench/cifs-2.6.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15         "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18         [NVME_IOPOLICY_NUMA]    = "numa",
19         [NVME_IOPOLICY_RR]      = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26         if (!val)
27                 return -EINVAL;
28         if (!strncmp(val, "numa", 4))
29                 iopolicy = NVME_IOPOLICY_NUMA;
30         else if (!strncmp(val, "round-robin", 11))
31                 iopolicy = NVME_IOPOLICY_RR;
32         else
33                 return -EINVAL;
34
35         return 0;
36 }
37
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40         return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44         &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46         "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50         subsys->iopolicy = iopolicy;
51 }
52
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55         struct nvme_ns_head *h;
56
57         lockdep_assert_held(&subsys->lock);
58         list_for_each_entry(h, &subsys->nsheads, entry)
59                 if (h->disk)
60                         blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65         struct nvme_ns_head *h;
66
67         lockdep_assert_held(&subsys->lock);
68         list_for_each_entry(h, &subsys->nsheads, entry)
69                 if (h->disk)
70                         blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75         struct nvme_ns_head *h;
76
77         lockdep_assert_held(&subsys->lock);
78         list_for_each_entry(h, &subsys->nsheads, entry)
79                 if (h->disk)
80                         blk_freeze_queue_start(h->disk->queue);
81 }
82
83 void nvme_failover_req(struct request *req)
84 {
85         struct nvme_ns *ns = req->q->queuedata;
86         u16 status = nvme_req(req)->status & 0x7ff;
87         unsigned long flags;
88         struct bio *bio;
89
90         nvme_mpath_clear_current_path(ns);
91
92         /*
93          * If we got back an ANA error, we know the controller is alive but not
94          * ready to serve this namespace.  Kick of a re-read of the ANA
95          * information page, and just try any other available path for now.
96          */
97         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99                 queue_work(nvme_wq, &ns->ctrl->ana_work);
100         }
101
102         spin_lock_irqsave(&ns->head->requeue_lock, flags);
103         for (bio = req->bio; bio; bio = bio->bi_next) {
104                 bio_set_dev(bio, ns->head->disk->part0);
105                 if (bio->bi_opf & REQ_POLLED) {
106                         bio->bi_opf &= ~REQ_POLLED;
107                         bio->bi_cookie = BLK_QC_T_NONE;
108                 }
109                 /*
110                  * The alternate request queue that we may end up submitting
111                  * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112                  * will fail the I/O immediately with EAGAIN to the issuer.
113                  * We are not in the issuer context which cannot block. Clear
114                  * the flag to avoid spurious EAGAIN I/O failures.
115                  */
116                 bio->bi_opf &= ~REQ_NOWAIT;
117         }
118         blk_steal_bios(&ns->head->requeue_list, req);
119         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121         blk_mq_end_request(req, 0);
122         kblockd_schedule_work(&ns->head->requeue_work);
123 }
124
125 void nvme_mpath_start_request(struct request *rq)
126 {
127         struct nvme_ns *ns = rq->q->queuedata;
128         struct gendisk *disk = ns->head->disk;
129
130         if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131                 return;
132
133         nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134         nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135                                                       jiffies);
136 }
137 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
139 void nvme_mpath_end_request(struct request *rq)
140 {
141         struct nvme_ns *ns = rq->q->queuedata;
142
143         if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144                 return;
145         bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146                          blk_rq_bytes(rq) >> SECTOR_SHIFT,
147                          nvme_req(rq)->start_time);
148 }
149
150 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151 {
152         struct nvme_ns *ns;
153
154         down_read(&ctrl->namespaces_rwsem);
155         list_for_each_entry(ns, &ctrl->namespaces, list) {
156                 if (!ns->head->disk)
157                         continue;
158                 kblockd_schedule_work(&ns->head->requeue_work);
159                 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
160                         disk_uevent(ns->head->disk, KOBJ_CHANGE);
161         }
162         up_read(&ctrl->namespaces_rwsem);
163 }
164
165 static const char *nvme_ana_state_names[] = {
166         [0]                             = "invalid state",
167         [NVME_ANA_OPTIMIZED]            = "optimized",
168         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
169         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
170         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
171         [NVME_ANA_CHANGE]               = "change",
172 };
173
174 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175 {
176         struct nvme_ns_head *head = ns->head;
177         bool changed = false;
178         int node;
179
180         if (!head)
181                 goto out;
182
183         for_each_node(node) {
184                 if (ns == rcu_access_pointer(head->current_path[node])) {
185                         rcu_assign_pointer(head->current_path[node], NULL);
186                         changed = true;
187                 }
188         }
189 out:
190         return changed;
191 }
192
193 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194 {
195         struct nvme_ns *ns;
196
197         down_read(&ctrl->namespaces_rwsem);
198         list_for_each_entry(ns, &ctrl->namespaces, list) {
199                 nvme_mpath_clear_current_path(ns);
200                 kblockd_schedule_work(&ns->head->requeue_work);
201         }
202         up_read(&ctrl->namespaces_rwsem);
203 }
204
205 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206 {
207         struct nvme_ns_head *head = ns->head;
208         sector_t capacity = get_capacity(head->disk);
209         int node;
210         int srcu_idx;
211
212         srcu_idx = srcu_read_lock(&head->srcu);
213         list_for_each_entry_rcu(ns, &head->list, siblings) {
214                 if (capacity != get_capacity(ns->disk))
215                         clear_bit(NVME_NS_READY, &ns->flags);
216         }
217         srcu_read_unlock(&head->srcu, srcu_idx);
218
219         for_each_node(node)
220                 rcu_assign_pointer(head->current_path[node], NULL);
221         kblockd_schedule_work(&head->requeue_work);
222 }
223
224 static bool nvme_path_is_disabled(struct nvme_ns *ns)
225 {
226         enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
227
228         /*
229          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
230          * still be able to complete assuming that the controller is connected.
231          * Otherwise it will fail immediately and return to the requeue list.
232          */
233         if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
234                 return true;
235         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
236             !test_bit(NVME_NS_READY, &ns->flags))
237                 return true;
238         return false;
239 }
240
241 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
242 {
243         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
244         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
245
246         list_for_each_entry_rcu(ns, &head->list, siblings) {
247                 if (nvme_path_is_disabled(ns))
248                         continue;
249
250                 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
251                     READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
252                         distance = node_distance(node, ns->ctrl->numa_node);
253                 else
254                         distance = LOCAL_DISTANCE;
255
256                 switch (ns->ana_state) {
257                 case NVME_ANA_OPTIMIZED:
258                         if (distance < found_distance) {
259                                 found_distance = distance;
260                                 found = ns;
261                         }
262                         break;
263                 case NVME_ANA_NONOPTIMIZED:
264                         if (distance < fallback_distance) {
265                                 fallback_distance = distance;
266                                 fallback = ns;
267                         }
268                         break;
269                 default:
270                         break;
271                 }
272         }
273
274         if (!found)
275                 found = fallback;
276         if (found)
277                 rcu_assign_pointer(head->current_path[node], found);
278         return found;
279 }
280
281 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
282                 struct nvme_ns *ns)
283 {
284         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
285                         siblings);
286         if (ns)
287                 return ns;
288         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
289 }
290
291 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
292                 int node, struct nvme_ns *old)
293 {
294         struct nvme_ns *ns, *found = NULL;
295
296         if (list_is_singular(&head->list)) {
297                 if (nvme_path_is_disabled(old))
298                         return NULL;
299                 return old;
300         }
301
302         for (ns = nvme_next_ns(head, old);
303              ns && ns != old;
304              ns = nvme_next_ns(head, ns)) {
305                 if (nvme_path_is_disabled(ns))
306                         continue;
307
308                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
309                         found = ns;
310                         goto out;
311                 }
312                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
313                         found = ns;
314         }
315
316         /*
317          * The loop above skips the current path for round-robin semantics.
318          * Fall back to the current path if either:
319          *  - no other optimized path found and current is optimized,
320          *  - no other usable path found and current is usable.
321          */
322         if (!nvme_path_is_disabled(old) &&
323             (old->ana_state == NVME_ANA_OPTIMIZED ||
324              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
325                 return old;
326
327         if (!found)
328                 return NULL;
329 out:
330         rcu_assign_pointer(head->current_path[node], found);
331         return found;
332 }
333
334 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
335 {
336         return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
337                 ns->ana_state == NVME_ANA_OPTIMIZED;
338 }
339
340 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
341 {
342         int node = numa_node_id();
343         struct nvme_ns *ns;
344
345         ns = srcu_dereference(head->current_path[node], &head->srcu);
346         if (unlikely(!ns))
347                 return __nvme_find_path(head, node);
348
349         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
350                 return nvme_round_robin_path(head, node, ns);
351         if (unlikely(!nvme_path_is_optimized(ns)))
352                 return __nvme_find_path(head, node);
353         return ns;
354 }
355
356 static bool nvme_available_path(struct nvme_ns_head *head)
357 {
358         struct nvme_ns *ns;
359
360         list_for_each_entry_rcu(ns, &head->list, siblings) {
361                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
362                         continue;
363                 switch (nvme_ctrl_state(ns->ctrl)) {
364                 case NVME_CTRL_LIVE:
365                 case NVME_CTRL_RESETTING:
366                 case NVME_CTRL_CONNECTING:
367                         /* fallthru */
368                         return true;
369                 default:
370                         break;
371                 }
372         }
373         return false;
374 }
375
376 static void nvme_ns_head_submit_bio(struct bio *bio)
377 {
378         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
379         struct device *dev = disk_to_dev(head->disk);
380         struct nvme_ns *ns;
381         int srcu_idx;
382
383         /*
384          * The namespace might be going away and the bio might be moved to a
385          * different queue via blk_steal_bios(), so we need to use the bio_split
386          * pool from the original queue to allocate the bvecs from.
387          */
388         bio = bio_split_to_limits(bio);
389         if (!bio)
390                 return;
391
392         srcu_idx = srcu_read_lock(&head->srcu);
393         ns = nvme_find_path(head);
394         if (likely(ns)) {
395                 bio_set_dev(bio, ns->disk->part0);
396                 bio->bi_opf |= REQ_NVME_MPATH;
397                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
398                                       bio->bi_iter.bi_sector);
399                 submit_bio_noacct(bio);
400         } else if (nvme_available_path(head)) {
401                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
402
403                 spin_lock_irq(&head->requeue_lock);
404                 bio_list_add(&head->requeue_list, bio);
405                 spin_unlock_irq(&head->requeue_lock);
406         } else {
407                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
408
409                 bio_io_error(bio);
410         }
411
412         srcu_read_unlock(&head->srcu, srcu_idx);
413 }
414
415 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
416 {
417         if (!nvme_tryget_ns_head(disk->private_data))
418                 return -ENXIO;
419         return 0;
420 }
421
422 static void nvme_ns_head_release(struct gendisk *disk)
423 {
424         nvme_put_ns_head(disk->private_data);
425 }
426
427 #ifdef CONFIG_BLK_DEV_ZONED
428 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
429                 unsigned int nr_zones, report_zones_cb cb, void *data)
430 {
431         struct nvme_ns_head *head = disk->private_data;
432         struct nvme_ns *ns;
433         int srcu_idx, ret = -EWOULDBLOCK;
434
435         srcu_idx = srcu_read_lock(&head->srcu);
436         ns = nvme_find_path(head);
437         if (ns)
438                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
439         srcu_read_unlock(&head->srcu, srcu_idx);
440         return ret;
441 }
442 #else
443 #define nvme_ns_head_report_zones       NULL
444 #endif /* CONFIG_BLK_DEV_ZONED */
445
446 const struct block_device_operations nvme_ns_head_ops = {
447         .owner          = THIS_MODULE,
448         .submit_bio     = nvme_ns_head_submit_bio,
449         .open           = nvme_ns_head_open,
450         .release        = nvme_ns_head_release,
451         .ioctl          = nvme_ns_head_ioctl,
452         .compat_ioctl   = blkdev_compat_ptr_ioctl,
453         .getgeo         = nvme_getgeo,
454         .report_zones   = nvme_ns_head_report_zones,
455         .pr_ops         = &nvme_pr_ops,
456 };
457
458 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
459 {
460         return container_of(cdev, struct nvme_ns_head, cdev);
461 }
462
463 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
464 {
465         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
466                 return -ENXIO;
467         return 0;
468 }
469
470 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
471 {
472         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
473         return 0;
474 }
475
476 static const struct file_operations nvme_ns_head_chr_fops = {
477         .owner          = THIS_MODULE,
478         .open           = nvme_ns_head_chr_open,
479         .release        = nvme_ns_head_chr_release,
480         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
481         .compat_ioctl   = compat_ptr_ioctl,
482         .uring_cmd      = nvme_ns_head_chr_uring_cmd,
483         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
484 };
485
486 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
487 {
488         int ret;
489
490         head->cdev_device.parent = &head->subsys->dev;
491         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
492                            head->subsys->instance, head->instance);
493         if (ret)
494                 return ret;
495         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
496                             &nvme_ns_head_chr_fops, THIS_MODULE);
497         return ret;
498 }
499
500 static void nvme_requeue_work(struct work_struct *work)
501 {
502         struct nvme_ns_head *head =
503                 container_of(work, struct nvme_ns_head, requeue_work);
504         struct bio *bio, *next;
505
506         spin_lock_irq(&head->requeue_lock);
507         next = bio_list_get(&head->requeue_list);
508         spin_unlock_irq(&head->requeue_lock);
509
510         while ((bio = next) != NULL) {
511                 next = bio->bi_next;
512                 bio->bi_next = NULL;
513
514                 submit_bio_noacct(bio);
515         }
516 }
517
518 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
519 {
520         struct queue_limits lim;
521         bool vwc = false;
522
523         mutex_init(&head->lock);
524         bio_list_init(&head->requeue_list);
525         spin_lock_init(&head->requeue_lock);
526         INIT_WORK(&head->requeue_work, nvme_requeue_work);
527
528         /*
529          * Add a multipath node if the subsystems supports multiple controllers.
530          * We also do this for private namespaces as the namespace sharing flag
531          * could change after a rescan.
532          */
533         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
534             !nvme_is_unique_nsid(ctrl, head) || !multipath)
535                 return 0;
536
537         blk_set_stacking_limits(&lim);
538         lim.dma_alignment = 3;
539         if (head->ids.csi != NVME_CSI_ZNS)
540                 lim.max_zone_append_sectors = 0;
541
542         head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
543         if (IS_ERR(head->disk))
544                 return PTR_ERR(head->disk);
545         head->disk->fops = &nvme_ns_head_ops;
546         head->disk->private_data = head;
547         sprintf(head->disk->disk_name, "nvme%dn%d",
548                         ctrl->subsys->instance, head->instance);
549
550         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
551         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
552         blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
553         /*
554          * This assumes all controllers that refer to a namespace either
555          * support poll queues or not.  That is not a strict guarantee,
556          * but if the assumption is wrong the effect is only suboptimal
557          * performance but not correctness problem.
558          */
559         if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
560             ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
561                 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
562
563         /* we need to propagate up the VMC settings */
564         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
565                 vwc = true;
566         blk_queue_write_cache(head->disk->queue, vwc, vwc);
567         return 0;
568 }
569
570 static void nvme_mpath_set_live(struct nvme_ns *ns)
571 {
572         struct nvme_ns_head *head = ns->head;
573         int rc;
574
575         if (!head->disk)
576                 return;
577
578         /*
579          * test_and_set_bit() is used because it is protecting against two nvme
580          * paths simultaneously calling device_add_disk() on the same namespace
581          * head.
582          */
583         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
584                 rc = device_add_disk(&head->subsys->dev, head->disk,
585                                      nvme_ns_attr_groups);
586                 if (rc) {
587                         clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
588                         return;
589                 }
590                 nvme_add_ns_head_cdev(head);
591         }
592
593         mutex_lock(&head->lock);
594         if (nvme_path_is_optimized(ns)) {
595                 int node, srcu_idx;
596
597                 srcu_idx = srcu_read_lock(&head->srcu);
598                 for_each_node(node)
599                         __nvme_find_path(head, node);
600                 srcu_read_unlock(&head->srcu, srcu_idx);
601         }
602         mutex_unlock(&head->lock);
603
604         synchronize_srcu(&head->srcu);
605         kblockd_schedule_work(&head->requeue_work);
606 }
607
608 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
609                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
610                         void *))
611 {
612         void *base = ctrl->ana_log_buf;
613         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
614         int error, i;
615
616         lockdep_assert_held(&ctrl->ana_lock);
617
618         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
619                 struct nvme_ana_group_desc *desc = base + offset;
620                 u32 nr_nsids;
621                 size_t nsid_buf_size;
622
623                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
624                         return -EINVAL;
625
626                 nr_nsids = le32_to_cpu(desc->nnsids);
627                 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
628
629                 if (WARN_ON_ONCE(desc->grpid == 0))
630                         return -EINVAL;
631                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
632                         return -EINVAL;
633                 if (WARN_ON_ONCE(desc->state == 0))
634                         return -EINVAL;
635                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
636                         return -EINVAL;
637
638                 offset += sizeof(*desc);
639                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
640                         return -EINVAL;
641
642                 error = cb(ctrl, desc, data);
643                 if (error)
644                         return error;
645
646                 offset += nsid_buf_size;
647         }
648
649         return 0;
650 }
651
652 static inline bool nvme_state_is_live(enum nvme_ana_state state)
653 {
654         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
655 }
656
657 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
658                 struct nvme_ns *ns)
659 {
660         ns->ana_grpid = le32_to_cpu(desc->grpid);
661         ns->ana_state = desc->state;
662         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
663         /*
664          * nvme_mpath_set_live() will trigger I/O to the multipath path device
665          * and in turn to this path device.  However we cannot accept this I/O
666          * if the controller is not live.  This may deadlock if called from
667          * nvme_mpath_init_identify() and the ctrl will never complete
668          * initialization, preventing I/O from completing.  For this case we
669          * will reprocess the ANA log page in nvme_mpath_update() once the
670          * controller is ready.
671          */
672         if (nvme_state_is_live(ns->ana_state) &&
673             nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
674                 nvme_mpath_set_live(ns);
675 }
676
677 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
678                 struct nvme_ana_group_desc *desc, void *data)
679 {
680         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
681         unsigned *nr_change_groups = data;
682         struct nvme_ns *ns;
683
684         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
685                         le32_to_cpu(desc->grpid),
686                         nvme_ana_state_names[desc->state]);
687
688         if (desc->state == NVME_ANA_CHANGE)
689                 (*nr_change_groups)++;
690
691         if (!nr_nsids)
692                 return 0;
693
694         down_read(&ctrl->namespaces_rwsem);
695         list_for_each_entry(ns, &ctrl->namespaces, list) {
696                 unsigned nsid;
697 again:
698                 nsid = le32_to_cpu(desc->nsids[n]);
699                 if (ns->head->ns_id < nsid)
700                         continue;
701                 if (ns->head->ns_id == nsid)
702                         nvme_update_ns_ana_state(desc, ns);
703                 if (++n == nr_nsids)
704                         break;
705                 if (ns->head->ns_id > nsid)
706                         goto again;
707         }
708         up_read(&ctrl->namespaces_rwsem);
709         return 0;
710 }
711
712 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
713 {
714         u32 nr_change_groups = 0;
715         int error;
716
717         mutex_lock(&ctrl->ana_lock);
718         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
719                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
720         if (error) {
721                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
722                 goto out_unlock;
723         }
724
725         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
726                         nvme_update_ana_state);
727         if (error)
728                 goto out_unlock;
729
730         /*
731          * In theory we should have an ANATT timer per group as they might enter
732          * the change state at different times.  But that is a lot of overhead
733          * just to protect against a target that keeps entering new changes
734          * states while never finishing previous ones.  But we'll still
735          * eventually time out once all groups are in change state, so this
736          * isn't a big deal.
737          *
738          * We also double the ANATT value to provide some slack for transports
739          * or AEN processing overhead.
740          */
741         if (nr_change_groups)
742                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
743         else
744                 del_timer_sync(&ctrl->anatt_timer);
745 out_unlock:
746         mutex_unlock(&ctrl->ana_lock);
747         return error;
748 }
749
750 static void nvme_ana_work(struct work_struct *work)
751 {
752         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
753
754         if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
755                 return;
756
757         nvme_read_ana_log(ctrl);
758 }
759
760 void nvme_mpath_update(struct nvme_ctrl *ctrl)
761 {
762         u32 nr_change_groups = 0;
763
764         if (!ctrl->ana_log_buf)
765                 return;
766
767         mutex_lock(&ctrl->ana_lock);
768         nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
769         mutex_unlock(&ctrl->ana_lock);
770 }
771
772 static void nvme_anatt_timeout(struct timer_list *t)
773 {
774         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
775
776         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
777         nvme_reset_ctrl(ctrl);
778 }
779
780 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
781 {
782         if (!nvme_ctrl_use_ana(ctrl))
783                 return;
784         del_timer_sync(&ctrl->anatt_timer);
785         cancel_work_sync(&ctrl->ana_work);
786 }
787
788 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
789         struct device_attribute subsys_attr_##_name =   \
790                 __ATTR(_name, _mode, _show, _store)
791
792 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
793                 struct device_attribute *attr, char *buf)
794 {
795         struct nvme_subsystem *subsys =
796                 container_of(dev, struct nvme_subsystem, dev);
797
798         return sysfs_emit(buf, "%s\n",
799                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
800 }
801
802 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
803                 struct device_attribute *attr, const char *buf, size_t count)
804 {
805         struct nvme_subsystem *subsys =
806                 container_of(dev, struct nvme_subsystem, dev);
807         int i;
808
809         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
810                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
811                         WRITE_ONCE(subsys->iopolicy, i);
812                         return count;
813                 }
814         }
815
816         return -EINVAL;
817 }
818 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
819                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
820
821 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
822                 char *buf)
823 {
824         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
825 }
826 DEVICE_ATTR_RO(ana_grpid);
827
828 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
829                 char *buf)
830 {
831         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
832
833         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
834 }
835 DEVICE_ATTR_RO(ana_state);
836
837 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
838                 struct nvme_ana_group_desc *desc, void *data)
839 {
840         struct nvme_ana_group_desc *dst = data;
841
842         if (desc->grpid != dst->grpid)
843                 return 0;
844
845         *dst = *desc;
846         return -ENXIO; /* just break out of the loop */
847 }
848
849 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
850 {
851         if (nvme_ctrl_use_ana(ns->ctrl)) {
852                 struct nvme_ana_group_desc desc = {
853                         .grpid = anagrpid,
854                         .state = 0,
855                 };
856
857                 mutex_lock(&ns->ctrl->ana_lock);
858                 ns->ana_grpid = le32_to_cpu(anagrpid);
859                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
860                 mutex_unlock(&ns->ctrl->ana_lock);
861                 if (desc.state) {
862                         /* found the group desc: update */
863                         nvme_update_ns_ana_state(&desc, ns);
864                 } else {
865                         /* group desc not found: trigger a re-read */
866                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
867                         queue_work(nvme_wq, &ns->ctrl->ana_work);
868                 }
869         } else {
870                 ns->ana_state = NVME_ANA_OPTIMIZED;
871                 nvme_mpath_set_live(ns);
872         }
873
874         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
875                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
876                                    ns->head->disk->queue);
877 #ifdef CONFIG_BLK_DEV_ZONED
878         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
879                 ns->head->disk->nr_zones = ns->disk->nr_zones;
880 #endif
881 }
882
883 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
884 {
885         if (!head->disk)
886                 return;
887         kblockd_schedule_work(&head->requeue_work);
888         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
889                 nvme_cdev_del(&head->cdev, &head->cdev_device);
890                 del_gendisk(head->disk);
891         }
892 }
893
894 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
895 {
896         if (!head->disk)
897                 return;
898         /* make sure all pending bios are cleaned up */
899         kblockd_schedule_work(&head->requeue_work);
900         flush_work(&head->requeue_work);
901         put_disk(head->disk);
902 }
903
904 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
905 {
906         mutex_init(&ctrl->ana_lock);
907         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
908         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
909 }
910
911 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
912 {
913         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
914         size_t ana_log_size;
915         int error = 0;
916
917         /* check if multipath is enabled and we have the capability */
918         if (!multipath || !ctrl->subsys ||
919             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
920                 return 0;
921
922         if (!ctrl->max_namespaces ||
923             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
924                 dev_err(ctrl->device,
925                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
926                 return -EINVAL;
927         }
928
929         ctrl->anacap = id->anacap;
930         ctrl->anatt = id->anatt;
931         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
932         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
933
934         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
935                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
936                 ctrl->max_namespaces * sizeof(__le32);
937         if (ana_log_size > max_transfer_size) {
938                 dev_err(ctrl->device,
939                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
940                         ana_log_size, max_transfer_size);
941                 dev_err(ctrl->device, "disabling ANA support.\n");
942                 goto out_uninit;
943         }
944         if (ana_log_size > ctrl->ana_log_size) {
945                 nvme_mpath_stop(ctrl);
946                 nvme_mpath_uninit(ctrl);
947                 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
948                 if (!ctrl->ana_log_buf)
949                         return -ENOMEM;
950         }
951         ctrl->ana_log_size = ana_log_size;
952         error = nvme_read_ana_log(ctrl);
953         if (error)
954                 goto out_uninit;
955         return 0;
956
957 out_uninit:
958         nvme_mpath_uninit(ctrl);
959         return error;
960 }
961
962 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
963 {
964         kvfree(ctrl->ana_log_buf);
965         ctrl->ana_log_buf = NULL;
966         ctrl->ana_log_size = 0;
967 }