Merge tag 'block-6.9-20240322' of git://git.kernel.dk/linux
[sfrench/cifs-2.6.git] / drivers / nvme / host / pr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015 Intel Corporation
4  *      Keith Busch <kbusch@kernel.org>
5  */
6 #include <linux/blkdev.h>
7 #include <linux/pr.h>
8 #include <asm/unaligned.h>
9
10 #include "nvme.h"
11
12 static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
13 {
14         switch (type) {
15         case PR_WRITE_EXCLUSIVE:
16                 return NVME_PR_WRITE_EXCLUSIVE;
17         case PR_EXCLUSIVE_ACCESS:
18                 return NVME_PR_EXCLUSIVE_ACCESS;
19         case PR_WRITE_EXCLUSIVE_REG_ONLY:
20                 return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
21         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
22                 return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
23         case PR_WRITE_EXCLUSIVE_ALL_REGS:
24                 return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
25         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
26                 return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
27         }
28
29         return 0;
30 }
31
32 static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
33 {
34         switch (type) {
35         case NVME_PR_WRITE_EXCLUSIVE:
36                 return PR_WRITE_EXCLUSIVE;
37         case NVME_PR_EXCLUSIVE_ACCESS:
38                 return PR_EXCLUSIVE_ACCESS;
39         case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
40                 return PR_WRITE_EXCLUSIVE_REG_ONLY;
41         case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
42                 return PR_EXCLUSIVE_ACCESS_REG_ONLY;
43         case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
44                 return PR_WRITE_EXCLUSIVE_ALL_REGS;
45         case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
46                 return PR_EXCLUSIVE_ACCESS_ALL_REGS;
47         }
48
49         return 0;
50 }
51
52 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
53                 struct nvme_command *c, void *data, unsigned int data_len)
54 {
55         struct nvme_ns_head *head = bdev->bd_disk->private_data;
56         int srcu_idx = srcu_read_lock(&head->srcu);
57         struct nvme_ns *ns = nvme_find_path(head);
58         int ret = -EWOULDBLOCK;
59
60         if (ns) {
61                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
62                 ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
63         }
64         srcu_read_unlock(&head->srcu, srcu_idx);
65         return ret;
66 }
67
68 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
69                 void *data, unsigned int data_len)
70 {
71         c->common.nsid = cpu_to_le32(ns->head->ns_id);
72         return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
73 }
74
75 static int nvme_sc_to_pr_err(int nvme_sc)
76 {
77         if (nvme_is_path_error(nvme_sc))
78                 return PR_STS_PATH_FAILED;
79
80         switch (nvme_sc) {
81         case NVME_SC_SUCCESS:
82                 return PR_STS_SUCCESS;
83         case NVME_SC_RESERVATION_CONFLICT:
84                 return PR_STS_RESERVATION_CONFLICT;
85         case NVME_SC_ONCS_NOT_SUPPORTED:
86                 return -EOPNOTSUPP;
87         case NVME_SC_BAD_ATTRIBUTES:
88         case NVME_SC_INVALID_OPCODE:
89         case NVME_SC_INVALID_FIELD:
90         case NVME_SC_INVALID_NS:
91                 return -EINVAL;
92         default:
93                 return PR_STS_IOERR;
94         }
95 }
96
97 static int nvme_send_pr_command(struct block_device *bdev,
98                 struct nvme_command *c, void *data, unsigned int data_len)
99 {
100         if (nvme_disk_is_ns_head(bdev->bd_disk))
101                 return nvme_send_ns_head_pr_command(bdev, c, data, data_len);
102
103         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, c, data,
104                                        data_len);
105 }
106
107 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
108                                 u64 key, u64 sa_key, u8 op)
109 {
110         struct nvme_command c = { };
111         u8 data[16] = { 0, };
112         int ret;
113
114         put_unaligned_le64(key, &data[0]);
115         put_unaligned_le64(sa_key, &data[8]);
116
117         c.common.opcode = op;
118         c.common.cdw10 = cpu_to_le32(cdw10);
119
120         ret = nvme_send_pr_command(bdev, &c, data, sizeof(data));
121         if (ret < 0)
122                 return ret;
123
124         return nvme_sc_to_pr_err(ret);
125 }
126
127 static int nvme_pr_register(struct block_device *bdev, u64 old,
128                 u64 new, unsigned flags)
129 {
130         u32 cdw10;
131
132         if (flags & ~PR_FL_IGNORE_KEY)
133                 return -EOPNOTSUPP;
134
135         cdw10 = old ? 2 : 0;
136         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
137         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
138         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
139 }
140
141 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
142                 enum pr_type type, unsigned flags)
143 {
144         u32 cdw10;
145
146         if (flags & ~PR_FL_IGNORE_KEY)
147                 return -EOPNOTSUPP;
148
149         cdw10 = nvme_pr_type_from_blk(type) << 8;
150         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
151         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
152 }
153
154 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
155                 enum pr_type type, bool abort)
156 {
157         u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (abort ? 2 : 1);
158
159         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
160 }
161
162 static int nvme_pr_clear(struct block_device *bdev, u64 key)
163 {
164         u32 cdw10 = 1 | (key ? 0 : 1 << 3);
165
166         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
167 }
168
169 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
170 {
171         u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (key ? 0 : 1 << 3);
172
173         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
174 }
175
176 static int nvme_pr_resv_report(struct block_device *bdev, void *data,
177                 u32 data_len, bool *eds)
178 {
179         struct nvme_command c = { };
180         int ret;
181
182         c.common.opcode = nvme_cmd_resv_report;
183         c.common.cdw10 = cpu_to_le32(nvme_bytes_to_numd(data_len));
184         c.common.cdw11 = cpu_to_le32(NVME_EXTENDED_DATA_STRUCT);
185         *eds = true;
186
187 retry:
188         ret = nvme_send_pr_command(bdev, &c, data, data_len);
189         if (ret == NVME_SC_HOST_ID_INCONSIST &&
190             c.common.cdw11 == cpu_to_le32(NVME_EXTENDED_DATA_STRUCT)) {
191                 c.common.cdw11 = 0;
192                 *eds = false;
193                 goto retry;
194         }
195
196         if (ret < 0)
197                 return ret;
198
199         return nvme_sc_to_pr_err(ret);
200 }
201
202 static int nvme_pr_read_keys(struct block_device *bdev,
203                 struct pr_keys *keys_info)
204 {
205         u32 rse_len, num_keys = keys_info->num_keys;
206         struct nvme_reservation_status_ext *rse;
207         int ret, i;
208         bool eds;
209
210         /*
211          * Assume we are using 128-bit host IDs and allocate a buffer large
212          * enough to get enough keys to fill the return keys buffer.
213          */
214         rse_len = struct_size(rse, regctl_eds, num_keys);
215         rse = kzalloc(rse_len, GFP_KERNEL);
216         if (!rse)
217                 return -ENOMEM;
218
219         ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
220         if (ret)
221                 goto free_rse;
222
223         keys_info->generation = le32_to_cpu(rse->gen);
224         keys_info->num_keys = get_unaligned_le16(&rse->regctl);
225
226         num_keys = min(num_keys, keys_info->num_keys);
227         for (i = 0; i < num_keys; i++) {
228                 if (eds) {
229                         keys_info->keys[i] =
230                                         le64_to_cpu(rse->regctl_eds[i].rkey);
231                 } else {
232                         struct nvme_reservation_status *rs;
233
234                         rs = (struct nvme_reservation_status *)rse;
235                         keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
236                 }
237         }
238
239 free_rse:
240         kfree(rse);
241         return ret;
242 }
243
244 static int nvme_pr_read_reservation(struct block_device *bdev,
245                 struct pr_held_reservation *resv)
246 {
247         struct nvme_reservation_status_ext tmp_rse, *rse;
248         int ret, i, num_regs;
249         u32 rse_len;
250         bool eds;
251
252 get_num_regs:
253         /*
254          * Get the number of registrations so we know how big to allocate
255          * the response buffer.
256          */
257         ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
258         if (ret)
259                 return ret;
260
261         num_regs = get_unaligned_le16(&tmp_rse.regctl);
262         if (!num_regs) {
263                 resv->generation = le32_to_cpu(tmp_rse.gen);
264                 return 0;
265         }
266
267         rse_len = struct_size(rse, regctl_eds, num_regs);
268         rse = kzalloc(rse_len, GFP_KERNEL);
269         if (!rse)
270                 return -ENOMEM;
271
272         ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
273         if (ret)
274                 goto free_rse;
275
276         if (num_regs != get_unaligned_le16(&rse->regctl)) {
277                 kfree(rse);
278                 goto get_num_regs;
279         }
280
281         resv->generation = le32_to_cpu(rse->gen);
282         resv->type = block_pr_type_from_nvme(rse->rtype);
283
284         for (i = 0; i < num_regs; i++) {
285                 if (eds) {
286                         if (rse->regctl_eds[i].rcsts) {
287                                 resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
288                                 break;
289                         }
290                 } else {
291                         struct nvme_reservation_status *rs;
292
293                         rs = (struct nvme_reservation_status *)rse;
294                         if (rs->regctl_ds[i].rcsts) {
295                                 resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
296                                 break;
297                         }
298                 }
299         }
300
301 free_rse:
302         kfree(rse);
303         return ret;
304 }
305
306 const struct pr_ops nvme_pr_ops = {
307         .pr_register    = nvme_pr_register,
308         .pr_reserve     = nvme_pr_reserve,
309         .pr_release     = nvme_pr_release,
310         .pr_preempt     = nvme_pr_preempt,
311         .pr_clear       = nvme_pr_clear,
312         .pr_read_keys   = nvme_pr_read_keys,
313         .pr_read_reservation = nvme_pr_read_reservation,
314 };