sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / drivers / perf / riscv_pmu_sbi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22
23 #include <asm/errata_list.h>
24 #include <asm/sbi.h>
25 #include <asm/cpufeature.h>
26
27 #define SYSCTL_NO_USER_ACCESS   0
28 #define SYSCTL_USER_ACCESS      1
29 #define SYSCTL_LEGACY           2
30
31 #define PERF_EVENT_FLAG_NO_USER_ACCESS  BIT(SYSCTL_NO_USER_ACCESS)
32 #define PERF_EVENT_FLAG_USER_ACCESS     BIT(SYSCTL_USER_ACCESS)
33 #define PERF_EVENT_FLAG_LEGACY          BIT(SYSCTL_LEGACY)
34
35 PMU_FORMAT_ATTR(event, "config:0-47");
36 PMU_FORMAT_ATTR(firmware, "config:63");
37
38 static struct attribute *riscv_arch_formats_attr[] = {
39         &format_attr_event.attr,
40         &format_attr_firmware.attr,
41         NULL,
42 };
43
44 static struct attribute_group riscv_pmu_format_group = {
45         .name = "format",
46         .attrs = riscv_arch_formats_attr,
47 };
48
49 static const struct attribute_group *riscv_pmu_attr_groups[] = {
50         &riscv_pmu_format_group,
51         NULL,
52 };
53
54 /* Allow user mode access by default */
55 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
56
57 /*
58  * RISC-V doesn't have heterogeneous harts yet. This need to be part of
59  * per_cpu in case of harts with different pmu counters
60  */
61 static union sbi_pmu_ctr_info *pmu_ctr_list;
62 static bool riscv_pmu_use_irq;
63 static unsigned int riscv_pmu_irq_num;
64 static unsigned int riscv_pmu_irq;
65
66 /* Cache the available counters in a bitmask */
67 static unsigned long cmask;
68
69 struct sbi_pmu_event_data {
70         union {
71                 union {
72                         struct hw_gen_event {
73                                 uint32_t event_code:16;
74                                 uint32_t event_type:4;
75                                 uint32_t reserved:12;
76                         } hw_gen_event;
77                         struct hw_cache_event {
78                                 uint32_t result_id:1;
79                                 uint32_t op_id:2;
80                                 uint32_t cache_id:13;
81                                 uint32_t event_type:4;
82                                 uint32_t reserved:12;
83                         } hw_cache_event;
84                 };
85                 uint32_t event_idx;
86         };
87 };
88
89 static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
90         [PERF_COUNT_HW_CPU_CYCLES]              = {.hw_gen_event = {
91                                                         SBI_PMU_HW_CPU_CYCLES,
92                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
93         [PERF_COUNT_HW_INSTRUCTIONS]            = {.hw_gen_event = {
94                                                         SBI_PMU_HW_INSTRUCTIONS,
95                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
96         [PERF_COUNT_HW_CACHE_REFERENCES]        = {.hw_gen_event = {
97                                                         SBI_PMU_HW_CACHE_REFERENCES,
98                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
99         [PERF_COUNT_HW_CACHE_MISSES]            = {.hw_gen_event = {
100                                                         SBI_PMU_HW_CACHE_MISSES,
101                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
102         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = {.hw_gen_event = {
103                                                         SBI_PMU_HW_BRANCH_INSTRUCTIONS,
104                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
105         [PERF_COUNT_HW_BRANCH_MISSES]           = {.hw_gen_event = {
106                                                         SBI_PMU_HW_BRANCH_MISSES,
107                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
108         [PERF_COUNT_HW_BUS_CYCLES]              = {.hw_gen_event = {
109                                                         SBI_PMU_HW_BUS_CYCLES,
110                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
111         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = {
112                                                         SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
113                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
114         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = {.hw_gen_event = {
115                                                         SBI_PMU_HW_STALLED_CYCLES_BACKEND,
116                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
117         [PERF_COUNT_HW_REF_CPU_CYCLES]          = {.hw_gen_event = {
118                                                         SBI_PMU_HW_REF_CPU_CYCLES,
119                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
120 };
121
122 #define C(x) PERF_COUNT_HW_CACHE_##x
123 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
124 [PERF_COUNT_HW_CACHE_OP_MAX]
125 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
126         [C(L1D)] = {
127                 [C(OP_READ)] = {
128                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
129                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
130                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
131                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
132                 },
133                 [C(OP_WRITE)] = {
134                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
135                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
136                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
137                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
138                 },
139                 [C(OP_PREFETCH)] = {
140                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
141                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
142                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
143                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
144                 },
145         },
146         [C(L1I)] = {
147                 [C(OP_READ)] = {
148                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
149                                         C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
150                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
151                                         C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
152                 },
153                 [C(OP_WRITE)] = {
154                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
155                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
156                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
157                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
158                 },
159                 [C(OP_PREFETCH)] = {
160                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
161                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
162                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
163                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
164                 },
165         },
166         [C(LL)] = {
167                 [C(OP_READ)] = {
168                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
169                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
170                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
171                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
172                 },
173                 [C(OP_WRITE)] = {
174                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
175                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
176                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
177                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
178                 },
179                 [C(OP_PREFETCH)] = {
180                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
181                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
182                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
183                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
184                 },
185         },
186         [C(DTLB)] = {
187                 [C(OP_READ)] = {
188                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
189                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
190                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
191                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
192                 },
193                 [C(OP_WRITE)] = {
194                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
195                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
196                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
197                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
198                 },
199                 [C(OP_PREFETCH)] = {
200                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
201                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
202                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
203                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
204                 },
205         },
206         [C(ITLB)] = {
207                 [C(OP_READ)] = {
208                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
209                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
210                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
211                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
212                 },
213                 [C(OP_WRITE)] = {
214                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
215                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
216                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
217                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
218                 },
219                 [C(OP_PREFETCH)] = {
220                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
221                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
222                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
223                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
224                 },
225         },
226         [C(BPU)] = {
227                 [C(OP_READ)] = {
228                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
229                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
230                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
231                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
232                 },
233                 [C(OP_WRITE)] = {
234                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
235                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
236                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
237                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
238                 },
239                 [C(OP_PREFETCH)] = {
240                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
241                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
242                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
243                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
244                 },
245         },
246         [C(NODE)] = {
247                 [C(OP_READ)] = {
248                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
249                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
250                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
251                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
252                 },
253                 [C(OP_WRITE)] = {
254                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
255                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
256                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
257                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
258                 },
259                 [C(OP_PREFETCH)] = {
260                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
261                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
262                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
263                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
264                 },
265         },
266 };
267
268 static int pmu_sbi_ctr_get_width(int idx)
269 {
270         return pmu_ctr_list[idx].width;
271 }
272
273 static bool pmu_sbi_ctr_is_fw(int cidx)
274 {
275         union sbi_pmu_ctr_info *info;
276
277         info = &pmu_ctr_list[cidx];
278         if (!info)
279                 return false;
280
281         return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
282 }
283
284 /*
285  * Returns the counter width of a programmable counter and number of hardware
286  * counters. As we don't support heterogeneous CPUs yet, it is okay to just
287  * return the counter width of the first programmable counter.
288  */
289 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
290 {
291         int i;
292         union sbi_pmu_ctr_info *info;
293         u32 hpm_width = 0, hpm_count = 0;
294
295         if (!cmask)
296                 return -EINVAL;
297
298         for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
299                 info = &pmu_ctr_list[i];
300                 if (!info)
301                         continue;
302                 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
303                         hpm_width = info->width;
304                 if (info->type == SBI_PMU_CTR_TYPE_HW)
305                         hpm_count++;
306         }
307
308         *hw_ctr_width = hpm_width;
309         *num_hw_ctr = hpm_count;
310
311         return 0;
312 }
313 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
314
315 static uint8_t pmu_sbi_csr_index(struct perf_event *event)
316 {
317         return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
318 }
319
320 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
321 {
322         unsigned long cflags = 0;
323         bool guest_events = false;
324
325         if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
326                 guest_events = true;
327         if (event->attr.exclude_kernel)
328                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
329         if (event->attr.exclude_user)
330                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
331         if (guest_events && event->attr.exclude_hv)
332                 cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
333         if (event->attr.exclude_host)
334                 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
335         if (event->attr.exclude_guest)
336                 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
337
338         return cflags;
339 }
340
341 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
342 {
343         struct hw_perf_event *hwc = &event->hw;
344         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
345         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
346         struct sbiret ret;
347         int idx;
348         uint64_t cbase = 0, cmask = rvpmu->cmask;
349         unsigned long cflags = 0;
350
351         cflags = pmu_sbi_get_filter_flags(event);
352
353         /*
354          * In legacy mode, we have to force the fixed counters for those events
355          * but not in the user access mode as we want to use the other counters
356          * that support sampling/filtering.
357          */
358         if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
359                 if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
360                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
361                         cmask = 1;
362                 } else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
363                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
364                         cmask = 1UL << (CSR_INSTRET - CSR_CYCLE);
365                 }
366         }
367
368         /* retrieve the available counter index */
369 #if defined(CONFIG_32BIT)
370         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
371                         cmask, cflags, hwc->event_base, hwc->config,
372                         hwc->config >> 32);
373 #else
374         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
375                         cmask, cflags, hwc->event_base, hwc->config, 0);
376 #endif
377         if (ret.error) {
378                 pr_debug("Not able to find a counter for event %lx config %llx\n",
379                         hwc->event_base, hwc->config);
380                 return sbi_err_map_linux_errno(ret.error);
381         }
382
383         idx = ret.value;
384         if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
385                 return -ENOENT;
386
387         /* Additional sanity check for the counter id */
388         if (pmu_sbi_ctr_is_fw(idx)) {
389                 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
390                         return idx;
391         } else {
392                 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
393                         return idx;
394         }
395
396         return -ENOENT;
397 }
398
399 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
400 {
401
402         struct hw_perf_event *hwc = &event->hw;
403         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
404         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
405         int idx = hwc->idx;
406
407         if (pmu_sbi_ctr_is_fw(idx))
408                 clear_bit(idx, cpuc->used_fw_ctrs);
409         else
410                 clear_bit(idx, cpuc->used_hw_ctrs);
411 }
412
413 static int pmu_event_find_cache(u64 config)
414 {
415         unsigned int cache_type, cache_op, cache_result, ret;
416
417         cache_type = (config >>  0) & 0xff;
418         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
419                 return -EINVAL;
420
421         cache_op = (config >>  8) & 0xff;
422         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
423                 return -EINVAL;
424
425         cache_result = (config >> 16) & 0xff;
426         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
427                 return -EINVAL;
428
429         ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
430
431         return ret;
432 }
433
434 static bool pmu_sbi_is_fw_event(struct perf_event *event)
435 {
436         u32 type = event->attr.type;
437         u64 config = event->attr.config;
438
439         if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
440                 return true;
441         else
442                 return false;
443 }
444
445 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
446 {
447         u32 type = event->attr.type;
448         u64 config = event->attr.config;
449         int bSoftware;
450         u64 raw_config_val;
451         int ret;
452
453         switch (type) {
454         case PERF_TYPE_HARDWARE:
455                 if (config >= PERF_COUNT_HW_MAX)
456                         return -EINVAL;
457                 ret = pmu_hw_event_map[event->attr.config].event_idx;
458                 break;
459         case PERF_TYPE_HW_CACHE:
460                 ret = pmu_event_find_cache(config);
461                 break;
462         case PERF_TYPE_RAW:
463                 /*
464                  * As per SBI specification, the upper 16 bits must be unused for
465                  * a raw event. Use the MSB (63b) to distinguish between hardware
466                  * raw event and firmware events.
467                  */
468                 bSoftware = config >> 63;
469                 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
470                 if (bSoftware) {
471                         ret = (raw_config_val & 0xFFFF) |
472                                 (SBI_PMU_EVENT_TYPE_FW << 16);
473                 } else {
474                         ret = RISCV_PMU_RAW_EVENT_IDX;
475                         *econfig = raw_config_val;
476                 }
477                 break;
478         default:
479                 ret = -EINVAL;
480                 break;
481         }
482
483         return ret;
484 }
485
486 static u64 pmu_sbi_ctr_read(struct perf_event *event)
487 {
488         struct hw_perf_event *hwc = &event->hw;
489         int idx = hwc->idx;
490         struct sbiret ret;
491         union sbi_pmu_ctr_info info;
492         u64 val = 0;
493
494         if (pmu_sbi_is_fw_event(event)) {
495                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
496                                 hwc->idx, 0, 0, 0, 0, 0);
497                 if (!ret.error)
498                         val = ret.value;
499         } else {
500                 info = pmu_ctr_list[idx];
501                 val = riscv_pmu_ctr_read_csr(info.csr);
502                 if (IS_ENABLED(CONFIG_32BIT))
503                         val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
504         }
505
506         return val;
507 }
508
509 static void pmu_sbi_set_scounteren(void *arg)
510 {
511         struct perf_event *event = (struct perf_event *)arg;
512
513         if (event->hw.idx != -1)
514                 csr_write(CSR_SCOUNTEREN,
515                           csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
516 }
517
518 static void pmu_sbi_reset_scounteren(void *arg)
519 {
520         struct perf_event *event = (struct perf_event *)arg;
521
522         if (event->hw.idx != -1)
523                 csr_write(CSR_SCOUNTEREN,
524                           csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
525 }
526
527 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
528 {
529         struct sbiret ret;
530         struct hw_perf_event *hwc = &event->hw;
531         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
532
533 #if defined(CONFIG_32BIT)
534         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
535                         1, flag, ival, ival >> 32, 0);
536 #else
537         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
538                         1, flag, ival, 0, 0);
539 #endif
540         if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
541                 pr_err("Starting counter idx %d failed with error %d\n",
542                         hwc->idx, sbi_err_map_linux_errno(ret.error));
543
544         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
545             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
546                 pmu_sbi_set_scounteren((void *)event);
547 }
548
549 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
550 {
551         struct sbiret ret;
552         struct hw_perf_event *hwc = &event->hw;
553
554         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
555             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
556                 pmu_sbi_reset_scounteren((void *)event);
557
558         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
559         if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
560                 flag != SBI_PMU_STOP_FLAG_RESET)
561                 pr_err("Stopping counter idx %d failed with error %d\n",
562                         hwc->idx, sbi_err_map_linux_errno(ret.error));
563 }
564
565 static int pmu_sbi_find_num_ctrs(void)
566 {
567         struct sbiret ret;
568
569         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
570         if (!ret.error)
571                 return ret.value;
572         else
573                 return sbi_err_map_linux_errno(ret.error);
574 }
575
576 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
577 {
578         struct sbiret ret;
579         int i, num_hw_ctr = 0, num_fw_ctr = 0;
580         union sbi_pmu_ctr_info cinfo;
581
582         pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
583         if (!pmu_ctr_list)
584                 return -ENOMEM;
585
586         for (i = 0; i < nctr; i++) {
587                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
588                 if (ret.error)
589                         /* The logical counter ids are not expected to be contiguous */
590                         continue;
591
592                 *mask |= BIT(i);
593
594                 cinfo.value = ret.value;
595                 if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
596                         num_fw_ctr++;
597                 else
598                         num_hw_ctr++;
599                 pmu_ctr_list[i].value = cinfo.value;
600         }
601
602         pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
603
604         return 0;
605 }
606
607 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
608 {
609         /*
610          * No need to check the error because we are disabling all the counters
611          * which may include counters that are not enabled yet.
612          */
613         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
614                   0, pmu->cmask, 0, 0, 0, 0);
615 }
616
617 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
618 {
619         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
620
621         /* No need to check the error here as we can't do anything about the error */
622         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
623                   cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
624 }
625
626 /*
627  * This function starts all the used counters in two step approach.
628  * Any counter that did not overflow can be start in a single step
629  * while the overflowed counters need to be started with updated initialization
630  * value.
631  */
632 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
633                                                unsigned long ctr_ovf_mask)
634 {
635         int idx = 0;
636         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
637         struct perf_event *event;
638         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
639         unsigned long ctr_start_mask = 0;
640         uint64_t max_period;
641         struct hw_perf_event *hwc;
642         u64 init_val = 0;
643
644         ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
645
646         /* Start all the counters that did not overflow in a single shot */
647         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
648                   0, 0, 0, 0);
649
650         /* Reinitialize and start all the counter that overflowed */
651         while (ctr_ovf_mask) {
652                 if (ctr_ovf_mask & 0x01) {
653                         event = cpu_hw_evt->events[idx];
654                         hwc = &event->hw;
655                         max_period = riscv_pmu_ctr_get_width_mask(event);
656                         init_val = local64_read(&hwc->prev_count) & max_period;
657 #if defined(CONFIG_32BIT)
658                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
659                                   flag, init_val, init_val >> 32, 0);
660 #else
661                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
662                                   flag, init_val, 0, 0);
663 #endif
664                         perf_event_update_userpage(event);
665                 }
666                 ctr_ovf_mask = ctr_ovf_mask >> 1;
667                 idx++;
668         }
669 }
670
671 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
672 {
673         struct perf_sample_data data;
674         struct pt_regs *regs;
675         struct hw_perf_event *hw_evt;
676         union sbi_pmu_ctr_info *info;
677         int lidx, hidx, fidx;
678         struct riscv_pmu *pmu;
679         struct perf_event *event;
680         unsigned long overflow;
681         unsigned long overflowed_ctrs = 0;
682         struct cpu_hw_events *cpu_hw_evt = dev;
683         u64 start_clock = sched_clock();
684
685         if (WARN_ON_ONCE(!cpu_hw_evt))
686                 return IRQ_NONE;
687
688         /* Firmware counter don't support overflow yet */
689         fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
690         if (fidx == RISCV_MAX_COUNTERS) {
691                 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
692                 return IRQ_NONE;
693         }
694
695         event = cpu_hw_evt->events[fidx];
696         if (!event) {
697                 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
698                 return IRQ_NONE;
699         }
700
701         pmu = to_riscv_pmu(event->pmu);
702         pmu_sbi_stop_hw_ctrs(pmu);
703
704         /* Overflow status register should only be read after counter are stopped */
705         ALT_SBI_PMU_OVERFLOW(overflow);
706
707         /*
708          * Overflow interrupt pending bit should only be cleared after stopping
709          * all the counters to avoid any race condition.
710          */
711         csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
712
713         /* No overflow bit is set */
714         if (!overflow)
715                 return IRQ_NONE;
716
717         regs = get_irq_regs();
718
719         for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
720                 struct perf_event *event = cpu_hw_evt->events[lidx];
721
722                 /* Skip if invalid event or user did not request a sampling */
723                 if (!event || !is_sampling_event(event))
724                         continue;
725
726                 info = &pmu_ctr_list[lidx];
727                 /* Do a sanity check */
728                 if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
729                         continue;
730
731                 /* compute hardware counter index */
732                 hidx = info->csr - CSR_CYCLE;
733                 /* check if the corresponding bit is set in sscountovf */
734                 if (!(overflow & BIT(hidx)))
735                         continue;
736
737                 /*
738                  * Keep a track of overflowed counters so that they can be started
739                  * with updated initial value.
740                  */
741                 overflowed_ctrs |= BIT(lidx);
742                 hw_evt = &event->hw;
743                 riscv_pmu_event_update(event);
744                 perf_sample_data_init(&data, 0, hw_evt->last_period);
745                 if (riscv_pmu_event_set_period(event)) {
746                         /*
747                          * Unlike other ISAs, RISC-V don't have to disable interrupts
748                          * to avoid throttling here. As per the specification, the
749                          * interrupt remains disabled until the OF bit is set.
750                          * Interrupts are enabled again only during the start.
751                          * TODO: We will need to stop the guest counters once
752                          * virtualization support is added.
753                          */
754                         perf_event_overflow(event, &data, regs);
755                 }
756         }
757
758         pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
759         perf_sample_event_took(sched_clock() - start_clock);
760
761         return IRQ_HANDLED;
762 }
763
764 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
765 {
766         struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
767         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
768
769         /*
770          * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
771          * legacy option but that will be removed in the future.
772          */
773         if (sysctl_perf_user_access == SYSCTL_LEGACY)
774                 csr_write(CSR_SCOUNTEREN, 0x7);
775         else
776                 csr_write(CSR_SCOUNTEREN, 0x2);
777
778         /* Stop all the counters so that they can be enabled from perf */
779         pmu_sbi_stop_all(pmu);
780
781         if (riscv_pmu_use_irq) {
782                 cpu_hw_evt->irq = riscv_pmu_irq;
783                 csr_clear(CSR_IP, BIT(riscv_pmu_irq_num));
784                 csr_set(CSR_IE, BIT(riscv_pmu_irq_num));
785                 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
786         }
787
788         return 0;
789 }
790
791 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
792 {
793         if (riscv_pmu_use_irq) {
794                 disable_percpu_irq(riscv_pmu_irq);
795                 csr_clear(CSR_IE, BIT(riscv_pmu_irq_num));
796         }
797
798         /* Disable all counters access for user mode now */
799         csr_write(CSR_SCOUNTEREN, 0x0);
800
801         return 0;
802 }
803
804 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
805 {
806         int ret;
807         struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
808         struct irq_domain *domain = NULL;
809
810         if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
811                 riscv_pmu_irq_num = RV_IRQ_PMU;
812                 riscv_pmu_use_irq = true;
813         } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
814                    riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
815                    riscv_cached_marchid(0) == 0 &&
816                    riscv_cached_mimpid(0) == 0) {
817                 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
818                 riscv_pmu_use_irq = true;
819         }
820
821         if (!riscv_pmu_use_irq)
822                 return -EOPNOTSUPP;
823
824         domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
825                                           DOMAIN_BUS_ANY);
826         if (!domain) {
827                 pr_err("Failed to find INTC IRQ root domain\n");
828                 return -ENODEV;
829         }
830
831         riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
832         if (!riscv_pmu_irq) {
833                 pr_err("Failed to map PMU interrupt for node\n");
834                 return -ENODEV;
835         }
836
837         ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
838         if (ret) {
839                 pr_err("registering percpu irq failed [%d]\n", ret);
840                 return ret;
841         }
842
843         return 0;
844 }
845
846 #ifdef CONFIG_CPU_PM
847 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
848                                 void *v)
849 {
850         struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
851         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
852         int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
853         struct perf_event *event;
854         int idx;
855
856         if (!enabled)
857                 return NOTIFY_OK;
858
859         for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
860                 event = cpuc->events[idx];
861                 if (!event)
862                         continue;
863
864                 switch (cmd) {
865                 case CPU_PM_ENTER:
866                         /*
867                          * Stop and update the counter
868                          */
869                         riscv_pmu_stop(event, PERF_EF_UPDATE);
870                         break;
871                 case CPU_PM_EXIT:
872                 case CPU_PM_ENTER_FAILED:
873                         /*
874                          * Restore and enable the counter.
875                          */
876                         riscv_pmu_start(event, PERF_EF_RELOAD);
877                         break;
878                 default:
879                         break;
880                 }
881         }
882
883         return NOTIFY_OK;
884 }
885
886 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
887 {
888         pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
889         return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
890 }
891
892 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
893 {
894         cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
895 }
896 #else
897 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
898 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
899 #endif
900
901 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
902 {
903         riscv_pm_pmu_unregister(pmu);
904         cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
905 }
906
907 static void pmu_sbi_event_init(struct perf_event *event)
908 {
909         /*
910          * The permissions are set at event_init so that we do not depend
911          * on the sysctl value that can change.
912          */
913         if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
914                 event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
915         else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
916                 event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
917         else
918                 event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
919 }
920
921 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
922 {
923         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
924                 return;
925
926         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
927                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
928                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
929                         return;
930                 }
931         }
932
933         /*
934          * The user mmapped the event to directly access it: this is where
935          * we determine based on sysctl_perf_user_access if we grant userspace
936          * the direct access to this event. That means that within the same
937          * task, some events may be directly accessible and some other may not,
938          * if the user changes the value of sysctl_perf_user_accesss in the
939          * meantime.
940          */
941
942         event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
943
944         /*
945          * We must enable userspace access *before* advertising in the user page
946          * that it is possible to do so to avoid any race.
947          * And we must notify all cpus here because threads that currently run
948          * on other cpus will try to directly access the counter too without
949          * calling pmu_sbi_ctr_start.
950          */
951         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
952                 on_each_cpu_mask(mm_cpumask(mm),
953                                  pmu_sbi_set_scounteren, (void *)event, 1);
954 }
955
956 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
957 {
958         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
959                 return;
960
961         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
962                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
963                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
964                         return;
965                 }
966         }
967
968         /*
969          * Here we can directly remove user access since the user does not have
970          * access to the user page anymore so we avoid the racy window where the
971          * user could have read cap_user_rdpmc to true right before we disable
972          * it.
973          */
974         event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
975
976         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
977                 on_each_cpu_mask(mm_cpumask(mm),
978                                  pmu_sbi_reset_scounteren, (void *)event, 1);
979 }
980
981 static void riscv_pmu_update_counter_access(void *info)
982 {
983         if (sysctl_perf_user_access == SYSCTL_LEGACY)
984                 csr_write(CSR_SCOUNTEREN, 0x7);
985         else
986                 csr_write(CSR_SCOUNTEREN, 0x2);
987 }
988
989 static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
990                                               int write, void *buffer,
991                                               size_t *lenp, loff_t *ppos)
992 {
993         int prev = sysctl_perf_user_access;
994         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
995
996         /*
997          * Test against the previous value since we clear SCOUNTEREN when
998          * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
999          * not do that if that was already the case.
1000          */
1001         if (ret || !write || prev == sysctl_perf_user_access)
1002                 return ret;
1003
1004         on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1005
1006         return 0;
1007 }
1008
1009 static struct ctl_table sbi_pmu_sysctl_table[] = {
1010         {
1011                 .procname       = "perf_user_access",
1012                 .data           = &sysctl_perf_user_access,
1013                 .maxlen         = sizeof(unsigned int),
1014                 .mode           = 0644,
1015                 .proc_handler   = riscv_pmu_proc_user_access_handler,
1016                 .extra1         = SYSCTL_ZERO,
1017                 .extra2         = SYSCTL_TWO,
1018         },
1019         { }
1020 };
1021
1022 static int pmu_sbi_device_probe(struct platform_device *pdev)
1023 {
1024         struct riscv_pmu *pmu = NULL;
1025         int ret = -ENODEV;
1026         int num_counters;
1027
1028         pr_info("SBI PMU extension is available\n");
1029         pmu = riscv_pmu_alloc();
1030         if (!pmu)
1031                 return -ENOMEM;
1032
1033         num_counters = pmu_sbi_find_num_ctrs();
1034         if (num_counters < 0) {
1035                 pr_err("SBI PMU extension doesn't provide any counters\n");
1036                 goto out_free;
1037         }
1038
1039         /* It is possible to get from SBI more than max number of counters */
1040         if (num_counters > RISCV_MAX_COUNTERS) {
1041                 num_counters = RISCV_MAX_COUNTERS;
1042                 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1043         }
1044
1045         /* cache all the information about counters now */
1046         if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1047                 goto out_free;
1048
1049         ret = pmu_sbi_setup_irqs(pmu, pdev);
1050         if (ret < 0) {
1051                 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1052                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1053                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1054         }
1055
1056         pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1057         pmu->cmask = cmask;
1058         pmu->ctr_start = pmu_sbi_ctr_start;
1059         pmu->ctr_stop = pmu_sbi_ctr_stop;
1060         pmu->event_map = pmu_sbi_event_map;
1061         pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1062         pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1063         pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1064         pmu->ctr_read = pmu_sbi_ctr_read;
1065         pmu->event_init = pmu_sbi_event_init;
1066         pmu->event_mapped = pmu_sbi_event_mapped;
1067         pmu->event_unmapped = pmu_sbi_event_unmapped;
1068         pmu->csr_index = pmu_sbi_csr_index;
1069
1070         ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1071         if (ret)
1072                 return ret;
1073
1074         ret = riscv_pm_pmu_register(pmu);
1075         if (ret)
1076                 goto out_unregister;
1077
1078         ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1079         if (ret)
1080                 goto out_unregister;
1081
1082         register_sysctl("kernel", sbi_pmu_sysctl_table);
1083
1084         return 0;
1085
1086 out_unregister:
1087         riscv_pmu_destroy(pmu);
1088
1089 out_free:
1090         kfree(pmu);
1091         return ret;
1092 }
1093
1094 static struct platform_driver pmu_sbi_driver = {
1095         .probe          = pmu_sbi_device_probe,
1096         .driver         = {
1097                 .name   = RISCV_PMU_SBI_PDEV_NAME,
1098         },
1099 };
1100
1101 static int __init pmu_sbi_devinit(void)
1102 {
1103         int ret;
1104         struct platform_device *pdev;
1105
1106         if (sbi_spec_version < sbi_mk_version(0, 3) ||
1107             !sbi_probe_extension(SBI_EXT_PMU)) {
1108                 return 0;
1109         }
1110
1111         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1112                                       "perf/riscv/pmu:starting",
1113                                       pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1114         if (ret) {
1115                 pr_err("CPU hotplug notifier could not be registered: %d\n",
1116                        ret);
1117                 return ret;
1118         }
1119
1120         ret = platform_driver_register(&pmu_sbi_driver);
1121         if (ret)
1122                 return ret;
1123
1124         pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1125         if (IS_ERR(pdev)) {
1126                 platform_driver_unregister(&pmu_sbi_driver);
1127                 return PTR_ERR(pdev);
1128         }
1129
1130         /* Notify legacy implementation that SBI pmu is available*/
1131         riscv_pmu_legacy_skip_init();
1132
1133         return ret;
1134 }
1135 device_initcall(pmu_sbi_devinit)