firewire: core: add memo about the caller of show functions for device attributes
[sfrench/cifs-2.6.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 #include "internals.h"
23
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26 #define FLAG_COMPAT             BIT(0)
27 struct nvmem_cell_entry {
28         const char              *name;
29         int                     offset;
30         size_t                  raw_len;
31         int                     bytes;
32         int                     bit_offset;
33         int                     nbits;
34         nvmem_cell_post_process_t read_post_process;
35         void                    *priv;
36         struct device_node      *np;
37         struct nvmem_device     *nvmem;
38         struct list_head        node;
39 };
40
41 struct nvmem_cell {
42         struct nvmem_cell_entry *entry;
43         const char              *id;
44         int                     index;
45 };
46
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59                             void *val, size_t bytes)
60 {
61         if (nvmem->reg_read)
62                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64         return -EINVAL;
65 }
66
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68                              void *val, size_t bytes)
69 {
70         int ret;
71
72         if (nvmem->reg_write) {
73                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76                 return ret;
77         }
78
79         return -EINVAL;
80 }
81
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83                                       unsigned int offset, void *val,
84                                       size_t bytes, int write)
85 {
86
87         unsigned int end = offset + bytes;
88         unsigned int kend, ksize;
89         const struct nvmem_keepout *keepout = nvmem->keepout;
90         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91         int rc;
92
93         /*
94          * Skip all keepouts before the range being accessed.
95          * Keepouts are sorted.
96          */
97         while ((keepout < keepoutend) && (keepout->end <= offset))
98                 keepout++;
99
100         while ((offset < end) && (keepout < keepoutend)) {
101                 /* Access the valid portion before the keepout. */
102                 if (offset < keepout->start) {
103                         kend = min(end, keepout->start);
104                         ksize = kend - offset;
105                         if (write)
106                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107                         else
108                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110                         if (rc)
111                                 return rc;
112
113                         offset += ksize;
114                         val += ksize;
115                 }
116
117                 /*
118                  * Now we're aligned to the start of this keepout zone. Go
119                  * through it.
120                  */
121                 kend = min(end, keepout->end);
122                 ksize = kend - offset;
123                 if (!write)
124                         memset(val, keepout->value, ksize);
125
126                 val += ksize;
127                 offset += ksize;
128                 keepout++;
129         }
130
131         /*
132          * If we ran out of keepouts but there's still stuff to do, send it
133          * down directly
134          */
135         if (offset < end) {
136                 ksize = end - offset;
137                 if (write)
138                         return __nvmem_reg_write(nvmem, offset, val, ksize);
139                 else
140                         return __nvmem_reg_read(nvmem, offset, val, ksize);
141         }
142
143         return 0;
144 }
145
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147                           void *val, size_t bytes)
148 {
149         if (!nvmem->nkeepout)
150                 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156                            void *val, size_t bytes)
157 {
158         if (!nvmem->nkeepout)
159                 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166         [NVMEM_TYPE_UNKNOWN] = "Unknown",
167         [NVMEM_TYPE_EEPROM] = "EEPROM",
168         [NVMEM_TYPE_OTP] = "OTP",
169         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170         [NVMEM_TYPE_FRAM] = "FRAM",
171 };
172
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176
177 static ssize_t type_show(struct device *dev,
178                          struct device_attribute *attr, char *buf)
179 {
180         struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184
185 static DEVICE_ATTR_RO(type);
186
187 static struct attribute *nvmem_attrs[] = {
188         &dev_attr_type.attr,
189         NULL,
190 };
191
192 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193                                    struct bin_attribute *attr, char *buf,
194                                    loff_t pos, size_t count)
195 {
196         struct device *dev;
197         struct nvmem_device *nvmem;
198         int rc;
199
200         if (attr->private)
201                 dev = attr->private;
202         else
203                 dev = kobj_to_dev(kobj);
204         nvmem = to_nvmem_device(dev);
205
206         /* Stop the user from reading */
207         if (pos >= nvmem->size)
208                 return 0;
209
210         if (!IS_ALIGNED(pos, nvmem->stride))
211                 return -EINVAL;
212
213         if (count < nvmem->word_size)
214                 return -EINVAL;
215
216         if (pos + count > nvmem->size)
217                 count = nvmem->size - pos;
218
219         count = round_down(count, nvmem->word_size);
220
221         if (!nvmem->reg_read)
222                 return -EPERM;
223
224         rc = nvmem_reg_read(nvmem, pos, buf, count);
225
226         if (rc)
227                 return rc;
228
229         return count;
230 }
231
232 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233                                     struct bin_attribute *attr, char *buf,
234                                     loff_t pos, size_t count)
235 {
236         struct device *dev;
237         struct nvmem_device *nvmem;
238         int rc;
239
240         if (attr->private)
241                 dev = attr->private;
242         else
243                 dev = kobj_to_dev(kobj);
244         nvmem = to_nvmem_device(dev);
245
246         /* Stop the user from writing */
247         if (pos >= nvmem->size)
248                 return -EFBIG;
249
250         if (!IS_ALIGNED(pos, nvmem->stride))
251                 return -EINVAL;
252
253         if (count < nvmem->word_size)
254                 return -EINVAL;
255
256         if (pos + count > nvmem->size)
257                 count = nvmem->size - pos;
258
259         count = round_down(count, nvmem->word_size);
260
261         if (!nvmem->reg_write)
262                 return -EPERM;
263
264         rc = nvmem_reg_write(nvmem, pos, buf, count);
265
266         if (rc)
267                 return rc;
268
269         return count;
270 }
271
272 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273 {
274         umode_t mode = 0400;
275
276         if (!nvmem->root_only)
277                 mode |= 0044;
278
279         if (!nvmem->read_only)
280                 mode |= 0200;
281
282         if (!nvmem->reg_write)
283                 mode &= ~0200;
284
285         if (!nvmem->reg_read)
286                 mode &= ~0444;
287
288         return mode;
289 }
290
291 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292                                          struct bin_attribute *attr, int i)
293 {
294         struct device *dev = kobj_to_dev(kobj);
295         struct nvmem_device *nvmem = to_nvmem_device(dev);
296
297         attr->size = nvmem->size;
298
299         return nvmem_bin_attr_get_umode(nvmem);
300 }
301
302 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303                                             const char *id, int index);
304
305 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306                                     struct bin_attribute *attr, char *buf,
307                                     loff_t pos, size_t count)
308 {
309         struct nvmem_cell_entry *entry;
310         struct nvmem_cell *cell = NULL;
311         size_t cell_sz, read_len;
312         void *content;
313
314         entry = attr->private;
315         cell = nvmem_create_cell(entry, entry->name, 0);
316         if (IS_ERR(cell))
317                 return PTR_ERR(cell);
318
319         if (!cell)
320                 return -EINVAL;
321
322         content = nvmem_cell_read(cell, &cell_sz);
323         if (IS_ERR(content)) {
324                 read_len = PTR_ERR(content);
325                 goto destroy_cell;
326         }
327
328         read_len = min_t(unsigned int, cell_sz - pos, count);
329         memcpy(buf, content + pos, read_len);
330         kfree(content);
331
332 destroy_cell:
333         kfree_const(cell->id);
334         kfree(cell);
335
336         return read_len;
337 }
338
339 /* default read/write permissions */
340 static struct bin_attribute bin_attr_rw_nvmem = {
341         .attr   = {
342                 .name   = "nvmem",
343                 .mode   = 0644,
344         },
345         .read   = bin_attr_nvmem_read,
346         .write  = bin_attr_nvmem_write,
347 };
348
349 static struct bin_attribute *nvmem_bin_attributes[] = {
350         &bin_attr_rw_nvmem,
351         NULL,
352 };
353
354 static const struct attribute_group nvmem_bin_group = {
355         .bin_attrs      = nvmem_bin_attributes,
356         .attrs          = nvmem_attrs,
357         .is_bin_visible = nvmem_bin_attr_is_visible,
358 };
359
360 /* Cell attributes will be dynamically allocated */
361 static struct attribute_group nvmem_cells_group = {
362         .name           = "cells",
363 };
364
365 static const struct attribute_group *nvmem_dev_groups[] = {
366         &nvmem_bin_group,
367         NULL,
368 };
369
370 static const struct attribute_group *nvmem_cells_groups[] = {
371         &nvmem_cells_group,
372         NULL,
373 };
374
375 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376         .attr   = {
377                 .name   = "eeprom",
378         },
379         .read   = bin_attr_nvmem_read,
380         .write  = bin_attr_nvmem_write,
381 };
382
383 /*
384  * nvmem_setup_compat() - Create an additional binary entry in
385  * drivers sys directory, to be backwards compatible with the older
386  * drivers/misc/eeprom drivers.
387  */
388 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389                                     const struct nvmem_config *config)
390 {
391         int rval;
392
393         if (!config->compat)
394                 return 0;
395
396         if (!config->base_dev)
397                 return -EINVAL;
398
399         if (config->type == NVMEM_TYPE_FRAM)
400                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401
402         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404         nvmem->eeprom.size = nvmem->size;
405 #ifdef CONFIG_DEBUG_LOCK_ALLOC
406         nvmem->eeprom.attr.key = &eeprom_lock_key;
407 #endif
408         nvmem->eeprom.private = &nvmem->dev;
409         nvmem->base_dev = config->base_dev;
410
411         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412         if (rval) {
413                 dev_err(&nvmem->dev,
414                         "Failed to create eeprom binary file %d\n", rval);
415                 return rval;
416         }
417
418         nvmem->flags |= FLAG_COMPAT;
419
420         return 0;
421 }
422
423 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424                               const struct nvmem_config *config)
425 {
426         if (config->compat)
427                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428 }
429
430 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431 {
432         struct bin_attribute **cells_attrs, *attrs;
433         struct nvmem_cell_entry *entry;
434         unsigned int ncells = 0, i = 0;
435         int ret = 0;
436
437         mutex_lock(&nvmem_mutex);
438
439         if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440                 nvmem_cells_group.bin_attrs = NULL;
441                 goto unlock_mutex;
442         }
443
444         /* Allocate an array of attributes with a sentinel */
445         ncells = list_count_nodes(&nvmem->cells);
446         cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447                                    sizeof(struct bin_attribute *), GFP_KERNEL);
448         if (!cells_attrs) {
449                 ret = -ENOMEM;
450                 goto unlock_mutex;
451         }
452
453         attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454         if (!attrs) {
455                 ret = -ENOMEM;
456                 goto unlock_mutex;
457         }
458
459         /* Initialize each attribute to take the name and size of the cell */
460         list_for_each_entry(entry, &nvmem->cells, node) {
461                 sysfs_bin_attr_init(&attrs[i]);
462                 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463                                                     "%s@%x,%x", entry->name,
464                                                     entry->offset,
465                                                     entry->bit_offset);
466                 attrs[i].attr.mode = 0444;
467                 attrs[i].size = entry->bytes;
468                 attrs[i].read = &nvmem_cell_attr_read;
469                 attrs[i].private = entry;
470                 if (!attrs[i].attr.name) {
471                         ret = -ENOMEM;
472                         goto unlock_mutex;
473                 }
474
475                 cells_attrs[i] = &attrs[i];
476                 i++;
477         }
478
479         nvmem_cells_group.bin_attrs = cells_attrs;
480
481         ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
482         if (ret)
483                 goto unlock_mutex;
484
485         nvmem->sysfs_cells_populated = true;
486
487 unlock_mutex:
488         mutex_unlock(&nvmem_mutex);
489
490         return ret;
491 }
492
493 #else /* CONFIG_NVMEM_SYSFS */
494
495 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
496                                     const struct nvmem_config *config)
497 {
498         return -ENOSYS;
499 }
500 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
501                                       const struct nvmem_config *config)
502 {
503 }
504
505 #endif /* CONFIG_NVMEM_SYSFS */
506
507 static void nvmem_release(struct device *dev)
508 {
509         struct nvmem_device *nvmem = to_nvmem_device(dev);
510
511         ida_free(&nvmem_ida, nvmem->id);
512         gpiod_put(nvmem->wp_gpio);
513         kfree(nvmem);
514 }
515
516 static const struct device_type nvmem_provider_type = {
517         .release        = nvmem_release,
518 };
519
520 static struct bus_type nvmem_bus_type = {
521         .name           = "nvmem",
522 };
523
524 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
525 {
526         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
527         mutex_lock(&nvmem_mutex);
528         list_del(&cell->node);
529         mutex_unlock(&nvmem_mutex);
530         of_node_put(cell->np);
531         kfree_const(cell->name);
532         kfree(cell);
533 }
534
535 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
536 {
537         struct nvmem_cell_entry *cell, *p;
538
539         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
540                 nvmem_cell_entry_drop(cell);
541 }
542
543 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
544 {
545         mutex_lock(&nvmem_mutex);
546         list_add_tail(&cell->node, &cell->nvmem->cells);
547         mutex_unlock(&nvmem_mutex);
548         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
549 }
550
551 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
552                                                      const struct nvmem_cell_info *info,
553                                                      struct nvmem_cell_entry *cell)
554 {
555         cell->nvmem = nvmem;
556         cell->offset = info->offset;
557         cell->raw_len = info->raw_len ?: info->bytes;
558         cell->bytes = info->bytes;
559         cell->name = info->name;
560         cell->read_post_process = info->read_post_process;
561         cell->priv = info->priv;
562
563         cell->bit_offset = info->bit_offset;
564         cell->nbits = info->nbits;
565         cell->np = info->np;
566
567         if (cell->nbits)
568                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
569                                            BITS_PER_BYTE);
570
571         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
572                 dev_err(&nvmem->dev,
573                         "cell %s unaligned to nvmem stride %d\n",
574                         cell->name ?: "<unknown>", nvmem->stride);
575                 return -EINVAL;
576         }
577
578         return 0;
579 }
580
581 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
582                                                const struct nvmem_cell_info *info,
583                                                struct nvmem_cell_entry *cell)
584 {
585         int err;
586
587         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
588         if (err)
589                 return err;
590
591         cell->name = kstrdup_const(info->name, GFP_KERNEL);
592         if (!cell->name)
593                 return -ENOMEM;
594
595         return 0;
596 }
597
598 /**
599  * nvmem_add_one_cell() - Add one cell information to an nvmem device
600  *
601  * @nvmem: nvmem device to add cells to.
602  * @info: nvmem cell info to add to the device
603  *
604  * Return: 0 or negative error code on failure.
605  */
606 int nvmem_add_one_cell(struct nvmem_device *nvmem,
607                        const struct nvmem_cell_info *info)
608 {
609         struct nvmem_cell_entry *cell;
610         int rval;
611
612         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
613         if (!cell)
614                 return -ENOMEM;
615
616         rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
617         if (rval) {
618                 kfree(cell);
619                 return rval;
620         }
621
622         nvmem_cell_entry_add(cell);
623
624         return 0;
625 }
626 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
627
628 /**
629  * nvmem_add_cells() - Add cell information to an nvmem device
630  *
631  * @nvmem: nvmem device to add cells to.
632  * @info: nvmem cell info to add to the device
633  * @ncells: number of cells in info
634  *
635  * Return: 0 or negative error code on failure.
636  */
637 static int nvmem_add_cells(struct nvmem_device *nvmem,
638                     const struct nvmem_cell_info *info,
639                     int ncells)
640 {
641         int i, rval;
642
643         for (i = 0; i < ncells; i++) {
644                 rval = nvmem_add_one_cell(nvmem, &info[i]);
645                 if (rval)
646                         return rval;
647         }
648
649         return 0;
650 }
651
652 /**
653  * nvmem_register_notifier() - Register a notifier block for nvmem events.
654  *
655  * @nb: notifier block to be called on nvmem events.
656  *
657  * Return: 0 on success, negative error number on failure.
658  */
659 int nvmem_register_notifier(struct notifier_block *nb)
660 {
661         return blocking_notifier_chain_register(&nvmem_notifier, nb);
662 }
663 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
664
665 /**
666  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
667  *
668  * @nb: notifier block to be unregistered.
669  *
670  * Return: 0 on success, negative error number on failure.
671  */
672 int nvmem_unregister_notifier(struct notifier_block *nb)
673 {
674         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
675 }
676 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
677
678 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
679 {
680         const struct nvmem_cell_info *info;
681         struct nvmem_cell_table *table;
682         struct nvmem_cell_entry *cell;
683         int rval = 0, i;
684
685         mutex_lock(&nvmem_cell_mutex);
686         list_for_each_entry(table, &nvmem_cell_tables, node) {
687                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
688                         for (i = 0; i < table->ncells; i++) {
689                                 info = &table->cells[i];
690
691                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
692                                 if (!cell) {
693                                         rval = -ENOMEM;
694                                         goto out;
695                                 }
696
697                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
698                                 if (rval) {
699                                         kfree(cell);
700                                         goto out;
701                                 }
702
703                                 nvmem_cell_entry_add(cell);
704                         }
705                 }
706         }
707
708 out:
709         mutex_unlock(&nvmem_cell_mutex);
710         return rval;
711 }
712
713 static struct nvmem_cell_entry *
714 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
715 {
716         struct nvmem_cell_entry *iter, *cell = NULL;
717
718         mutex_lock(&nvmem_mutex);
719         list_for_each_entry(iter, &nvmem->cells, node) {
720                 if (strcmp(cell_id, iter->name) == 0) {
721                         cell = iter;
722                         break;
723                 }
724         }
725         mutex_unlock(&nvmem_mutex);
726
727         return cell;
728 }
729
730 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
731 {
732         unsigned int cur = 0;
733         const struct nvmem_keepout *keepout = nvmem->keepout;
734         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
735
736         while (keepout < keepoutend) {
737                 /* Ensure keepouts are sorted and don't overlap. */
738                 if (keepout->start < cur) {
739                         dev_err(&nvmem->dev,
740                                 "Keepout regions aren't sorted or overlap.\n");
741
742                         return -ERANGE;
743                 }
744
745                 if (keepout->end < keepout->start) {
746                         dev_err(&nvmem->dev,
747                                 "Invalid keepout region.\n");
748
749                         return -EINVAL;
750                 }
751
752                 /*
753                  * Validate keepouts (and holes between) don't violate
754                  * word_size constraints.
755                  */
756                 if ((keepout->end - keepout->start < nvmem->word_size) ||
757                     ((keepout->start != cur) &&
758                      (keepout->start - cur < nvmem->word_size))) {
759
760                         dev_err(&nvmem->dev,
761                                 "Keepout regions violate word_size constraints.\n");
762
763                         return -ERANGE;
764                 }
765
766                 /* Validate keepouts don't violate stride (alignment). */
767                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
768                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
769
770                         dev_err(&nvmem->dev,
771                                 "Keepout regions violate stride.\n");
772
773                         return -EINVAL;
774                 }
775
776                 cur = keepout->end;
777                 keepout++;
778         }
779
780         return 0;
781 }
782
783 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
784 {
785         struct device *dev = &nvmem->dev;
786         struct device_node *child;
787         const __be32 *addr;
788         int len, ret;
789
790         for_each_child_of_node(np, child) {
791                 struct nvmem_cell_info info = {0};
792
793                 addr = of_get_property(child, "reg", &len);
794                 if (!addr)
795                         continue;
796                 if (len < 2 * sizeof(u32)) {
797                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
798                         of_node_put(child);
799                         return -EINVAL;
800                 }
801
802                 info.offset = be32_to_cpup(addr++);
803                 info.bytes = be32_to_cpup(addr);
804                 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
805
806                 addr = of_get_property(child, "bits", &len);
807                 if (addr && len == (2 * sizeof(u32))) {
808                         info.bit_offset = be32_to_cpup(addr++);
809                         info.nbits = be32_to_cpup(addr);
810                 }
811
812                 info.np = of_node_get(child);
813
814                 if (nvmem->fixup_dt_cell_info)
815                         nvmem->fixup_dt_cell_info(nvmem, &info);
816
817                 ret = nvmem_add_one_cell(nvmem, &info);
818                 kfree(info.name);
819                 if (ret) {
820                         of_node_put(child);
821                         return ret;
822                 }
823         }
824
825         return 0;
826 }
827
828 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
829 {
830         return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
831 }
832
833 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
834 {
835         struct device_node *layout_np;
836         int err = 0;
837
838         layout_np = of_nvmem_layout_get_container(nvmem);
839         if (!layout_np)
840                 return 0;
841
842         if (of_device_is_compatible(layout_np, "fixed-layout"))
843                 err = nvmem_add_cells_from_dt(nvmem, layout_np);
844
845         of_node_put(layout_np);
846
847         return err;
848 }
849
850 int nvmem_layout_register(struct nvmem_layout *layout)
851 {
852         int ret;
853
854         if (!layout->add_cells)
855                 return -EINVAL;
856
857         /* Populate the cells */
858         ret = layout->add_cells(layout);
859         if (ret)
860                 return ret;
861
862 #ifdef CONFIG_NVMEM_SYSFS
863         ret = nvmem_populate_sysfs_cells(layout->nvmem);
864         if (ret) {
865                 nvmem_device_remove_all_cells(layout->nvmem);
866                 return ret;
867         }
868 #endif
869
870         return 0;
871 }
872 EXPORT_SYMBOL_GPL(nvmem_layout_register);
873
874 void nvmem_layout_unregister(struct nvmem_layout *layout)
875 {
876         /* Keep the API even with an empty stub in case we need it later */
877 }
878 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
879
880 /**
881  * nvmem_register() - Register a nvmem device for given nvmem_config.
882  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
883  *
884  * @config: nvmem device configuration with which nvmem device is created.
885  *
886  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
887  * on success.
888  */
889
890 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
891 {
892         struct nvmem_device *nvmem;
893         int rval;
894
895         if (!config->dev)
896                 return ERR_PTR(-EINVAL);
897
898         if (!config->reg_read && !config->reg_write)
899                 return ERR_PTR(-EINVAL);
900
901         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
902         if (!nvmem)
903                 return ERR_PTR(-ENOMEM);
904
905         rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
906         if (rval < 0) {
907                 kfree(nvmem);
908                 return ERR_PTR(rval);
909         }
910
911         nvmem->id = rval;
912
913         nvmem->dev.type = &nvmem_provider_type;
914         nvmem->dev.bus = &nvmem_bus_type;
915         nvmem->dev.parent = config->dev;
916
917         device_initialize(&nvmem->dev);
918
919         if (!config->ignore_wp)
920                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
921                                                     GPIOD_OUT_HIGH);
922         if (IS_ERR(nvmem->wp_gpio)) {
923                 rval = PTR_ERR(nvmem->wp_gpio);
924                 nvmem->wp_gpio = NULL;
925                 goto err_put_device;
926         }
927
928         kref_init(&nvmem->refcnt);
929         INIT_LIST_HEAD(&nvmem->cells);
930         nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
931
932         nvmem->owner = config->owner;
933         if (!nvmem->owner && config->dev->driver)
934                 nvmem->owner = config->dev->driver->owner;
935         nvmem->stride = config->stride ?: 1;
936         nvmem->word_size = config->word_size ?: 1;
937         nvmem->size = config->size;
938         nvmem->root_only = config->root_only;
939         nvmem->priv = config->priv;
940         nvmem->type = config->type;
941         nvmem->reg_read = config->reg_read;
942         nvmem->reg_write = config->reg_write;
943         nvmem->keepout = config->keepout;
944         nvmem->nkeepout = config->nkeepout;
945         if (config->of_node)
946                 nvmem->dev.of_node = config->of_node;
947         else
948                 nvmem->dev.of_node = config->dev->of_node;
949
950         switch (config->id) {
951         case NVMEM_DEVID_NONE:
952                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
953                 break;
954         case NVMEM_DEVID_AUTO:
955                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
956                 break;
957         default:
958                 rval = dev_set_name(&nvmem->dev, "%s%d",
959                              config->name ? : "nvmem",
960                              config->name ? config->id : nvmem->id);
961                 break;
962         }
963
964         if (rval)
965                 goto err_put_device;
966
967         nvmem->read_only = device_property_present(config->dev, "read-only") ||
968                            config->read_only || !nvmem->reg_write;
969
970 #ifdef CONFIG_NVMEM_SYSFS
971         nvmem->dev.groups = nvmem_dev_groups;
972 #endif
973
974         if (nvmem->nkeepout) {
975                 rval = nvmem_validate_keepouts(nvmem);
976                 if (rval)
977                         goto err_put_device;
978         }
979
980         if (config->compat) {
981                 rval = nvmem_sysfs_setup_compat(nvmem, config);
982                 if (rval)
983                         goto err_put_device;
984         }
985
986         if (config->cells) {
987                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
988                 if (rval)
989                         goto err_remove_cells;
990         }
991
992         rval = nvmem_add_cells_from_table(nvmem);
993         if (rval)
994                 goto err_remove_cells;
995
996         if (config->add_legacy_fixed_of_cells) {
997                 rval = nvmem_add_cells_from_legacy_of(nvmem);
998                 if (rval)
999                         goto err_remove_cells;
1000         }
1001
1002         rval = nvmem_add_cells_from_fixed_layout(nvmem);
1003         if (rval)
1004                 goto err_remove_cells;
1005
1006         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1007
1008         rval = device_add(&nvmem->dev);
1009         if (rval)
1010                 goto err_remove_cells;
1011
1012         rval = nvmem_populate_layout(nvmem);
1013         if (rval)
1014                 goto err_remove_dev;
1015
1016 #ifdef CONFIG_NVMEM_SYSFS
1017         rval = nvmem_populate_sysfs_cells(nvmem);
1018         if (rval)
1019                 goto err_destroy_layout;
1020 #endif
1021
1022         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1023
1024         return nvmem;
1025
1026 #ifdef CONFIG_NVMEM_SYSFS
1027 err_destroy_layout:
1028         nvmem_destroy_layout(nvmem);
1029 #endif
1030 err_remove_dev:
1031         device_del(&nvmem->dev);
1032 err_remove_cells:
1033         nvmem_device_remove_all_cells(nvmem);
1034         if (config->compat)
1035                 nvmem_sysfs_remove_compat(nvmem, config);
1036 err_put_device:
1037         put_device(&nvmem->dev);
1038
1039         return ERR_PTR(rval);
1040 }
1041 EXPORT_SYMBOL_GPL(nvmem_register);
1042
1043 static void nvmem_device_release(struct kref *kref)
1044 {
1045         struct nvmem_device *nvmem;
1046
1047         nvmem = container_of(kref, struct nvmem_device, refcnt);
1048
1049         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1050
1051         if (nvmem->flags & FLAG_COMPAT)
1052                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1053
1054         nvmem_device_remove_all_cells(nvmem);
1055         nvmem_destroy_layout(nvmem);
1056         device_unregister(&nvmem->dev);
1057 }
1058
1059 /**
1060  * nvmem_unregister() - Unregister previously registered nvmem device
1061  *
1062  * @nvmem: Pointer to previously registered nvmem device.
1063  */
1064 void nvmem_unregister(struct nvmem_device *nvmem)
1065 {
1066         if (nvmem)
1067                 kref_put(&nvmem->refcnt, nvmem_device_release);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_unregister);
1070
1071 static void devm_nvmem_unregister(void *nvmem)
1072 {
1073         nvmem_unregister(nvmem);
1074 }
1075
1076 /**
1077  * devm_nvmem_register() - Register a managed nvmem device for given
1078  * nvmem_config.
1079  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1080  *
1081  * @dev: Device that uses the nvmem device.
1082  * @config: nvmem device configuration with which nvmem device is created.
1083  *
1084  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1085  * on success.
1086  */
1087 struct nvmem_device *devm_nvmem_register(struct device *dev,
1088                                          const struct nvmem_config *config)
1089 {
1090         struct nvmem_device *nvmem;
1091         int ret;
1092
1093         nvmem = nvmem_register(config);
1094         if (IS_ERR(nvmem))
1095                 return nvmem;
1096
1097         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1098         if (ret)
1099                 return ERR_PTR(ret);
1100
1101         return nvmem;
1102 }
1103 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1104
1105 static struct nvmem_device *__nvmem_device_get(void *data,
1106                         int (*match)(struct device *dev, const void *data))
1107 {
1108         struct nvmem_device *nvmem = NULL;
1109         struct device *dev;
1110
1111         mutex_lock(&nvmem_mutex);
1112         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1113         if (dev)
1114                 nvmem = to_nvmem_device(dev);
1115         mutex_unlock(&nvmem_mutex);
1116         if (!nvmem)
1117                 return ERR_PTR(-EPROBE_DEFER);
1118
1119         if (!try_module_get(nvmem->owner)) {
1120                 dev_err(&nvmem->dev,
1121                         "could not increase module refcount for cell %s\n",
1122                         nvmem_dev_name(nvmem));
1123
1124                 put_device(&nvmem->dev);
1125                 return ERR_PTR(-EINVAL);
1126         }
1127
1128         kref_get(&nvmem->refcnt);
1129
1130         return nvmem;
1131 }
1132
1133 static void __nvmem_device_put(struct nvmem_device *nvmem)
1134 {
1135         put_device(&nvmem->dev);
1136         module_put(nvmem->owner);
1137         kref_put(&nvmem->refcnt, nvmem_device_release);
1138 }
1139
1140 #if IS_ENABLED(CONFIG_OF)
1141 /**
1142  * of_nvmem_device_get() - Get nvmem device from a given id
1143  *
1144  * @np: Device tree node that uses the nvmem device.
1145  * @id: nvmem name from nvmem-names property.
1146  *
1147  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1148  * on success.
1149  */
1150 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1151 {
1152
1153         struct device_node *nvmem_np;
1154         struct nvmem_device *nvmem;
1155         int index = 0;
1156
1157         if (id)
1158                 index = of_property_match_string(np, "nvmem-names", id);
1159
1160         nvmem_np = of_parse_phandle(np, "nvmem", index);
1161         if (!nvmem_np)
1162                 return ERR_PTR(-ENOENT);
1163
1164         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1165         of_node_put(nvmem_np);
1166         return nvmem;
1167 }
1168 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1169 #endif
1170
1171 /**
1172  * nvmem_device_get() - Get nvmem device from a given id
1173  *
1174  * @dev: Device that uses the nvmem device.
1175  * @dev_name: name of the requested nvmem device.
1176  *
1177  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1178  * on success.
1179  */
1180 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1181 {
1182         if (dev->of_node) { /* try dt first */
1183                 struct nvmem_device *nvmem;
1184
1185                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1186
1187                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1188                         return nvmem;
1189
1190         }
1191
1192         return __nvmem_device_get((void *)dev_name, device_match_name);
1193 }
1194 EXPORT_SYMBOL_GPL(nvmem_device_get);
1195
1196 /**
1197  * nvmem_device_find() - Find nvmem device with matching function
1198  *
1199  * @data: Data to pass to match function
1200  * @match: Callback function to check device
1201  *
1202  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1203  * on success.
1204  */
1205 struct nvmem_device *nvmem_device_find(void *data,
1206                         int (*match)(struct device *dev, const void *data))
1207 {
1208         return __nvmem_device_get(data, match);
1209 }
1210 EXPORT_SYMBOL_GPL(nvmem_device_find);
1211
1212 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1213 {
1214         struct nvmem_device **nvmem = res;
1215
1216         if (WARN_ON(!nvmem || !*nvmem))
1217                 return 0;
1218
1219         return *nvmem == data;
1220 }
1221
1222 static void devm_nvmem_device_release(struct device *dev, void *res)
1223 {
1224         nvmem_device_put(*(struct nvmem_device **)res);
1225 }
1226
1227 /**
1228  * devm_nvmem_device_put() - put alredy got nvmem device
1229  *
1230  * @dev: Device that uses the nvmem device.
1231  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1232  * that needs to be released.
1233  */
1234 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1235 {
1236         int ret;
1237
1238         ret = devres_release(dev, devm_nvmem_device_release,
1239                              devm_nvmem_device_match, nvmem);
1240
1241         WARN_ON(ret);
1242 }
1243 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1244
1245 /**
1246  * nvmem_device_put() - put alredy got nvmem device
1247  *
1248  * @nvmem: pointer to nvmem device that needs to be released.
1249  */
1250 void nvmem_device_put(struct nvmem_device *nvmem)
1251 {
1252         __nvmem_device_put(nvmem);
1253 }
1254 EXPORT_SYMBOL_GPL(nvmem_device_put);
1255
1256 /**
1257  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1258  *
1259  * @dev: Device that requests the nvmem device.
1260  * @id: name id for the requested nvmem device.
1261  *
1262  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1263  * on success.  The nvmem_cell will be freed by the automatically once the
1264  * device is freed.
1265  */
1266 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1267 {
1268         struct nvmem_device **ptr, *nvmem;
1269
1270         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1271         if (!ptr)
1272                 return ERR_PTR(-ENOMEM);
1273
1274         nvmem = nvmem_device_get(dev, id);
1275         if (!IS_ERR(nvmem)) {
1276                 *ptr = nvmem;
1277                 devres_add(dev, ptr);
1278         } else {
1279                 devres_free(ptr);
1280         }
1281
1282         return nvmem;
1283 }
1284 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1285
1286 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1287                                             const char *id, int index)
1288 {
1289         struct nvmem_cell *cell;
1290         const char *name = NULL;
1291
1292         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1293         if (!cell)
1294                 return ERR_PTR(-ENOMEM);
1295
1296         if (id) {
1297                 name = kstrdup_const(id, GFP_KERNEL);
1298                 if (!name) {
1299                         kfree(cell);
1300                         return ERR_PTR(-ENOMEM);
1301                 }
1302         }
1303
1304         cell->id = name;
1305         cell->entry = entry;
1306         cell->index = index;
1307
1308         return cell;
1309 }
1310
1311 static struct nvmem_cell *
1312 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1313 {
1314         struct nvmem_cell_entry *cell_entry;
1315         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1316         struct nvmem_cell_lookup *lookup;
1317         struct nvmem_device *nvmem;
1318         const char *dev_id;
1319
1320         if (!dev)
1321                 return ERR_PTR(-EINVAL);
1322
1323         dev_id = dev_name(dev);
1324
1325         mutex_lock(&nvmem_lookup_mutex);
1326
1327         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1328                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1329                     (strcmp(lookup->con_id, con_id) == 0)) {
1330                         /* This is the right entry. */
1331                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1332                                                    device_match_name);
1333                         if (IS_ERR(nvmem)) {
1334                                 /* Provider may not be registered yet. */
1335                                 cell = ERR_CAST(nvmem);
1336                                 break;
1337                         }
1338
1339                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1340                                                                    lookup->cell_name);
1341                         if (!cell_entry) {
1342                                 __nvmem_device_put(nvmem);
1343                                 cell = ERR_PTR(-ENOENT);
1344                         } else {
1345                                 cell = nvmem_create_cell(cell_entry, con_id, 0);
1346                                 if (IS_ERR(cell))
1347                                         __nvmem_device_put(nvmem);
1348                         }
1349                         break;
1350                 }
1351         }
1352
1353         mutex_unlock(&nvmem_lookup_mutex);
1354         return cell;
1355 }
1356
1357 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1358 {
1359         if (nvmem->layout && nvmem->layout->dev.driver)
1360                 module_put(nvmem->layout->dev.driver->owner);
1361 }
1362
1363 #if IS_ENABLED(CONFIG_OF)
1364 static struct nvmem_cell_entry *
1365 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1366 {
1367         struct nvmem_cell_entry *iter, *cell = NULL;
1368
1369         mutex_lock(&nvmem_mutex);
1370         list_for_each_entry(iter, &nvmem->cells, node) {
1371                 if (np == iter->np) {
1372                         cell = iter;
1373                         break;
1374                 }
1375         }
1376         mutex_unlock(&nvmem_mutex);
1377
1378         return cell;
1379 }
1380
1381 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1382 {
1383         if (!nvmem->layout)
1384                 return 0;
1385
1386         if (!nvmem->layout->dev.driver ||
1387             !try_module_get(nvmem->layout->dev.driver->owner))
1388                 return -EPROBE_DEFER;
1389
1390         return 0;
1391 }
1392
1393 /**
1394  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1395  *
1396  * @np: Device tree node that uses the nvmem cell.
1397  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1398  *      for the cell at index 0 (the lone cell with no accompanying
1399  *      nvmem-cell-names property).
1400  *
1401  * Return: Will be an ERR_PTR() on error or a valid pointer
1402  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1403  * nvmem_cell_put().
1404  */
1405 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1406 {
1407         struct device_node *cell_np, *nvmem_np;
1408         struct nvmem_device *nvmem;
1409         struct nvmem_cell_entry *cell_entry;
1410         struct nvmem_cell *cell;
1411         struct of_phandle_args cell_spec;
1412         int index = 0;
1413         int cell_index = 0;
1414         int ret;
1415
1416         /* if cell name exists, find index to the name */
1417         if (id)
1418                 index = of_property_match_string(np, "nvmem-cell-names", id);
1419
1420         ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1421                                                   "#nvmem-cell-cells",
1422                                                   index, &cell_spec);
1423         if (ret)
1424                 return ERR_PTR(-ENOENT);
1425
1426         if (cell_spec.args_count > 1)
1427                 return ERR_PTR(-EINVAL);
1428
1429         cell_np = cell_spec.np;
1430         if (cell_spec.args_count)
1431                 cell_index = cell_spec.args[0];
1432
1433         nvmem_np = of_get_parent(cell_np);
1434         if (!nvmem_np) {
1435                 of_node_put(cell_np);
1436                 return ERR_PTR(-EINVAL);
1437         }
1438
1439         /* nvmem layouts produce cells within the nvmem-layout container */
1440         if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1441                 nvmem_np = of_get_next_parent(nvmem_np);
1442                 if (!nvmem_np) {
1443                         of_node_put(cell_np);
1444                         return ERR_PTR(-EINVAL);
1445                 }
1446         }
1447
1448         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1449         of_node_put(nvmem_np);
1450         if (IS_ERR(nvmem)) {
1451                 of_node_put(cell_np);
1452                 return ERR_CAST(nvmem);
1453         }
1454
1455         ret = nvmem_layout_module_get_optional(nvmem);
1456         if (ret) {
1457                 of_node_put(cell_np);
1458                 __nvmem_device_put(nvmem);
1459                 return ERR_PTR(ret);
1460         }
1461
1462         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1463         of_node_put(cell_np);
1464         if (!cell_entry) {
1465                 __nvmem_device_put(nvmem);
1466                 nvmem_layout_module_put(nvmem);
1467                 if (nvmem->layout)
1468                         return ERR_PTR(-EPROBE_DEFER);
1469                 else
1470                         return ERR_PTR(-ENOENT);
1471         }
1472
1473         cell = nvmem_create_cell(cell_entry, id, cell_index);
1474         if (IS_ERR(cell)) {
1475                 __nvmem_device_put(nvmem);
1476                 nvmem_layout_module_put(nvmem);
1477         }
1478
1479         return cell;
1480 }
1481 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1482 #endif
1483
1484 /**
1485  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1486  *
1487  * @dev: Device that requests the nvmem cell.
1488  * @id: nvmem cell name to get (this corresponds with the name from the
1489  *      nvmem-cell-names property for DT systems and with the con_id from
1490  *      the lookup entry for non-DT systems).
1491  *
1492  * Return: Will be an ERR_PTR() on error or a valid pointer
1493  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1494  * nvmem_cell_put().
1495  */
1496 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1497 {
1498         struct nvmem_cell *cell;
1499
1500         if (dev->of_node) { /* try dt first */
1501                 cell = of_nvmem_cell_get(dev->of_node, id);
1502                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1503                         return cell;
1504         }
1505
1506         /* NULL cell id only allowed for device tree; invalid otherwise */
1507         if (!id)
1508                 return ERR_PTR(-EINVAL);
1509
1510         return nvmem_cell_get_from_lookup(dev, id);
1511 }
1512 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1513
1514 static void devm_nvmem_cell_release(struct device *dev, void *res)
1515 {
1516         nvmem_cell_put(*(struct nvmem_cell **)res);
1517 }
1518
1519 /**
1520  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1521  *
1522  * @dev: Device that requests the nvmem cell.
1523  * @id: nvmem cell name id to get.
1524  *
1525  * Return: Will be an ERR_PTR() on error or a valid pointer
1526  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1527  * automatically once the device is freed.
1528  */
1529 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1530 {
1531         struct nvmem_cell **ptr, *cell;
1532
1533         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1534         if (!ptr)
1535                 return ERR_PTR(-ENOMEM);
1536
1537         cell = nvmem_cell_get(dev, id);
1538         if (!IS_ERR(cell)) {
1539                 *ptr = cell;
1540                 devres_add(dev, ptr);
1541         } else {
1542                 devres_free(ptr);
1543         }
1544
1545         return cell;
1546 }
1547 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1548
1549 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1550 {
1551         struct nvmem_cell **c = res;
1552
1553         if (WARN_ON(!c || !*c))
1554                 return 0;
1555
1556         return *c == data;
1557 }
1558
1559 /**
1560  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1561  * from devm_nvmem_cell_get.
1562  *
1563  * @dev: Device that requests the nvmem cell.
1564  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1565  */
1566 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1567 {
1568         int ret;
1569
1570         ret = devres_release(dev, devm_nvmem_cell_release,
1571                                 devm_nvmem_cell_match, cell);
1572
1573         WARN_ON(ret);
1574 }
1575 EXPORT_SYMBOL(devm_nvmem_cell_put);
1576
1577 /**
1578  * nvmem_cell_put() - Release previously allocated nvmem cell.
1579  *
1580  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1581  */
1582 void nvmem_cell_put(struct nvmem_cell *cell)
1583 {
1584         struct nvmem_device *nvmem = cell->entry->nvmem;
1585
1586         if (cell->id)
1587                 kfree_const(cell->id);
1588
1589         kfree(cell);
1590         __nvmem_device_put(nvmem);
1591         nvmem_layout_module_put(nvmem);
1592 }
1593 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1594
1595 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1596 {
1597         u8 *p, *b;
1598         int i, extra, bit_offset = cell->bit_offset;
1599
1600         p = b = buf;
1601         if (bit_offset) {
1602                 /* First shift */
1603                 *b++ >>= bit_offset;
1604
1605                 /* setup rest of the bytes if any */
1606                 for (i = 1; i < cell->bytes; i++) {
1607                         /* Get bits from next byte and shift them towards msb */
1608                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1609
1610                         p = b;
1611                         *b++ >>= bit_offset;
1612                 }
1613         } else {
1614                 /* point to the msb */
1615                 p += cell->bytes - 1;
1616         }
1617
1618         /* result fits in less bytes */
1619         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1620         while (--extra >= 0)
1621                 *p-- = 0;
1622
1623         /* clear msb bits if any leftover in the last byte */
1624         if (cell->nbits % BITS_PER_BYTE)
1625                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1626 }
1627
1628 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1629                              struct nvmem_cell_entry *cell,
1630                              void *buf, size_t *len, const char *id, int index)
1631 {
1632         int rc;
1633
1634         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1635
1636         if (rc)
1637                 return rc;
1638
1639         /* shift bits in-place */
1640         if (cell->bit_offset || cell->nbits)
1641                 nvmem_shift_read_buffer_in_place(cell, buf);
1642
1643         if (cell->read_post_process) {
1644                 rc = cell->read_post_process(cell->priv, id, index,
1645                                              cell->offset, buf, cell->raw_len);
1646                 if (rc)
1647                         return rc;
1648         }
1649
1650         if (len)
1651                 *len = cell->bytes;
1652
1653         return 0;
1654 }
1655
1656 /**
1657  * nvmem_cell_read() - Read a given nvmem cell
1658  *
1659  * @cell: nvmem cell to be read.
1660  * @len: pointer to length of cell which will be populated on successful read;
1661  *       can be NULL.
1662  *
1663  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1664  * buffer should be freed by the consumer with a kfree().
1665  */
1666 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1667 {
1668         struct nvmem_cell_entry *entry = cell->entry;
1669         struct nvmem_device *nvmem = entry->nvmem;
1670         u8 *buf;
1671         int rc;
1672
1673         if (!nvmem)
1674                 return ERR_PTR(-EINVAL);
1675
1676         buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1677         if (!buf)
1678                 return ERR_PTR(-ENOMEM);
1679
1680         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1681         if (rc) {
1682                 kfree(buf);
1683                 return ERR_PTR(rc);
1684         }
1685
1686         return buf;
1687 }
1688 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1689
1690 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1691                                              u8 *_buf, int len)
1692 {
1693         struct nvmem_device *nvmem = cell->nvmem;
1694         int i, rc, nbits, bit_offset = cell->bit_offset;
1695         u8 v, *p, *buf, *b, pbyte, pbits;
1696
1697         nbits = cell->nbits;
1698         buf = kzalloc(cell->bytes, GFP_KERNEL);
1699         if (!buf)
1700                 return ERR_PTR(-ENOMEM);
1701
1702         memcpy(buf, _buf, len);
1703         p = b = buf;
1704
1705         if (bit_offset) {
1706                 pbyte = *b;
1707                 *b <<= bit_offset;
1708
1709                 /* setup the first byte with lsb bits from nvmem */
1710                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1711                 if (rc)
1712                         goto err;
1713                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1714
1715                 /* setup rest of the byte if any */
1716                 for (i = 1; i < cell->bytes; i++) {
1717                         /* Get last byte bits and shift them towards lsb */
1718                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1719                         pbyte = *b;
1720                         p = b;
1721                         *b <<= bit_offset;
1722                         *b++ |= pbits;
1723                 }
1724         }
1725
1726         /* if it's not end on byte boundary */
1727         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1728                 /* setup the last byte with msb bits from nvmem */
1729                 rc = nvmem_reg_read(nvmem,
1730                                     cell->offset + cell->bytes - 1, &v, 1);
1731                 if (rc)
1732                         goto err;
1733                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1734
1735         }
1736
1737         return buf;
1738 err:
1739         kfree(buf);
1740         return ERR_PTR(rc);
1741 }
1742
1743 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1744 {
1745         struct nvmem_device *nvmem = cell->nvmem;
1746         int rc;
1747
1748         if (!nvmem || nvmem->read_only ||
1749             (cell->bit_offset == 0 && len != cell->bytes))
1750                 return -EINVAL;
1751
1752         /*
1753          * Any cells which have a read_post_process hook are read-only because
1754          * we cannot reverse the operation and it might affect other cells,
1755          * too.
1756          */
1757         if (cell->read_post_process)
1758                 return -EINVAL;
1759
1760         if (cell->bit_offset || cell->nbits) {
1761                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1762                 if (IS_ERR(buf))
1763                         return PTR_ERR(buf);
1764         }
1765
1766         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1767
1768         /* free the tmp buffer */
1769         if (cell->bit_offset || cell->nbits)
1770                 kfree(buf);
1771
1772         if (rc)
1773                 return rc;
1774
1775         return len;
1776 }
1777
1778 /**
1779  * nvmem_cell_write() - Write to a given nvmem cell
1780  *
1781  * @cell: nvmem cell to be written.
1782  * @buf: Buffer to be written.
1783  * @len: length of buffer to be written to nvmem cell.
1784  *
1785  * Return: length of bytes written or negative on failure.
1786  */
1787 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1788 {
1789         return __nvmem_cell_entry_write(cell->entry, buf, len);
1790 }
1791
1792 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1793
1794 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1795                                   void *val, size_t count)
1796 {
1797         struct nvmem_cell *cell;
1798         void *buf;
1799         size_t len;
1800
1801         cell = nvmem_cell_get(dev, cell_id);
1802         if (IS_ERR(cell))
1803                 return PTR_ERR(cell);
1804
1805         buf = nvmem_cell_read(cell, &len);
1806         if (IS_ERR(buf)) {
1807                 nvmem_cell_put(cell);
1808                 return PTR_ERR(buf);
1809         }
1810         if (len != count) {
1811                 kfree(buf);
1812                 nvmem_cell_put(cell);
1813                 return -EINVAL;
1814         }
1815         memcpy(val, buf, count);
1816         kfree(buf);
1817         nvmem_cell_put(cell);
1818
1819         return 0;
1820 }
1821
1822 /**
1823  * nvmem_cell_read_u8() - Read a cell value as a u8
1824  *
1825  * @dev: Device that requests the nvmem cell.
1826  * @cell_id: Name of nvmem cell to read.
1827  * @val: pointer to output value.
1828  *
1829  * Return: 0 on success or negative errno.
1830  */
1831 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1832 {
1833         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1834 }
1835 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1836
1837 /**
1838  * nvmem_cell_read_u16() - Read a cell value as a u16
1839  *
1840  * @dev: Device that requests the nvmem cell.
1841  * @cell_id: Name of nvmem cell to read.
1842  * @val: pointer to output value.
1843  *
1844  * Return: 0 on success or negative errno.
1845  */
1846 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1847 {
1848         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1849 }
1850 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1851
1852 /**
1853  * nvmem_cell_read_u32() - Read a cell value as a u32
1854  *
1855  * @dev: Device that requests the nvmem cell.
1856  * @cell_id: Name of nvmem cell to read.
1857  * @val: pointer to output value.
1858  *
1859  * Return: 0 on success or negative errno.
1860  */
1861 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1862 {
1863         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1864 }
1865 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1866
1867 /**
1868  * nvmem_cell_read_u64() - Read a cell value as a u64
1869  *
1870  * @dev: Device that requests the nvmem cell.
1871  * @cell_id: Name of nvmem cell to read.
1872  * @val: pointer to output value.
1873  *
1874  * Return: 0 on success or negative errno.
1875  */
1876 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1877 {
1878         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1879 }
1880 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1881
1882 static const void *nvmem_cell_read_variable_common(struct device *dev,
1883                                                    const char *cell_id,
1884                                                    size_t max_len, size_t *len)
1885 {
1886         struct nvmem_cell *cell;
1887         int nbits;
1888         void *buf;
1889
1890         cell = nvmem_cell_get(dev, cell_id);
1891         if (IS_ERR(cell))
1892                 return cell;
1893
1894         nbits = cell->entry->nbits;
1895         buf = nvmem_cell_read(cell, len);
1896         nvmem_cell_put(cell);
1897         if (IS_ERR(buf))
1898                 return buf;
1899
1900         /*
1901          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1902          * the length of the real data. Throw away the extra junk.
1903          */
1904         if (nbits)
1905                 *len = DIV_ROUND_UP(nbits, 8);
1906
1907         if (*len > max_len) {
1908                 kfree(buf);
1909                 return ERR_PTR(-ERANGE);
1910         }
1911
1912         return buf;
1913 }
1914
1915 /**
1916  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1917  *
1918  * @dev: Device that requests the nvmem cell.
1919  * @cell_id: Name of nvmem cell to read.
1920  * @val: pointer to output value.
1921  *
1922  * Return: 0 on success or negative errno.
1923  */
1924 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1925                                     u32 *val)
1926 {
1927         size_t len;
1928         const u8 *buf;
1929         int i;
1930
1931         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1932         if (IS_ERR(buf))
1933                 return PTR_ERR(buf);
1934
1935         /* Copy w/ implicit endian conversion */
1936         *val = 0;
1937         for (i = 0; i < len; i++)
1938                 *val |= buf[i] << (8 * i);
1939
1940         kfree(buf);
1941
1942         return 0;
1943 }
1944 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1945
1946 /**
1947  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1948  *
1949  * @dev: Device that requests the nvmem cell.
1950  * @cell_id: Name of nvmem cell to read.
1951  * @val: pointer to output value.
1952  *
1953  * Return: 0 on success or negative errno.
1954  */
1955 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1956                                     u64 *val)
1957 {
1958         size_t len;
1959         const u8 *buf;
1960         int i;
1961
1962         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1963         if (IS_ERR(buf))
1964                 return PTR_ERR(buf);
1965
1966         /* Copy w/ implicit endian conversion */
1967         *val = 0;
1968         for (i = 0; i < len; i++)
1969                 *val |= (uint64_t)buf[i] << (8 * i);
1970
1971         kfree(buf);
1972
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1976
1977 /**
1978  * nvmem_device_cell_read() - Read a given nvmem device and cell
1979  *
1980  * @nvmem: nvmem device to read from.
1981  * @info: nvmem cell info to be read.
1982  * @buf: buffer pointer which will be populated on successful read.
1983  *
1984  * Return: length of successful bytes read on success and negative
1985  * error code on error.
1986  */
1987 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1988                            struct nvmem_cell_info *info, void *buf)
1989 {
1990         struct nvmem_cell_entry cell;
1991         int rc;
1992         ssize_t len;
1993
1994         if (!nvmem)
1995                 return -EINVAL;
1996
1997         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1998         if (rc)
1999                 return rc;
2000
2001         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2002         if (rc)
2003                 return rc;
2004
2005         return len;
2006 }
2007 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2008
2009 /**
2010  * nvmem_device_cell_write() - Write cell to a given nvmem device
2011  *
2012  * @nvmem: nvmem device to be written to.
2013  * @info: nvmem cell info to be written.
2014  * @buf: buffer to be written to cell.
2015  *
2016  * Return: length of bytes written or negative error code on failure.
2017  */
2018 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2019                             struct nvmem_cell_info *info, void *buf)
2020 {
2021         struct nvmem_cell_entry cell;
2022         int rc;
2023
2024         if (!nvmem)
2025                 return -EINVAL;
2026
2027         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2028         if (rc)
2029                 return rc;
2030
2031         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2032 }
2033 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2034
2035 /**
2036  * nvmem_device_read() - Read from a given nvmem device
2037  *
2038  * @nvmem: nvmem device to read from.
2039  * @offset: offset in nvmem device.
2040  * @bytes: number of bytes to read.
2041  * @buf: buffer pointer which will be populated on successful read.
2042  *
2043  * Return: length of successful bytes read on success and negative
2044  * error code on error.
2045  */
2046 int nvmem_device_read(struct nvmem_device *nvmem,
2047                       unsigned int offset,
2048                       size_t bytes, void *buf)
2049 {
2050         int rc;
2051
2052         if (!nvmem)
2053                 return -EINVAL;
2054
2055         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2056
2057         if (rc)
2058                 return rc;
2059
2060         return bytes;
2061 }
2062 EXPORT_SYMBOL_GPL(nvmem_device_read);
2063
2064 /**
2065  * nvmem_device_write() - Write cell to a given nvmem device
2066  *
2067  * @nvmem: nvmem device to be written to.
2068  * @offset: offset in nvmem device.
2069  * @bytes: number of bytes to write.
2070  * @buf: buffer to be written.
2071  *
2072  * Return: length of bytes written or negative error code on failure.
2073  */
2074 int nvmem_device_write(struct nvmem_device *nvmem,
2075                        unsigned int offset,
2076                        size_t bytes, void *buf)
2077 {
2078         int rc;
2079
2080         if (!nvmem)
2081                 return -EINVAL;
2082
2083         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2084
2085         if (rc)
2086                 return rc;
2087
2088
2089         return bytes;
2090 }
2091 EXPORT_SYMBOL_GPL(nvmem_device_write);
2092
2093 /**
2094  * nvmem_add_cell_table() - register a table of cell info entries
2095  *
2096  * @table: table of cell info entries
2097  */
2098 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2099 {
2100         mutex_lock(&nvmem_cell_mutex);
2101         list_add_tail(&table->node, &nvmem_cell_tables);
2102         mutex_unlock(&nvmem_cell_mutex);
2103 }
2104 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2105
2106 /**
2107  * nvmem_del_cell_table() - remove a previously registered cell info table
2108  *
2109  * @table: table of cell info entries
2110  */
2111 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2112 {
2113         mutex_lock(&nvmem_cell_mutex);
2114         list_del(&table->node);
2115         mutex_unlock(&nvmem_cell_mutex);
2116 }
2117 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2118
2119 /**
2120  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2121  *
2122  * @entries: array of cell lookup entries
2123  * @nentries: number of cell lookup entries in the array
2124  */
2125 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2126 {
2127         int i;
2128
2129         mutex_lock(&nvmem_lookup_mutex);
2130         for (i = 0; i < nentries; i++)
2131                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2132         mutex_unlock(&nvmem_lookup_mutex);
2133 }
2134 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2135
2136 /**
2137  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2138  *                            entries
2139  *
2140  * @entries: array of cell lookup entries
2141  * @nentries: number of cell lookup entries in the array
2142  */
2143 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2144 {
2145         int i;
2146
2147         mutex_lock(&nvmem_lookup_mutex);
2148         for (i = 0; i < nentries; i++)
2149                 list_del(&entries[i].node);
2150         mutex_unlock(&nvmem_lookup_mutex);
2151 }
2152 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2153
2154 /**
2155  * nvmem_dev_name() - Get the name of a given nvmem device.
2156  *
2157  * @nvmem: nvmem device.
2158  *
2159  * Return: name of the nvmem device.
2160  */
2161 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2162 {
2163         return dev_name(&nvmem->dev);
2164 }
2165 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2166
2167 /**
2168  * nvmem_dev_size() - Get the size of a given nvmem device.
2169  *
2170  * @nvmem: nvmem device.
2171  *
2172  * Return: size of the nvmem device.
2173  */
2174 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2175 {
2176         return nvmem->size;
2177 }
2178 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2179
2180 static int __init nvmem_init(void)
2181 {
2182         int ret;
2183
2184         ret = bus_register(&nvmem_bus_type);
2185         if (ret)
2186                 return ret;
2187
2188         ret = nvmem_layout_bus_register();
2189         if (ret)
2190                 bus_unregister(&nvmem_bus_type);
2191
2192         return ret;
2193 }
2194
2195 static void __exit nvmem_exit(void)
2196 {
2197         nvmem_layout_bus_unregister();
2198         bus_unregister(&nvmem_bus_type);
2199 }
2200
2201 subsys_initcall(nvmem_init);
2202 module_exit(nvmem_exit);
2203
2204 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2205 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2206 MODULE_DESCRIPTION("nvmem Driver Core");