Merge tag 'nvme-6.9-2024-03-21' of git://git.infradead.org/nvme into block-6.9
[sfrench/cifs-2.6.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len, ret;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                                sdkp->max_retries, &data, &sshdr);
195         if (ret) {
196                 if (ret > 0 && scsi_sense_valid(&sshdr))
197                         sd_print_sense_hdr(sdkp, &sshdr);
198                 return -EINVAL;
199         }
200         sd_revalidate_disk(sdkp->disk);
201         return count;
202 }
203
204 static ssize_t
205 manage_start_stop_show(struct device *dev,
206                        struct device_attribute *attr, char *buf)
207 {
208         struct scsi_disk *sdkp = to_scsi_disk(dev);
209         struct scsi_device *sdp = sdkp->device;
210
211         return sysfs_emit(buf, "%u\n",
212                           sdp->manage_system_start_stop &&
213                           sdp->manage_runtime_start_stop &&
214                           sdp->manage_shutdown);
215 }
216 static DEVICE_ATTR_RO(manage_start_stop);
217
218 static ssize_t
219 manage_system_start_stop_show(struct device *dev,
220                               struct device_attribute *attr, char *buf)
221 {
222         struct scsi_disk *sdkp = to_scsi_disk(dev);
223         struct scsi_device *sdp = sdkp->device;
224
225         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
226 }
227
228 static ssize_t
229 manage_system_start_stop_store(struct device *dev,
230                                struct device_attribute *attr,
231                                const char *buf, size_t count)
232 {
233         struct scsi_disk *sdkp = to_scsi_disk(dev);
234         struct scsi_device *sdp = sdkp->device;
235         bool v;
236
237         if (!capable(CAP_SYS_ADMIN))
238                 return -EACCES;
239
240         if (kstrtobool(buf, &v))
241                 return -EINVAL;
242
243         sdp->manage_system_start_stop = v;
244
245         return count;
246 }
247 static DEVICE_ATTR_RW(manage_system_start_stop);
248
249 static ssize_t
250 manage_runtime_start_stop_show(struct device *dev,
251                                struct device_attribute *attr, char *buf)
252 {
253         struct scsi_disk *sdkp = to_scsi_disk(dev);
254         struct scsi_device *sdp = sdkp->device;
255
256         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
257 }
258
259 static ssize_t
260 manage_runtime_start_stop_store(struct device *dev,
261                                 struct device_attribute *attr,
262                                 const char *buf, size_t count)
263 {
264         struct scsi_disk *sdkp = to_scsi_disk(dev);
265         struct scsi_device *sdp = sdkp->device;
266         bool v;
267
268         if (!capable(CAP_SYS_ADMIN))
269                 return -EACCES;
270
271         if (kstrtobool(buf, &v))
272                 return -EINVAL;
273
274         sdp->manage_runtime_start_stop = v;
275
276         return count;
277 }
278 static DEVICE_ATTR_RW(manage_runtime_start_stop);
279
280 static ssize_t manage_shutdown_show(struct device *dev,
281                                     struct device_attribute *attr, char *buf)
282 {
283         struct scsi_disk *sdkp = to_scsi_disk(dev);
284         struct scsi_device *sdp = sdkp->device;
285
286         return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
287 }
288
289 static ssize_t manage_shutdown_store(struct device *dev,
290                                      struct device_attribute *attr,
291                                      const char *buf, size_t count)
292 {
293         struct scsi_disk *sdkp = to_scsi_disk(dev);
294         struct scsi_device *sdp = sdkp->device;
295         bool v;
296
297         if (!capable(CAP_SYS_ADMIN))
298                 return -EACCES;
299
300         if (kstrtobool(buf, &v))
301                 return -EINVAL;
302
303         sdp->manage_shutdown = v;
304
305         return count;
306 }
307 static DEVICE_ATTR_RW(manage_shutdown);
308
309 static ssize_t
310 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312         struct scsi_disk *sdkp = to_scsi_disk(dev);
313
314         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
315 }
316
317 static ssize_t
318 allow_restart_store(struct device *dev, struct device_attribute *attr,
319                     const char *buf, size_t count)
320 {
321         bool v;
322         struct scsi_disk *sdkp = to_scsi_disk(dev);
323         struct scsi_device *sdp = sdkp->device;
324
325         if (!capable(CAP_SYS_ADMIN))
326                 return -EACCES;
327
328         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
329                 return -EINVAL;
330
331         if (kstrtobool(buf, &v))
332                 return -EINVAL;
333
334         sdp->allow_restart = v;
335
336         return count;
337 }
338 static DEVICE_ATTR_RW(allow_restart);
339
340 static ssize_t
341 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
342 {
343         struct scsi_disk *sdkp = to_scsi_disk(dev);
344         int ct = sdkp->RCD + 2*sdkp->WCE;
345
346         return sprintf(buf, "%s\n", sd_cache_types[ct]);
347 }
348 static DEVICE_ATTR_RW(cache_type);
349
350 static ssize_t
351 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353         struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355         return sprintf(buf, "%u\n", sdkp->DPOFUA);
356 }
357 static DEVICE_ATTR_RO(FUA);
358
359 static ssize_t
360 protection_type_show(struct device *dev, struct device_attribute *attr,
361                      char *buf)
362 {
363         struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365         return sprintf(buf, "%u\n", sdkp->protection_type);
366 }
367
368 static ssize_t
369 protection_type_store(struct device *dev, struct device_attribute *attr,
370                       const char *buf, size_t count)
371 {
372         struct scsi_disk *sdkp = to_scsi_disk(dev);
373         unsigned int val;
374         int err;
375
376         if (!capable(CAP_SYS_ADMIN))
377                 return -EACCES;
378
379         err = kstrtouint(buf, 10, &val);
380
381         if (err)
382                 return err;
383
384         if (val <= T10_PI_TYPE3_PROTECTION)
385                 sdkp->protection_type = val;
386
387         return count;
388 }
389 static DEVICE_ATTR_RW(protection_type);
390
391 static ssize_t
392 protection_mode_show(struct device *dev, struct device_attribute *attr,
393                      char *buf)
394 {
395         struct scsi_disk *sdkp = to_scsi_disk(dev);
396         struct scsi_device *sdp = sdkp->device;
397         unsigned int dif, dix;
398
399         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
400         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
401
402         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
403                 dif = 0;
404                 dix = 1;
405         }
406
407         if (!dif && !dix)
408                 return sprintf(buf, "none\n");
409
410         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
411 }
412 static DEVICE_ATTR_RO(protection_mode);
413
414 static ssize_t
415 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
416 {
417         struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419         return sprintf(buf, "%u\n", sdkp->ATO);
420 }
421 static DEVICE_ATTR_RO(app_tag_own);
422
423 static ssize_t
424 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
425                        char *buf)
426 {
427         struct scsi_disk *sdkp = to_scsi_disk(dev);
428
429         return sprintf(buf, "%u\n", sdkp->lbpme);
430 }
431 static DEVICE_ATTR_RO(thin_provisioning);
432
433 /* sysfs_match_string() requires dense arrays */
434 static const char *lbp_mode[] = {
435         [SD_LBP_FULL]           = "full",
436         [SD_LBP_UNMAP]          = "unmap",
437         [SD_LBP_WS16]           = "writesame_16",
438         [SD_LBP_WS10]           = "writesame_10",
439         [SD_LBP_ZERO]           = "writesame_zero",
440         [SD_LBP_DISABLE]        = "disabled",
441 };
442
443 static ssize_t
444 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
445                        char *buf)
446 {
447         struct scsi_disk *sdkp = to_scsi_disk(dev);
448
449         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
450 }
451
452 static ssize_t
453 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
454                         const char *buf, size_t count)
455 {
456         struct scsi_disk *sdkp = to_scsi_disk(dev);
457         struct scsi_device *sdp = sdkp->device;
458         int mode;
459
460         if (!capable(CAP_SYS_ADMIN))
461                 return -EACCES;
462
463         if (sd_is_zoned(sdkp)) {
464                 sd_config_discard(sdkp, SD_LBP_DISABLE);
465                 return count;
466         }
467
468         if (sdp->type != TYPE_DISK)
469                 return -EINVAL;
470
471         mode = sysfs_match_string(lbp_mode, buf);
472         if (mode < 0)
473                 return -EINVAL;
474
475         sd_config_discard(sdkp, mode);
476
477         return count;
478 }
479 static DEVICE_ATTR_RW(provisioning_mode);
480
481 /* sysfs_match_string() requires dense arrays */
482 static const char *zeroing_mode[] = {
483         [SD_ZERO_WRITE]         = "write",
484         [SD_ZERO_WS]            = "writesame",
485         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
486         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
487 };
488
489 static ssize_t
490 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
491                   char *buf)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
496 }
497
498 static ssize_t
499 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
500                    const char *buf, size_t count)
501 {
502         struct scsi_disk *sdkp = to_scsi_disk(dev);
503         int mode;
504
505         if (!capable(CAP_SYS_ADMIN))
506                 return -EACCES;
507
508         mode = sysfs_match_string(zeroing_mode, buf);
509         if (mode < 0)
510                 return -EINVAL;
511
512         sdkp->zeroing_mode = mode;
513
514         return count;
515 }
516 static DEVICE_ATTR_RW(zeroing_mode);
517
518 static ssize_t
519 max_medium_access_timeouts_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct scsi_disk *sdkp = to_scsi_disk(dev);
523
524         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
525 }
526
527 static ssize_t
528 max_medium_access_timeouts_store(struct device *dev,
529                                  struct device_attribute *attr, const char *buf,
530                                  size_t count)
531 {
532         struct scsi_disk *sdkp = to_scsi_disk(dev);
533         int err;
534
535         if (!capable(CAP_SYS_ADMIN))
536                 return -EACCES;
537
538         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
539
540         return err ? err : count;
541 }
542 static DEVICE_ATTR_RW(max_medium_access_timeouts);
543
544 static ssize_t
545 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
546                            char *buf)
547 {
548         struct scsi_disk *sdkp = to_scsi_disk(dev);
549
550         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
551 }
552
553 static ssize_t
554 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
555                             const char *buf, size_t count)
556 {
557         struct scsi_disk *sdkp = to_scsi_disk(dev);
558         struct scsi_device *sdp = sdkp->device;
559         unsigned long max;
560         int err;
561
562         if (!capable(CAP_SYS_ADMIN))
563                 return -EACCES;
564
565         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
566                 return -EINVAL;
567
568         err = kstrtoul(buf, 10, &max);
569
570         if (err)
571                 return err;
572
573         if (max == 0)
574                 sdp->no_write_same = 1;
575         else if (max <= SD_MAX_WS16_BLOCKS) {
576                 sdp->no_write_same = 0;
577                 sdkp->max_ws_blocks = max;
578         }
579
580         sd_config_write_same(sdkp);
581
582         return count;
583 }
584 static DEVICE_ATTR_RW(max_write_same_blocks);
585
586 static ssize_t
587 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
588 {
589         struct scsi_disk *sdkp = to_scsi_disk(dev);
590
591         if (sdkp->device->type == TYPE_ZBC)
592                 return sprintf(buf, "host-managed\n");
593         if (sdkp->zoned == 1)
594                 return sprintf(buf, "host-aware\n");
595         if (sdkp->zoned == 2)
596                 return sprintf(buf, "drive-managed\n");
597         return sprintf(buf, "none\n");
598 }
599 static DEVICE_ATTR_RO(zoned_cap);
600
601 static ssize_t
602 max_retries_store(struct device *dev, struct device_attribute *attr,
603                   const char *buf, size_t count)
604 {
605         struct scsi_disk *sdkp = to_scsi_disk(dev);
606         struct scsi_device *sdev = sdkp->device;
607         int retries, err;
608
609         err = kstrtoint(buf, 10, &retries);
610         if (err)
611                 return err;
612
613         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
614                 sdkp->max_retries = retries;
615                 return count;
616         }
617
618         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
619                     SD_MAX_RETRIES);
620         return -EINVAL;
621 }
622
623 static ssize_t
624 max_retries_show(struct device *dev, struct device_attribute *attr,
625                  char *buf)
626 {
627         struct scsi_disk *sdkp = to_scsi_disk(dev);
628
629         return sprintf(buf, "%d\n", sdkp->max_retries);
630 }
631
632 static DEVICE_ATTR_RW(max_retries);
633
634 static struct attribute *sd_disk_attrs[] = {
635         &dev_attr_cache_type.attr,
636         &dev_attr_FUA.attr,
637         &dev_attr_allow_restart.attr,
638         &dev_attr_manage_start_stop.attr,
639         &dev_attr_manage_system_start_stop.attr,
640         &dev_attr_manage_runtime_start_stop.attr,
641         &dev_attr_manage_shutdown.attr,
642         &dev_attr_protection_type.attr,
643         &dev_attr_protection_mode.attr,
644         &dev_attr_app_tag_own.attr,
645         &dev_attr_thin_provisioning.attr,
646         &dev_attr_provisioning_mode.attr,
647         &dev_attr_zeroing_mode.attr,
648         &dev_attr_max_write_same_blocks.attr,
649         &dev_attr_max_medium_access_timeouts.attr,
650         &dev_attr_zoned_cap.attr,
651         &dev_attr_max_retries.attr,
652         NULL,
653 };
654 ATTRIBUTE_GROUPS(sd_disk);
655
656 static struct class sd_disk_class = {
657         .name           = "scsi_disk",
658         .dev_release    = scsi_disk_release,
659         .dev_groups     = sd_disk_groups,
660 };
661
662 /*
663  * Don't request a new module, as that could deadlock in multipath
664  * environment.
665  */
666 static void sd_default_probe(dev_t devt)
667 {
668 }
669
670 /*
671  * Device no to disk mapping:
672  * 
673  *       major         disc2     disc  p1
674  *   |............|.............|....|....| <- dev_t
675  *    31        20 19          8 7  4 3  0
676  * 
677  * Inside a major, we have 16k disks, however mapped non-
678  * contiguously. The first 16 disks are for major0, the next
679  * ones with major1, ... Disk 256 is for major0 again, disk 272 
680  * for major1, ... 
681  * As we stay compatible with our numbering scheme, we can reuse 
682  * the well-know SCSI majors 8, 65--71, 136--143.
683  */
684 static int sd_major(int major_idx)
685 {
686         switch (major_idx) {
687         case 0:
688                 return SCSI_DISK0_MAJOR;
689         case 1 ... 7:
690                 return SCSI_DISK1_MAJOR + major_idx - 1;
691         case 8 ... 15:
692                 return SCSI_DISK8_MAJOR + major_idx - 8;
693         default:
694                 BUG();
695                 return 0;       /* shut up gcc */
696         }
697 }
698
699 #ifdef CONFIG_BLK_SED_OPAL
700 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
701                 size_t len, bool send)
702 {
703         struct scsi_disk *sdkp = data;
704         struct scsi_device *sdev = sdkp->device;
705         u8 cdb[12] = { 0, };
706         const struct scsi_exec_args exec_args = {
707                 .req_flags = BLK_MQ_REQ_PM,
708         };
709         int ret;
710
711         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
712         cdb[1] = secp;
713         put_unaligned_be16(spsp, &cdb[2]);
714         put_unaligned_be32(len, &cdb[6]);
715
716         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
717                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
718                                &exec_args);
719         return ret <= 0 ? ret : -EIO;
720 }
721 #endif /* CONFIG_BLK_SED_OPAL */
722
723 /*
724  * Look up the DIX operation based on whether the command is read or
725  * write and whether dix and dif are enabled.
726  */
727 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
728 {
729         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
730         static const unsigned int ops[] = {     /* wrt dix dif */
731                 SCSI_PROT_NORMAL,               /*  0   0   0  */
732                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
733                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
734                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
735                 SCSI_PROT_NORMAL,               /*  1   0   0  */
736                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
737                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
738                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
739         };
740
741         return ops[write << 2 | dix << 1 | dif];
742 }
743
744 /*
745  * Returns a mask of the protection flags that are valid for a given DIX
746  * operation.
747  */
748 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
749 {
750         static const unsigned int flag_mask[] = {
751                 [SCSI_PROT_NORMAL]              = 0,
752
753                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
754                                                   SCSI_PROT_GUARD_CHECK |
755                                                   SCSI_PROT_REF_CHECK |
756                                                   SCSI_PROT_REF_INCREMENT,
757
758                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
759                                                   SCSI_PROT_IP_CHECKSUM,
760
761                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
762                                                   SCSI_PROT_GUARD_CHECK |
763                                                   SCSI_PROT_REF_CHECK |
764                                                   SCSI_PROT_REF_INCREMENT |
765                                                   SCSI_PROT_IP_CHECKSUM,
766
767                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
768                                                   SCSI_PROT_REF_INCREMENT,
769
770                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
771                                                   SCSI_PROT_REF_CHECK |
772                                                   SCSI_PROT_REF_INCREMENT |
773                                                   SCSI_PROT_IP_CHECKSUM,
774
775                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
776                                                   SCSI_PROT_GUARD_CHECK |
777                                                   SCSI_PROT_REF_CHECK |
778                                                   SCSI_PROT_REF_INCREMENT |
779                                                   SCSI_PROT_IP_CHECKSUM,
780         };
781
782         return flag_mask[prot_op];
783 }
784
785 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
786                                            unsigned int dix, unsigned int dif)
787 {
788         struct request *rq = scsi_cmd_to_rq(scmd);
789         struct bio *bio = rq->bio;
790         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
791         unsigned int protect = 0;
792
793         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
794                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
795                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
796
797                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
799         }
800
801         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
802                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
803
804                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
805                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
806         }
807
808         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
809                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
810
811                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
812                         protect = 3 << 5;       /* Disable target PI checking */
813                 else
814                         protect = 1 << 5;       /* Enable target PI checking */
815         }
816
817         scsi_set_prot_op(scmd, prot_op);
818         scsi_set_prot_type(scmd, dif);
819         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
820
821         return protect;
822 }
823
824 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
825 {
826         struct request_queue *q = sdkp->disk->queue;
827         unsigned int logical_block_size = sdkp->device->sector_size;
828         unsigned int max_blocks = 0;
829
830         q->limits.discard_alignment =
831                 sdkp->unmap_alignment * logical_block_size;
832         q->limits.discard_granularity =
833                 max(sdkp->physical_block_size,
834                     sdkp->unmap_granularity * logical_block_size);
835         sdkp->provisioning_mode = mode;
836
837         switch (mode) {
838
839         case SD_LBP_FULL:
840         case SD_LBP_DISABLE:
841                 blk_queue_max_discard_sectors(q, 0);
842                 return;
843
844         case SD_LBP_UNMAP:
845                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
846                                           (u32)SD_MAX_WS16_BLOCKS);
847                 break;
848
849         case SD_LBP_WS16:
850                 if (sdkp->device->unmap_limit_for_ws)
851                         max_blocks = sdkp->max_unmap_blocks;
852                 else
853                         max_blocks = sdkp->max_ws_blocks;
854
855                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
856                 break;
857
858         case SD_LBP_WS10:
859                 if (sdkp->device->unmap_limit_for_ws)
860                         max_blocks = sdkp->max_unmap_blocks;
861                 else
862                         max_blocks = sdkp->max_ws_blocks;
863
864                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
865                 break;
866
867         case SD_LBP_ZERO:
868                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
869                                           (u32)SD_MAX_WS10_BLOCKS);
870                 break;
871         }
872
873         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
874 }
875
876 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
877 {
878         struct page *page;
879
880         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881         if (!page)
882                 return NULL;
883         clear_highpage(page);
884         bvec_set_page(&rq->special_vec, page, data_len, 0);
885         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886         return bvec_virt(&rq->special_vec);
887 }
888
889 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
890 {
891         struct scsi_device *sdp = cmd->device;
892         struct request *rq = scsi_cmd_to_rq(cmd);
893         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
894         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896         unsigned int data_len = 24;
897         char *buf;
898
899         buf = sd_set_special_bvec(rq, data_len);
900         if (!buf)
901                 return BLK_STS_RESOURCE;
902
903         cmd->cmd_len = 10;
904         cmd->cmnd[0] = UNMAP;
905         cmd->cmnd[8] = 24;
906
907         put_unaligned_be16(6 + 16, &buf[0]);
908         put_unaligned_be16(16, &buf[2]);
909         put_unaligned_be64(lba, &buf[8]);
910         put_unaligned_be32(nr_blocks, &buf[16]);
911
912         cmd->allowed = sdkp->max_retries;
913         cmd->transfersize = data_len;
914         rq->timeout = SD_TIMEOUT;
915
916         return scsi_alloc_sgtables(cmd);
917 }
918
919 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
920                 bool unmap)
921 {
922         struct scsi_device *sdp = cmd->device;
923         struct request *rq = scsi_cmd_to_rq(cmd);
924         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
925         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927         u32 data_len = sdp->sector_size;
928
929         if (!sd_set_special_bvec(rq, data_len))
930                 return BLK_STS_RESOURCE;
931
932         cmd->cmd_len = 16;
933         cmd->cmnd[0] = WRITE_SAME_16;
934         if (unmap)
935                 cmd->cmnd[1] = 0x8; /* UNMAP */
936         put_unaligned_be64(lba, &cmd->cmnd[2]);
937         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
938
939         cmd->allowed = sdkp->max_retries;
940         cmd->transfersize = data_len;
941         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
942
943         return scsi_alloc_sgtables(cmd);
944 }
945
946 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
947                 bool unmap)
948 {
949         struct scsi_device *sdp = cmd->device;
950         struct request *rq = scsi_cmd_to_rq(cmd);
951         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
952         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
953         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
954         u32 data_len = sdp->sector_size;
955
956         if (!sd_set_special_bvec(rq, data_len))
957                 return BLK_STS_RESOURCE;
958
959         cmd->cmd_len = 10;
960         cmd->cmnd[0] = WRITE_SAME;
961         if (unmap)
962                 cmd->cmnd[1] = 0x8; /* UNMAP */
963         put_unaligned_be32(lba, &cmd->cmnd[2]);
964         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
965
966         cmd->allowed = sdkp->max_retries;
967         cmd->transfersize = data_len;
968         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
969
970         return scsi_alloc_sgtables(cmd);
971 }
972
973 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
974 {
975         struct request *rq = scsi_cmd_to_rq(cmd);
976         struct scsi_device *sdp = cmd->device;
977         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
978         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
979         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
980
981         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
982                 switch (sdkp->zeroing_mode) {
983                 case SD_ZERO_WS16_UNMAP:
984                         return sd_setup_write_same16_cmnd(cmd, true);
985                 case SD_ZERO_WS10_UNMAP:
986                         return sd_setup_write_same10_cmnd(cmd, true);
987                 }
988         }
989
990         if (sdp->no_write_same) {
991                 rq->rq_flags |= RQF_QUIET;
992                 return BLK_STS_TARGET;
993         }
994
995         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
996                 return sd_setup_write_same16_cmnd(cmd, false);
997
998         return sd_setup_write_same10_cmnd(cmd, false);
999 }
1000
1001 static void sd_config_write_same(struct scsi_disk *sdkp)
1002 {
1003         struct request_queue *q = sdkp->disk->queue;
1004         unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006         if (sdkp->device->no_write_same) {
1007                 sdkp->max_ws_blocks = 0;
1008                 goto out;
1009         }
1010
1011         /* Some devices can not handle block counts above 0xffff despite
1012          * supporting WRITE SAME(16). Consequently we default to 64k
1013          * blocks per I/O unless the device explicitly advertises a
1014          * bigger limit.
1015          */
1016         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018                                                    (u32)SD_MAX_WS16_BLOCKS);
1019         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021                                                    (u32)SD_MAX_WS10_BLOCKS);
1022         else {
1023                 sdkp->device->no_write_same = 1;
1024                 sdkp->max_ws_blocks = 0;
1025         }
1026
1027         if (sdkp->lbprz && sdkp->lbpws)
1028                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029         else if (sdkp->lbprz && sdkp->lbpws10)
1030                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031         else if (sdkp->max_ws_blocks)
1032                 sdkp->zeroing_mode = SD_ZERO_WS;
1033         else
1034                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036         if (sdkp->max_ws_blocks &&
1037             sdkp->physical_block_size > logical_block_size) {
1038                 /*
1039                  * Reporting a maximum number of blocks that is not aligned
1040                  * on the device physical size would cause a large write same
1041                  * request to be split into physically unaligned chunks by
1042                  * __blkdev_issue_write_zeroes() even if the caller of this
1043                  * functions took care to align the large request. So make sure
1044                  * the maximum reported is aligned to the device physical block
1045                  * size. This is only an optional optimization for regular
1046                  * disks, but this is mandatory to avoid failure of large write
1047                  * same requests directed at sequential write required zones of
1048                  * host-managed ZBC disks.
1049                  */
1050                 sdkp->max_ws_blocks =
1051                         round_down(sdkp->max_ws_blocks,
1052                                    bytes_to_logical(sdkp->device,
1053                                                     sdkp->physical_block_size));
1054         }
1055
1056 out:
1057         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058                                          (logical_block_size >> 9));
1059 }
1060
1061 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062 {
1063         struct request *rq = scsi_cmd_to_rq(cmd);
1064         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065
1066         /* flush requests don't perform I/O, zero the S/G table */
1067         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069         if (cmd->device->use_16_for_sync) {
1070                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071                 cmd->cmd_len = 16;
1072         } else {
1073                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074                 cmd->cmd_len = 10;
1075         }
1076         cmd->transfersize = 0;
1077         cmd->allowed = sdkp->max_retries;
1078
1079         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080         return BLK_STS_OK;
1081 }
1082
1083 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084                                        sector_t lba, unsigned int nr_blocks,
1085                                        unsigned char flags, unsigned int dld)
1086 {
1087         cmd->cmd_len = SD_EXT_CDB_SIZE;
1088         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091         cmd->cmnd[10] = flags;
1092         cmd->cmnd[11] = dld & 0x07;
1093         put_unaligned_be64(lba, &cmd->cmnd[12]);
1094         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097         return BLK_STS_OK;
1098 }
1099
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101                                        sector_t lba, unsigned int nr_blocks,
1102                                        unsigned char flags, unsigned int dld)
1103 {
1104         cmd->cmd_len  = 16;
1105         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107         cmd->cmnd[14] = (dld & 0x03) << 6;
1108         cmd->cmnd[15] = 0;
1109         put_unaligned_be64(lba, &cmd->cmnd[2]);
1110         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112         return BLK_STS_OK;
1113 }
1114
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116                                        sector_t lba, unsigned int nr_blocks,
1117                                        unsigned char flags)
1118 {
1119         cmd->cmd_len = 10;
1120         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121         cmd->cmnd[1] = flags;
1122         cmd->cmnd[6] = 0;
1123         cmd->cmnd[9] = 0;
1124         put_unaligned_be32(lba, &cmd->cmnd[2]);
1125         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127         return BLK_STS_OK;
1128 }
1129
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131                                       sector_t lba, unsigned int nr_blocks,
1132                                       unsigned char flags)
1133 {
1134         /* Avoid that 0 blocks gets translated into 256 blocks. */
1135         if (WARN_ON_ONCE(nr_blocks == 0))
1136                 return BLK_STS_IOERR;
1137
1138         if (unlikely(flags & 0x8)) {
1139                 /*
1140                  * This happens only if this drive failed 10byte rw
1141                  * command with ILLEGAL_REQUEST during operation and
1142                  * thus turned off use_10_for_rw.
1143                  */
1144                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145                 return BLK_STS_IOERR;
1146         }
1147
1148         cmd->cmd_len = 6;
1149         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151         cmd->cmnd[2] = (lba >> 8) & 0xff;
1152         cmd->cmnd[3] = lba & 0xff;
1153         cmd->cmnd[4] = nr_blocks;
1154         cmd->cmnd[5] = 0;
1155
1156         return BLK_STS_OK;
1157 }
1158
1159 /*
1160  * Check if a command has a duration limit set. If it does, and the target
1161  * device supports CDL and the feature is enabled, return the limit
1162  * descriptor index to use. Return 0 (no limit) otherwise.
1163  */
1164 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165 {
1166         struct scsi_device *sdp = sdkp->device;
1167         int hint;
1168
1169         if (!sdp->cdl_supported || !sdp->cdl_enable)
1170                 return 0;
1171
1172         /*
1173          * Use "no limit" if the request ioprio does not specify a duration
1174          * limit hint.
1175          */
1176         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179                 return 0;
1180
1181         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182 }
1183
1184 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185 {
1186         struct request *rq = scsi_cmd_to_rq(cmd);
1187         struct scsi_device *sdp = cmd->device;
1188         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190         sector_t threshold;
1191         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193         bool write = rq_data_dir(rq) == WRITE;
1194         unsigned char protect, fua;
1195         unsigned int dld;
1196         blk_status_t ret;
1197         unsigned int dif;
1198         bool dix;
1199
1200         ret = scsi_alloc_sgtables(cmd);
1201         if (ret != BLK_STS_OK)
1202                 return ret;
1203
1204         ret = BLK_STS_IOERR;
1205         if (!scsi_device_online(sdp) || sdp->changed) {
1206                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207                 goto fail;
1208         }
1209
1210         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212                 goto fail;
1213         }
1214
1215         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217                 goto fail;
1218         }
1219
1220         /*
1221          * Some SD card readers can't handle accesses which touch the
1222          * last one or two logical blocks. Split accesses as needed.
1223          */
1224         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227                 if (lba < threshold) {
1228                         /* Access up to the threshold but not beyond */
1229                         nr_blocks = threshold - lba;
1230                 } else {
1231                         /* Access only a single logical block */
1232                         nr_blocks = 1;
1233                 }
1234         }
1235
1236         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238                 if (ret)
1239                         goto fail;
1240         }
1241
1242         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243         dix = scsi_prot_sg_count(cmd);
1244         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245         dld = sd_cdl_dld(sdkp, cmd);
1246
1247         if (dif || dix)
1248                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249         else
1250                 protect = 0;
1251
1252         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254                                          protect | fua, dld);
1255         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257                                          protect | fua, dld);
1258         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259                    sdp->use_10_for_rw || protect) {
1260                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261                                          protect | fua);
1262         } else {
1263                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264                                         protect | fua);
1265         }
1266
1267         if (unlikely(ret != BLK_STS_OK))
1268                 goto fail;
1269
1270         /*
1271          * We shouldn't disconnect in the middle of a sector, so with a dumb
1272          * host adapter, it's safe to assume that we can at least transfer
1273          * this many bytes between each connect / disconnect.
1274          */
1275         cmd->transfersize = sdp->sector_size;
1276         cmd->underflow = nr_blocks << 9;
1277         cmd->allowed = sdkp->max_retries;
1278         cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280         SCSI_LOG_HLQUEUE(1,
1281                          scmd_printk(KERN_INFO, cmd,
1282                                      "%s: block=%llu, count=%d\n", __func__,
1283                                      (unsigned long long)blk_rq_pos(rq),
1284                                      blk_rq_sectors(rq)));
1285         SCSI_LOG_HLQUEUE(2,
1286                          scmd_printk(KERN_INFO, cmd,
1287                                      "%s %d/%u 512 byte blocks.\n",
1288                                      write ? "writing" : "reading", nr_blocks,
1289                                      blk_rq_sectors(rq)));
1290
1291         /*
1292          * This indicates that the command is ready from our end to be queued.
1293          */
1294         return BLK_STS_OK;
1295 fail:
1296         scsi_free_sgtables(cmd);
1297         return ret;
1298 }
1299
1300 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301 {
1302         struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304         switch (req_op(rq)) {
1305         case REQ_OP_DISCARD:
1306                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307                 case SD_LBP_UNMAP:
1308                         return sd_setup_unmap_cmnd(cmd);
1309                 case SD_LBP_WS16:
1310                         return sd_setup_write_same16_cmnd(cmd, true);
1311                 case SD_LBP_WS10:
1312                         return sd_setup_write_same10_cmnd(cmd, true);
1313                 case SD_LBP_ZERO:
1314                         return sd_setup_write_same10_cmnd(cmd, false);
1315                 default:
1316                         return BLK_STS_TARGET;
1317                 }
1318         case REQ_OP_WRITE_ZEROES:
1319                 return sd_setup_write_zeroes_cmnd(cmd);
1320         case REQ_OP_FLUSH:
1321                 return sd_setup_flush_cmnd(cmd);
1322         case REQ_OP_READ:
1323         case REQ_OP_WRITE:
1324         case REQ_OP_ZONE_APPEND:
1325                 return sd_setup_read_write_cmnd(cmd);
1326         case REQ_OP_ZONE_RESET:
1327                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328                                                    false);
1329         case REQ_OP_ZONE_RESET_ALL:
1330                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331                                                    true);
1332         case REQ_OP_ZONE_OPEN:
1333                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334         case REQ_OP_ZONE_CLOSE:
1335                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336         case REQ_OP_ZONE_FINISH:
1337                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338         default:
1339                 WARN_ON_ONCE(1);
1340                 return BLK_STS_NOTSUPP;
1341         }
1342 }
1343
1344 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345 {
1346         struct request *rq = scsi_cmd_to_rq(SCpnt);
1347
1348         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350 }
1351
1352 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353 {
1354         if (sdkp->device->removable || sdkp->write_prot) {
1355                 if (disk_check_media_change(disk))
1356                         return true;
1357         }
1358
1359         /*
1360          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361          * nothing to do with partitions, BLKRRPART is used to force a full
1362          * revalidate after things like a format for historical reasons.
1363          */
1364         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365 }
1366
1367 /**
1368  *      sd_open - open a scsi disk device
1369  *      @disk: disk to open
1370  *      @mode: open mode
1371  *
1372  *      Returns 0 if successful. Returns a negated errno value in case 
1373  *      of error.
1374  *
1375  *      Note: This can be called from a user context (e.g. fsck(1) )
1376  *      or from within the kernel (e.g. as a result of a mount(1) ).
1377  *      In the latter case @inode and @filp carry an abridged amount
1378  *      of information as noted above.
1379  *
1380  *      Locking: called with disk->open_mutex held.
1381  **/
1382 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383 {
1384         struct scsi_disk *sdkp = scsi_disk(disk);
1385         struct scsi_device *sdev = sdkp->device;
1386         int retval;
1387
1388         if (scsi_device_get(sdev))
1389                 return -ENXIO;
1390
1391         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
1393         /*
1394          * If the device is in error recovery, wait until it is done.
1395          * If the device is offline, then disallow any access to it.
1396          */
1397         retval = -ENXIO;
1398         if (!scsi_block_when_processing_errors(sdev))
1399                 goto error_out;
1400
1401         if (sd_need_revalidate(disk, sdkp))
1402                 sd_revalidate_disk(disk);
1403
1404         /*
1405          * If the drive is empty, just let the open fail.
1406          */
1407         retval = -ENOMEDIUM;
1408         if (sdev->removable && !sdkp->media_present &&
1409             !(mode & BLK_OPEN_NDELAY))
1410                 goto error_out;
1411
1412         /*
1413          * If the device has the write protect tab set, have the open fail
1414          * if the user expects to be able to write to the thing.
1415          */
1416         retval = -EROFS;
1417         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418                 goto error_out;
1419
1420         /*
1421          * It is possible that the disk changing stuff resulted in
1422          * the device being taken offline.  If this is the case,
1423          * report this to the user, and don't pretend that the
1424          * open actually succeeded.
1425          */
1426         retval = -ENXIO;
1427         if (!scsi_device_online(sdev))
1428                 goto error_out;
1429
1430         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431                 if (scsi_block_when_processing_errors(sdev))
1432                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433         }
1434
1435         return 0;
1436
1437 error_out:
1438         scsi_device_put(sdev);
1439         return retval;  
1440 }
1441
1442 /**
1443  *      sd_release - invoked when the (last) close(2) is called on this
1444  *      scsi disk.
1445  *      @disk: disk to release
1446  *
1447  *      Returns 0. 
1448  *
1449  *      Note: may block (uninterruptible) if error recovery is underway
1450  *      on this disk.
1451  *
1452  *      Locking: called with disk->open_mutex held.
1453  **/
1454 static void sd_release(struct gendisk *disk)
1455 {
1456         struct scsi_disk *sdkp = scsi_disk(disk);
1457         struct scsi_device *sdev = sdkp->device;
1458
1459         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462                 if (scsi_block_when_processing_errors(sdev))
1463                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464         }
1465
1466         scsi_device_put(sdev);
1467 }
1468
1469 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470 {
1471         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472         struct scsi_device *sdp = sdkp->device;
1473         struct Scsi_Host *host = sdp->host;
1474         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475         int diskinfo[4];
1476
1477         /* default to most commonly used values */
1478         diskinfo[0] = 0x40;     /* 1 << 6 */
1479         diskinfo[1] = 0x20;     /* 1 << 5 */
1480         diskinfo[2] = capacity >> 11;
1481
1482         /* override with calculated, extended default, or driver values */
1483         if (host->hostt->bios_param)
1484                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485         else
1486                 scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488         geo->heads = diskinfo[0];
1489         geo->sectors = diskinfo[1];
1490         geo->cylinders = diskinfo[2];
1491         return 0;
1492 }
1493
1494 /**
1495  *      sd_ioctl - process an ioctl
1496  *      @bdev: target block device
1497  *      @mode: open mode
1498  *      @cmd: ioctl command number
1499  *      @arg: this is third argument given to ioctl(2) system call.
1500  *      Often contains a pointer.
1501  *
1502  *      Returns 0 if successful (some ioctls return positive numbers on
1503  *      success as well). Returns a negated errno value in case of error.
1504  *
1505  *      Note: most ioctls are forward onto the block subsystem or further
1506  *      down in the scsi subsystem.
1507  **/
1508 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509                     unsigned int cmd, unsigned long arg)
1510 {
1511         struct gendisk *disk = bdev->bd_disk;
1512         struct scsi_disk *sdkp = scsi_disk(disk);
1513         struct scsi_device *sdp = sdkp->device;
1514         void __user *p = (void __user *)arg;
1515         int error;
1516     
1517         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518                                     "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521                 return -ENOIOCTLCMD;
1522
1523         /*
1524          * If we are in the middle of error recovery, don't let anyone
1525          * else try and use this device.  Also, if error recovery fails, it
1526          * may try and take the device offline, in which case all further
1527          * access to the device is prohibited.
1528          */
1529         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530                         (mode & BLK_OPEN_NDELAY));
1531         if (error)
1532                 return error;
1533
1534         if (is_sed_ioctl(cmd))
1535                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1536         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537 }
1538
1539 static void set_media_not_present(struct scsi_disk *sdkp)
1540 {
1541         if (sdkp->media_present)
1542                 sdkp->device->changed = 1;
1543
1544         if (sdkp->device->removable) {
1545                 sdkp->media_present = 0;
1546                 sdkp->capacity = 0;
1547         }
1548 }
1549
1550 static int media_not_present(struct scsi_disk *sdkp,
1551                              struct scsi_sense_hdr *sshdr)
1552 {
1553         if (!scsi_sense_valid(sshdr))
1554                 return 0;
1555
1556         /* not invoked for commands that could return deferred errors */
1557         switch (sshdr->sense_key) {
1558         case UNIT_ATTENTION:
1559         case NOT_READY:
1560                 /* medium not present */
1561                 if (sshdr->asc == 0x3A) {
1562                         set_media_not_present(sdkp);
1563                         return 1;
1564                 }
1565         }
1566         return 0;
1567 }
1568
1569 /**
1570  *      sd_check_events - check media events
1571  *      @disk: kernel device descriptor
1572  *      @clearing: disk events currently being cleared
1573  *
1574  *      Returns mask of DISK_EVENT_*.
1575  *
1576  *      Note: this function is invoked from the block subsystem.
1577  **/
1578 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579 {
1580         struct scsi_disk *sdkp = disk->private_data;
1581         struct scsi_device *sdp;
1582         int retval;
1583         bool disk_changed;
1584
1585         if (!sdkp)
1586                 return 0;
1587
1588         sdp = sdkp->device;
1589         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591         /*
1592          * If the device is offline, don't send any commands - just pretend as
1593          * if the command failed.  If the device ever comes back online, we
1594          * can deal with it then.  It is only because of unrecoverable errors
1595          * that we would ever take a device offline in the first place.
1596          */
1597         if (!scsi_device_online(sdp)) {
1598                 set_media_not_present(sdkp);
1599                 goto out;
1600         }
1601
1602         /*
1603          * Using TEST_UNIT_READY enables differentiation between drive with
1604          * no cartridge loaded - NOT READY, drive with changed cartridge -
1605          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606          *
1607          * Drives that auto spin down. eg iomega jaz 1G, will be started
1608          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609          * sd_revalidate() is called.
1610          */
1611         if (scsi_block_when_processing_errors(sdp)) {
1612                 struct scsi_sense_hdr sshdr = { 0, };
1613
1614                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615                                               &sshdr);
1616
1617                 /* failed to execute TUR, assume media not present */
1618                 if (retval < 0 || host_byte(retval)) {
1619                         set_media_not_present(sdkp);
1620                         goto out;
1621                 }
1622
1623                 if (media_not_present(sdkp, &sshdr))
1624                         goto out;
1625         }
1626
1627         /*
1628          * For removable scsi disk we have to recognise the presence
1629          * of a disk in the drive.
1630          */
1631         if (!sdkp->media_present)
1632                 sdp->changed = 1;
1633         sdkp->media_present = 1;
1634 out:
1635         /*
1636          * sdp->changed is set under the following conditions:
1637          *
1638          *      Medium present state has changed in either direction.
1639          *      Device has indicated UNIT_ATTENTION.
1640          */
1641         disk_changed = sdp->changed;
1642         sdp->changed = 0;
1643         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644 }
1645
1646 static int sd_sync_cache(struct scsi_disk *sdkp)
1647 {
1648         int retries, res;
1649         struct scsi_device *sdp = sdkp->device;
1650         const int timeout = sdp->request_queue->rq_timeout
1651                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1652         struct scsi_sense_hdr sshdr;
1653         const struct scsi_exec_args exec_args = {
1654                 .req_flags = BLK_MQ_REQ_PM,
1655                 .sshdr = &sshdr,
1656         };
1657
1658         if (!scsi_device_online(sdp))
1659                 return -ENODEV;
1660
1661         for (retries = 3; retries > 0; --retries) {
1662                 unsigned char cmd[16] = { 0 };
1663
1664                 if (sdp->use_16_for_sync)
1665                         cmd[0] = SYNCHRONIZE_CACHE_16;
1666                 else
1667                         cmd[0] = SYNCHRONIZE_CACHE;
1668                 /*
1669                  * Leave the rest of the command zero to indicate
1670                  * flush everything.
1671                  */
1672                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1673                                        timeout, sdkp->max_retries, &exec_args);
1674                 if (res == 0)
1675                         break;
1676         }
1677
1678         if (res) {
1679                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1680
1681                 if (res < 0)
1682                         return res;
1683
1684                 if (scsi_status_is_check_condition(res) &&
1685                     scsi_sense_valid(&sshdr)) {
1686                         sd_print_sense_hdr(sdkp, &sshdr);
1687
1688                         /* we need to evaluate the error return  */
1689                         if (sshdr.asc == 0x3a ||        /* medium not present */
1690                             sshdr.asc == 0x20 ||        /* invalid command */
1691                             (sshdr.asc == 0x74 && sshdr.ascq == 0x71))  /* drive is password locked */
1692                                 /* this is no error here */
1693                                 return 0;
1694                         /*
1695                          * This drive doesn't support sync and there's not much
1696                          * we can do because this is called during shutdown
1697                          * or suspend so just return success so those operations
1698                          * can proceed.
1699                          */
1700                         if (sshdr.sense_key == ILLEGAL_REQUEST)
1701                                 return 0;
1702                 }
1703
1704                 switch (host_byte(res)) {
1705                 /* ignore errors due to racing a disconnection */
1706                 case DID_BAD_TARGET:
1707                 case DID_NO_CONNECT:
1708                         return 0;
1709                 /* signal the upper layer it might try again */
1710                 case DID_BUS_BUSY:
1711                 case DID_IMM_RETRY:
1712                 case DID_REQUEUE:
1713                 case DID_SOFT_ERROR:
1714                         return -EBUSY;
1715                 default:
1716                         return -EIO;
1717                 }
1718         }
1719         return 0;
1720 }
1721
1722 static void sd_rescan(struct device *dev)
1723 {
1724         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1725
1726         sd_revalidate_disk(sdkp->disk);
1727 }
1728
1729 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1730                 enum blk_unique_id type)
1731 {
1732         struct scsi_device *sdev = scsi_disk(disk)->device;
1733         const struct scsi_vpd *vpd;
1734         const unsigned char *d;
1735         int ret = -ENXIO, len;
1736
1737         rcu_read_lock();
1738         vpd = rcu_dereference(sdev->vpd_pg83);
1739         if (!vpd)
1740                 goto out_unlock;
1741
1742         ret = -EINVAL;
1743         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1744                 /* we only care about designators with LU association */
1745                 if (((d[1] >> 4) & 0x3) != 0x00)
1746                         continue;
1747                 if ((d[1] & 0xf) != type)
1748                         continue;
1749
1750                 /*
1751                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1752                  * keep looking as one with more entropy might still show up.
1753                  */
1754                 len = d[3];
1755                 if (len != 8 && len != 12 && len != 16)
1756                         continue;
1757                 ret = len;
1758                 memcpy(id, d + 4, len);
1759                 if (len == 16)
1760                         break;
1761         }
1762 out_unlock:
1763         rcu_read_unlock();
1764         return ret;
1765 }
1766
1767 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1768 {
1769         switch (host_byte(result)) {
1770         case DID_TRANSPORT_MARGINAL:
1771         case DID_TRANSPORT_DISRUPTED:
1772         case DID_BUS_BUSY:
1773                 return PR_STS_RETRY_PATH_FAILURE;
1774         case DID_NO_CONNECT:
1775                 return PR_STS_PATH_FAILED;
1776         case DID_TRANSPORT_FAILFAST:
1777                 return PR_STS_PATH_FAST_FAILED;
1778         }
1779
1780         switch (status_byte(result)) {
1781         case SAM_STAT_RESERVATION_CONFLICT:
1782                 return PR_STS_RESERVATION_CONFLICT;
1783         case SAM_STAT_CHECK_CONDITION:
1784                 if (!scsi_sense_valid(sshdr))
1785                         return PR_STS_IOERR;
1786
1787                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1788                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1789                         return -EINVAL;
1790
1791                 fallthrough;
1792         default:
1793                 return PR_STS_IOERR;
1794         }
1795 }
1796
1797 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1798                             unsigned char *data, int data_len)
1799 {
1800         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1801         struct scsi_device *sdev = sdkp->device;
1802         struct scsi_sense_hdr sshdr;
1803         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1804         const struct scsi_exec_args exec_args = {
1805                 .sshdr = &sshdr,
1806         };
1807         int result;
1808
1809         put_unaligned_be16(data_len, &cmd[7]);
1810
1811         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1812                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1813         if (scsi_status_is_check_condition(result) &&
1814             scsi_sense_valid(&sshdr)) {
1815                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1816                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1817         }
1818
1819         if (result <= 0)
1820                 return result;
1821
1822         return sd_scsi_to_pr_err(&sshdr, result);
1823 }
1824
1825 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1826 {
1827         int result, i, data_offset, num_copy_keys;
1828         u32 num_keys = keys_info->num_keys;
1829         int data_len = num_keys * 8 + 8;
1830         u8 *data;
1831
1832         data = kzalloc(data_len, GFP_KERNEL);
1833         if (!data)
1834                 return -ENOMEM;
1835
1836         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1837         if (result)
1838                 goto free_data;
1839
1840         keys_info->generation = get_unaligned_be32(&data[0]);
1841         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1842
1843         data_offset = 8;
1844         num_copy_keys = min(num_keys, keys_info->num_keys);
1845
1846         for (i = 0; i < num_copy_keys; i++) {
1847                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1848                 data_offset += 8;
1849         }
1850
1851 free_data:
1852         kfree(data);
1853         return result;
1854 }
1855
1856 static int sd_pr_read_reservation(struct block_device *bdev,
1857                                   struct pr_held_reservation *rsv)
1858 {
1859         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1860         struct scsi_device *sdev = sdkp->device;
1861         u8 data[24] = { };
1862         int result, len;
1863
1864         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1865         if (result)
1866                 return result;
1867
1868         len = get_unaligned_be32(&data[4]);
1869         if (!len)
1870                 return 0;
1871
1872         /* Make sure we have at least the key and type */
1873         if (len < 14) {
1874                 sdev_printk(KERN_INFO, sdev,
1875                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1876                             len);
1877                 return -EINVAL;
1878         }
1879
1880         rsv->generation = get_unaligned_be32(&data[0]);
1881         rsv->key = get_unaligned_be64(&data[8]);
1882         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1883         return 0;
1884 }
1885
1886 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1887                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1888 {
1889         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1890         struct scsi_device *sdev = sdkp->device;
1891         struct scsi_sense_hdr sshdr;
1892         const struct scsi_exec_args exec_args = {
1893                 .sshdr = &sshdr,
1894         };
1895         int result;
1896         u8 cmd[16] = { 0, };
1897         u8 data[24] = { 0, };
1898
1899         cmd[0] = PERSISTENT_RESERVE_OUT;
1900         cmd[1] = sa;
1901         cmd[2] = type;
1902         put_unaligned_be32(sizeof(data), &cmd[5]);
1903
1904         put_unaligned_be64(key, &data[0]);
1905         put_unaligned_be64(sa_key, &data[8]);
1906         data[20] = flags;
1907
1908         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1909                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1910                                   &exec_args);
1911
1912         if (scsi_status_is_check_condition(result) &&
1913             scsi_sense_valid(&sshdr)) {
1914                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1915                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1916         }
1917
1918         if (result <= 0)
1919                 return result;
1920
1921         return sd_scsi_to_pr_err(&sshdr, result);
1922 }
1923
1924 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1925                 u32 flags)
1926 {
1927         if (flags & ~PR_FL_IGNORE_KEY)
1928                 return -EOPNOTSUPP;
1929         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1930                         old_key, new_key, 0,
1931                         (1 << 0) /* APTPL */);
1932 }
1933
1934 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1935                 u32 flags)
1936 {
1937         if (flags)
1938                 return -EOPNOTSUPP;
1939         return sd_pr_out_command(bdev, 0x01, key, 0,
1940                                  block_pr_type_to_scsi(type), 0);
1941 }
1942
1943 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1944 {
1945         return sd_pr_out_command(bdev, 0x02, key, 0,
1946                                  block_pr_type_to_scsi(type), 0);
1947 }
1948
1949 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1950                 enum pr_type type, bool abort)
1951 {
1952         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1953                                  block_pr_type_to_scsi(type), 0);
1954 }
1955
1956 static int sd_pr_clear(struct block_device *bdev, u64 key)
1957 {
1958         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1959 }
1960
1961 static const struct pr_ops sd_pr_ops = {
1962         .pr_register    = sd_pr_register,
1963         .pr_reserve     = sd_pr_reserve,
1964         .pr_release     = sd_pr_release,
1965         .pr_preempt     = sd_pr_preempt,
1966         .pr_clear       = sd_pr_clear,
1967         .pr_read_keys   = sd_pr_read_keys,
1968         .pr_read_reservation = sd_pr_read_reservation,
1969 };
1970
1971 static void scsi_disk_free_disk(struct gendisk *disk)
1972 {
1973         struct scsi_disk *sdkp = scsi_disk(disk);
1974
1975         put_device(&sdkp->disk_dev);
1976 }
1977
1978 static const struct block_device_operations sd_fops = {
1979         .owner                  = THIS_MODULE,
1980         .open                   = sd_open,
1981         .release                = sd_release,
1982         .ioctl                  = sd_ioctl,
1983         .getgeo                 = sd_getgeo,
1984         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1985         .check_events           = sd_check_events,
1986         .unlock_native_capacity = sd_unlock_native_capacity,
1987         .report_zones           = sd_zbc_report_zones,
1988         .get_unique_id          = sd_get_unique_id,
1989         .free_disk              = scsi_disk_free_disk,
1990         .pr_ops                 = &sd_pr_ops,
1991 };
1992
1993 /**
1994  *      sd_eh_reset - reset error handling callback
1995  *      @scmd:          sd-issued command that has failed
1996  *
1997  *      This function is called by the SCSI midlayer before starting
1998  *      SCSI EH. When counting medium access failures we have to be
1999  *      careful to register it only only once per device and SCSI EH run;
2000  *      there might be several timed out commands which will cause the
2001  *      'max_medium_access_timeouts' counter to trigger after the first
2002  *      SCSI EH run already and set the device to offline.
2003  *      So this function resets the internal counter before starting SCSI EH.
2004  **/
2005 static void sd_eh_reset(struct scsi_cmnd *scmd)
2006 {
2007         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2008
2009         /* New SCSI EH run, reset gate variable */
2010         sdkp->ignore_medium_access_errors = false;
2011 }
2012
2013 /**
2014  *      sd_eh_action - error handling callback
2015  *      @scmd:          sd-issued command that has failed
2016  *      @eh_disp:       The recovery disposition suggested by the midlayer
2017  *
2018  *      This function is called by the SCSI midlayer upon completion of an
2019  *      error test command (currently TEST UNIT READY). The result of sending
2020  *      the eh command is passed in eh_disp.  We're looking for devices that
2021  *      fail medium access commands but are OK with non access commands like
2022  *      test unit ready (so wrongly see the device as having a successful
2023  *      recovery)
2024  **/
2025 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2026 {
2027         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2028         struct scsi_device *sdev = scmd->device;
2029
2030         if (!scsi_device_online(sdev) ||
2031             !scsi_medium_access_command(scmd) ||
2032             host_byte(scmd->result) != DID_TIME_OUT ||
2033             eh_disp != SUCCESS)
2034                 return eh_disp;
2035
2036         /*
2037          * The device has timed out executing a medium access command.
2038          * However, the TEST UNIT READY command sent during error
2039          * handling completed successfully. Either the device is in the
2040          * process of recovering or has it suffered an internal failure
2041          * that prevents access to the storage medium.
2042          */
2043         if (!sdkp->ignore_medium_access_errors) {
2044                 sdkp->medium_access_timed_out++;
2045                 sdkp->ignore_medium_access_errors = true;
2046         }
2047
2048         /*
2049          * If the device keeps failing read/write commands but TEST UNIT
2050          * READY always completes successfully we assume that medium
2051          * access is no longer possible and take the device offline.
2052          */
2053         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2054                 scmd_printk(KERN_ERR, scmd,
2055                             "Medium access timeout failure. Offlining disk!\n");
2056                 mutex_lock(&sdev->state_mutex);
2057                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2058                 mutex_unlock(&sdev->state_mutex);
2059
2060                 return SUCCESS;
2061         }
2062
2063         return eh_disp;
2064 }
2065
2066 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2067 {
2068         struct request *req = scsi_cmd_to_rq(scmd);
2069         struct scsi_device *sdev = scmd->device;
2070         unsigned int transferred, good_bytes;
2071         u64 start_lba, end_lba, bad_lba;
2072
2073         /*
2074          * Some commands have a payload smaller than the device logical
2075          * block size (e.g. INQUIRY on a 4K disk).
2076          */
2077         if (scsi_bufflen(scmd) <= sdev->sector_size)
2078                 return 0;
2079
2080         /* Check if we have a 'bad_lba' information */
2081         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2082                                      SCSI_SENSE_BUFFERSIZE,
2083                                      &bad_lba))
2084                 return 0;
2085
2086         /*
2087          * If the bad lba was reported incorrectly, we have no idea where
2088          * the error is.
2089          */
2090         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2091         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2092         if (bad_lba < start_lba || bad_lba >= end_lba)
2093                 return 0;
2094
2095         /*
2096          * resid is optional but mostly filled in.  When it's unused,
2097          * its value is zero, so we assume the whole buffer transferred
2098          */
2099         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2100
2101         /* This computation should always be done in terms of the
2102          * resolution of the device's medium.
2103          */
2104         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2105
2106         return min(good_bytes, transferred);
2107 }
2108
2109 /**
2110  *      sd_done - bottom half handler: called when the lower level
2111  *      driver has completed (successfully or otherwise) a scsi command.
2112  *      @SCpnt: mid-level's per command structure.
2113  *
2114  *      Note: potentially run from within an ISR. Must not block.
2115  **/
2116 static int sd_done(struct scsi_cmnd *SCpnt)
2117 {
2118         int result = SCpnt->result;
2119         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2120         unsigned int sector_size = SCpnt->device->sector_size;
2121         unsigned int resid;
2122         struct scsi_sense_hdr sshdr;
2123         struct request *req = scsi_cmd_to_rq(SCpnt);
2124         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2125         int sense_valid = 0;
2126         int sense_deferred = 0;
2127
2128         switch (req_op(req)) {
2129         case REQ_OP_DISCARD:
2130         case REQ_OP_WRITE_ZEROES:
2131         case REQ_OP_ZONE_RESET:
2132         case REQ_OP_ZONE_RESET_ALL:
2133         case REQ_OP_ZONE_OPEN:
2134         case REQ_OP_ZONE_CLOSE:
2135         case REQ_OP_ZONE_FINISH:
2136                 if (!result) {
2137                         good_bytes = blk_rq_bytes(req);
2138                         scsi_set_resid(SCpnt, 0);
2139                 } else {
2140                         good_bytes = 0;
2141                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2142                 }
2143                 break;
2144         default:
2145                 /*
2146                  * In case of bogus fw or device, we could end up having
2147                  * an unaligned partial completion. Check this here and force
2148                  * alignment.
2149                  */
2150                 resid = scsi_get_resid(SCpnt);
2151                 if (resid & (sector_size - 1)) {
2152                         sd_printk(KERN_INFO, sdkp,
2153                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2154                                 resid, sector_size);
2155                         scsi_print_command(SCpnt);
2156                         resid = min(scsi_bufflen(SCpnt),
2157                                     round_up(resid, sector_size));
2158                         scsi_set_resid(SCpnt, resid);
2159                 }
2160         }
2161
2162         if (result) {
2163                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2164                 if (sense_valid)
2165                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2166         }
2167         sdkp->medium_access_timed_out = 0;
2168
2169         if (!scsi_status_is_check_condition(result) &&
2170             (!sense_valid || sense_deferred))
2171                 goto out;
2172
2173         switch (sshdr.sense_key) {
2174         case HARDWARE_ERROR:
2175         case MEDIUM_ERROR:
2176                 good_bytes = sd_completed_bytes(SCpnt);
2177                 break;
2178         case RECOVERED_ERROR:
2179                 good_bytes = scsi_bufflen(SCpnt);
2180                 break;
2181         case NO_SENSE:
2182                 /* This indicates a false check condition, so ignore it.  An
2183                  * unknown amount of data was transferred so treat it as an
2184                  * error.
2185                  */
2186                 SCpnt->result = 0;
2187                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2188                 break;
2189         case ABORTED_COMMAND:
2190                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2191                         good_bytes = sd_completed_bytes(SCpnt);
2192                 break;
2193         case ILLEGAL_REQUEST:
2194                 switch (sshdr.asc) {
2195                 case 0x10:      /* DIX: Host detected corruption */
2196                         good_bytes = sd_completed_bytes(SCpnt);
2197                         break;
2198                 case 0x20:      /* INVALID COMMAND OPCODE */
2199                 case 0x24:      /* INVALID FIELD IN CDB */
2200                         switch (SCpnt->cmnd[0]) {
2201                         case UNMAP:
2202                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2203                                 break;
2204                         case WRITE_SAME_16:
2205                         case WRITE_SAME:
2206                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2207                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2208                                 } else {
2209                                         sdkp->device->no_write_same = 1;
2210                                         sd_config_write_same(sdkp);
2211                                         req->rq_flags |= RQF_QUIET;
2212                                 }
2213                                 break;
2214                         }
2215                 }
2216                 break;
2217         default:
2218                 break;
2219         }
2220
2221  out:
2222         if (sd_is_zoned(sdkp))
2223                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2224
2225         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2226                                            "sd_done: completed %d of %d bytes\n",
2227                                            good_bytes, scsi_bufflen(SCpnt)));
2228
2229         return good_bytes;
2230 }
2231
2232 /*
2233  * spinup disk - called only in sd_revalidate_disk()
2234  */
2235 static void
2236 sd_spinup_disk(struct scsi_disk *sdkp)
2237 {
2238         unsigned char cmd[10];
2239         unsigned long spintime_expire = 0;
2240         int retries, spintime;
2241         unsigned int the_result;
2242         struct scsi_sense_hdr sshdr;
2243         const struct scsi_exec_args exec_args = {
2244                 .sshdr = &sshdr,
2245         };
2246         int sense_valid = 0;
2247
2248         spintime = 0;
2249
2250         /* Spin up drives, as required.  Only do this at boot time */
2251         /* Spinup needs to be done for module loads too. */
2252         do {
2253                 retries = 0;
2254
2255                 do {
2256                         bool media_was_present = sdkp->media_present;
2257
2258                         cmd[0] = TEST_UNIT_READY;
2259                         memset((void *) &cmd[1], 0, 9);
2260
2261                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2262                                                       REQ_OP_DRV_IN, NULL, 0,
2263                                                       SD_TIMEOUT,
2264                                                       sdkp->max_retries,
2265                                                       &exec_args);
2266
2267                         if (the_result > 0) {
2268                                 /*
2269                                  * If the drive has indicated to us that it
2270                                  * doesn't have any media in it, don't bother
2271                                  * with any more polling.
2272                                  */
2273                                 if (media_not_present(sdkp, &sshdr)) {
2274                                         if (media_was_present)
2275                                                 sd_printk(KERN_NOTICE, sdkp,
2276                                                           "Media removed, stopped polling\n");
2277                                         return;
2278                                 }
2279
2280                                 sense_valid = scsi_sense_valid(&sshdr);
2281                         }
2282                         retries++;
2283                 } while (retries < 3 &&
2284                          (!scsi_status_is_good(the_result) ||
2285                           (scsi_status_is_check_condition(the_result) &&
2286                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2287
2288                 if (!scsi_status_is_check_condition(the_result)) {
2289                         /* no sense, TUR either succeeded or failed
2290                          * with a status error */
2291                         if(!spintime && !scsi_status_is_good(the_result)) {
2292                                 sd_print_result(sdkp, "Test Unit Ready failed",
2293                                                 the_result);
2294                         }
2295                         break;
2296                 }
2297
2298                 /*
2299                  * The device does not want the automatic start to be issued.
2300                  */
2301                 if (sdkp->device->no_start_on_add)
2302                         break;
2303
2304                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2305                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2306                                 break;  /* manual intervention required */
2307                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2308                                 break;  /* standby */
2309                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2310                                 break;  /* unavailable */
2311                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2312                                 break;  /* sanitize in progress */
2313                         if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2314                                 break;  /* depopulation in progress */
2315                         if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2316                                 break;  /* depopulation restoration in progress */
2317                         /*
2318                          * Issue command to spin up drive when not ready
2319                          */
2320                         if (!spintime) {
2321                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2322                                 cmd[0] = START_STOP;
2323                                 cmd[1] = 1;     /* Return immediately */
2324                                 memset((void *) &cmd[2], 0, 8);
2325                                 cmd[4] = 1;     /* Start spin cycle */
2326                                 if (sdkp->device->start_stop_pwr_cond)
2327                                         cmd[4] |= 1 << 4;
2328                                 scsi_execute_cmd(sdkp->device, cmd,
2329                                                  REQ_OP_DRV_IN, NULL, 0,
2330                                                  SD_TIMEOUT, sdkp->max_retries,
2331                                                  &exec_args);
2332                                 spintime_expire = jiffies + 100 * HZ;
2333                                 spintime = 1;
2334                         }
2335                         /* Wait 1 second for next try */
2336                         msleep(1000);
2337                         printk(KERN_CONT ".");
2338
2339                 /*
2340                  * Wait for USB flash devices with slow firmware.
2341                  * Yes, this sense key/ASC combination shouldn't
2342                  * occur here.  It's characteristic of these devices.
2343                  */
2344                 } else if (sense_valid &&
2345                                 sshdr.sense_key == UNIT_ATTENTION &&
2346                                 sshdr.asc == 0x28) {
2347                         if (!spintime) {
2348                                 spintime_expire = jiffies + 5 * HZ;
2349                                 spintime = 1;
2350                         }
2351                         /* Wait 1 second for next try */
2352                         msleep(1000);
2353                 } else {
2354                         /* we don't understand the sense code, so it's
2355                          * probably pointless to loop */
2356                         if(!spintime) {
2357                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2358                                 sd_print_sense_hdr(sdkp, &sshdr);
2359                         }
2360                         break;
2361                 }
2362                                 
2363         } while (spintime && time_before_eq(jiffies, spintime_expire));
2364
2365         if (spintime) {
2366                 if (scsi_status_is_good(the_result))
2367                         printk(KERN_CONT "ready\n");
2368                 else
2369                         printk(KERN_CONT "not responding...\n");
2370         }
2371 }
2372
2373 /*
2374  * Determine whether disk supports Data Integrity Field.
2375  */
2376 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2377 {
2378         struct scsi_device *sdp = sdkp->device;
2379         u8 type;
2380
2381         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2382                 sdkp->protection_type = 0;
2383                 return 0;
2384         }
2385
2386         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2387
2388         if (type > T10_PI_TYPE3_PROTECTION) {
2389                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2390                           " protection type %u. Disabling disk!\n",
2391                           type);
2392                 sdkp->protection_type = 0;
2393                 return -ENODEV;
2394         }
2395
2396         sdkp->protection_type = type;
2397
2398         return 0;
2399 }
2400
2401 static void sd_config_protection(struct scsi_disk *sdkp)
2402 {
2403         struct scsi_device *sdp = sdkp->device;
2404
2405         sd_dif_config_host(sdkp);
2406
2407         if (!sdkp->protection_type)
2408                 return;
2409
2410         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2411                 sd_first_printk(KERN_NOTICE, sdkp,
2412                                 "Disabling DIF Type %u protection\n",
2413                                 sdkp->protection_type);
2414                 sdkp->protection_type = 0;
2415         }
2416
2417         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2418                         sdkp->protection_type);
2419 }
2420
2421 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2422                         struct scsi_sense_hdr *sshdr, int sense_valid,
2423                         int the_result)
2424 {
2425         if (sense_valid)
2426                 sd_print_sense_hdr(sdkp, sshdr);
2427         else
2428                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2429
2430         /*
2431          * Set dirty bit for removable devices if not ready -
2432          * sometimes drives will not report this properly.
2433          */
2434         if (sdp->removable &&
2435             sense_valid && sshdr->sense_key == NOT_READY)
2436                 set_media_not_present(sdkp);
2437
2438         /*
2439          * We used to set media_present to 0 here to indicate no media
2440          * in the drive, but some drives fail read capacity even with
2441          * media present, so we can't do that.
2442          */
2443         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2444 }
2445
2446 #define RC16_LEN 32
2447 #if RC16_LEN > SD_BUF_SIZE
2448 #error RC16_LEN must not be more than SD_BUF_SIZE
2449 #endif
2450
2451 #define READ_CAPACITY_RETRIES_ON_RESET  10
2452
2453 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2454                                                 unsigned char *buffer)
2455 {
2456         unsigned char cmd[16];
2457         struct scsi_sense_hdr sshdr;
2458         const struct scsi_exec_args exec_args = {
2459                 .sshdr = &sshdr,
2460         };
2461         int sense_valid = 0;
2462         int the_result;
2463         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2464         unsigned int alignment;
2465         unsigned long long lba;
2466         unsigned sector_size;
2467
2468         if (sdp->no_read_capacity_16)
2469                 return -EINVAL;
2470
2471         do {
2472                 memset(cmd, 0, 16);
2473                 cmd[0] = SERVICE_ACTION_IN_16;
2474                 cmd[1] = SAI_READ_CAPACITY_16;
2475                 cmd[13] = RC16_LEN;
2476                 memset(buffer, 0, RC16_LEN);
2477
2478                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2479                                               buffer, RC16_LEN, SD_TIMEOUT,
2480                                               sdkp->max_retries, &exec_args);
2481                 if (the_result > 0) {
2482                         if (media_not_present(sdkp, &sshdr))
2483                                 return -ENODEV;
2484
2485                         sense_valid = scsi_sense_valid(&sshdr);
2486                         if (sense_valid &&
2487                             sshdr.sense_key == ILLEGAL_REQUEST &&
2488                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2489                             sshdr.ascq == 0x00)
2490                                 /* Invalid Command Operation Code or
2491                                  * Invalid Field in CDB, just retry
2492                                  * silently with RC10 */
2493                                 return -EINVAL;
2494                         if (sense_valid &&
2495                             sshdr.sense_key == UNIT_ATTENTION &&
2496                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2497                                 /* Device reset might occur several times,
2498                                  * give it one more chance */
2499                                 if (--reset_retries > 0)
2500                                         continue;
2501                 }
2502                 retries--;
2503
2504         } while (the_result && retries);
2505
2506         if (the_result) {
2507                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2508                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2509                 return -EINVAL;
2510         }
2511
2512         sector_size = get_unaligned_be32(&buffer[8]);
2513         lba = get_unaligned_be64(&buffer[0]);
2514
2515         if (sd_read_protection_type(sdkp, buffer) < 0) {
2516                 sdkp->capacity = 0;
2517                 return -ENODEV;
2518         }
2519
2520         /* Logical blocks per physical block exponent */
2521         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2522
2523         /* RC basis */
2524         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2525
2526         /* Lowest aligned logical block */
2527         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2528         blk_queue_alignment_offset(sdp->request_queue, alignment);
2529         if (alignment && sdkp->first_scan)
2530                 sd_printk(KERN_NOTICE, sdkp,
2531                           "physical block alignment offset: %u\n", alignment);
2532
2533         if (buffer[14] & 0x80) { /* LBPME */
2534                 sdkp->lbpme = 1;
2535
2536                 if (buffer[14] & 0x40) /* LBPRZ */
2537                         sdkp->lbprz = 1;
2538
2539                 sd_config_discard(sdkp, SD_LBP_WS16);
2540         }
2541
2542         sdkp->capacity = lba + 1;
2543         return sector_size;
2544 }
2545
2546 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2547                                                 unsigned char *buffer)
2548 {
2549         unsigned char cmd[16];
2550         struct scsi_sense_hdr sshdr;
2551         const struct scsi_exec_args exec_args = {
2552                 .sshdr = &sshdr,
2553         };
2554         int sense_valid = 0;
2555         int the_result;
2556         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2557         sector_t lba;
2558         unsigned sector_size;
2559
2560         do {
2561                 cmd[0] = READ_CAPACITY;
2562                 memset(&cmd[1], 0, 9);
2563                 memset(buffer, 0, 8);
2564
2565                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2566                                               8, SD_TIMEOUT, sdkp->max_retries,
2567                                               &exec_args);
2568
2569                 if (media_not_present(sdkp, &sshdr))
2570                         return -ENODEV;
2571
2572                 if (the_result > 0) {
2573                         sense_valid = scsi_sense_valid(&sshdr);
2574                         if (sense_valid &&
2575                             sshdr.sense_key == UNIT_ATTENTION &&
2576                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2577                                 /* Device reset might occur several times,
2578                                  * give it one more chance */
2579                                 if (--reset_retries > 0)
2580                                         continue;
2581                 }
2582                 retries--;
2583
2584         } while (the_result && retries);
2585
2586         if (the_result) {
2587                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2588                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2589                 return -EINVAL;
2590         }
2591
2592         sector_size = get_unaligned_be32(&buffer[4]);
2593         lba = get_unaligned_be32(&buffer[0]);
2594
2595         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2596                 /* Some buggy (usb cardreader) devices return an lba of
2597                    0xffffffff when the want to report a size of 0 (with
2598                    which they really mean no media is present) */
2599                 sdkp->capacity = 0;
2600                 sdkp->physical_block_size = sector_size;
2601                 return sector_size;
2602         }
2603
2604         sdkp->capacity = lba + 1;
2605         sdkp->physical_block_size = sector_size;
2606         return sector_size;
2607 }
2608
2609 static int sd_try_rc16_first(struct scsi_device *sdp)
2610 {
2611         if (sdp->host->max_cmd_len < 16)
2612                 return 0;
2613         if (sdp->try_rc_10_first)
2614                 return 0;
2615         if (sdp->scsi_level > SCSI_SPC_2)
2616                 return 1;
2617         if (scsi_device_protection(sdp))
2618                 return 1;
2619         return 0;
2620 }
2621
2622 /*
2623  * read disk capacity
2624  */
2625 static void
2626 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2627 {
2628         int sector_size;
2629         struct scsi_device *sdp = sdkp->device;
2630
2631         if (sd_try_rc16_first(sdp)) {
2632                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2633                 if (sector_size == -EOVERFLOW)
2634                         goto got_data;
2635                 if (sector_size == -ENODEV)
2636                         return;
2637                 if (sector_size < 0)
2638                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2639                 if (sector_size < 0)
2640                         return;
2641         } else {
2642                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2643                 if (sector_size == -EOVERFLOW)
2644                         goto got_data;
2645                 if (sector_size < 0)
2646                         return;
2647                 if ((sizeof(sdkp->capacity) > 4) &&
2648                     (sdkp->capacity > 0xffffffffULL)) {
2649                         int old_sector_size = sector_size;
2650                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2651                                         "Trying to use READ CAPACITY(16).\n");
2652                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2653                         if (sector_size < 0) {
2654                                 sd_printk(KERN_NOTICE, sdkp,
2655                                         "Using 0xffffffff as device size\n");
2656                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2657                                 sector_size = old_sector_size;
2658                                 goto got_data;
2659                         }
2660                         /* Remember that READ CAPACITY(16) succeeded */
2661                         sdp->try_rc_10_first = 0;
2662                 }
2663         }
2664
2665         /* Some devices are known to return the total number of blocks,
2666          * not the highest block number.  Some devices have versions
2667          * which do this and others which do not.  Some devices we might
2668          * suspect of doing this but we don't know for certain.
2669          *
2670          * If we know the reported capacity is wrong, decrement it.  If
2671          * we can only guess, then assume the number of blocks is even
2672          * (usually true but not always) and err on the side of lowering
2673          * the capacity.
2674          */
2675         if (sdp->fix_capacity ||
2676             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2677                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2678                                 "from its reported value: %llu\n",
2679                                 (unsigned long long) sdkp->capacity);
2680                 --sdkp->capacity;
2681         }
2682
2683 got_data:
2684         if (sector_size == 0) {
2685                 sector_size = 512;
2686                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2687                           "assuming 512.\n");
2688         }
2689
2690         if (sector_size != 512 &&
2691             sector_size != 1024 &&
2692             sector_size != 2048 &&
2693             sector_size != 4096) {
2694                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2695                           sector_size);
2696                 /*
2697                  * The user might want to re-format the drive with
2698                  * a supported sectorsize.  Once this happens, it
2699                  * would be relatively trivial to set the thing up.
2700                  * For this reason, we leave the thing in the table.
2701                  */
2702                 sdkp->capacity = 0;
2703                 /*
2704                  * set a bogus sector size so the normal read/write
2705                  * logic in the block layer will eventually refuse any
2706                  * request on this device without tripping over power
2707                  * of two sector size assumptions
2708                  */
2709                 sector_size = 512;
2710         }
2711         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2712         blk_queue_physical_block_size(sdp->request_queue,
2713                                       sdkp->physical_block_size);
2714         sdkp->device->sector_size = sector_size;
2715
2716         if (sdkp->capacity > 0xffffffff)
2717                 sdp->use_16_for_rw = 1;
2718
2719 }
2720
2721 /*
2722  * Print disk capacity
2723  */
2724 static void
2725 sd_print_capacity(struct scsi_disk *sdkp,
2726                   sector_t old_capacity)
2727 {
2728         int sector_size = sdkp->device->sector_size;
2729         char cap_str_2[10], cap_str_10[10];
2730
2731         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2732                 return;
2733
2734         string_get_size(sdkp->capacity, sector_size,
2735                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2736         string_get_size(sdkp->capacity, sector_size,
2737                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2738
2739         sd_printk(KERN_NOTICE, sdkp,
2740                   "%llu %d-byte logical blocks: (%s/%s)\n",
2741                   (unsigned long long)sdkp->capacity,
2742                   sector_size, cap_str_10, cap_str_2);
2743
2744         if (sdkp->physical_block_size != sector_size)
2745                 sd_printk(KERN_NOTICE, sdkp,
2746                           "%u-byte physical blocks\n",
2747                           sdkp->physical_block_size);
2748 }
2749
2750 /* called with buffer of length 512 */
2751 static inline int
2752 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2753                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2754                  struct scsi_sense_hdr *sshdr)
2755 {
2756         /*
2757          * If we must use MODE SENSE(10), make sure that the buffer length
2758          * is at least 8 bytes so that the mode sense header fits.
2759          */
2760         if (sdkp->device->use_10_for_ms && len < 8)
2761                 len = 8;
2762
2763         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2764                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2765 }
2766
2767 /*
2768  * read write protect setting, if possible - called only in sd_revalidate_disk()
2769  * called with buffer of length SD_BUF_SIZE
2770  */
2771 static void
2772 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2773 {
2774         int res;
2775         struct scsi_device *sdp = sdkp->device;
2776         struct scsi_mode_data data;
2777         int old_wp = sdkp->write_prot;
2778
2779         set_disk_ro(sdkp->disk, 0);
2780         if (sdp->skip_ms_page_3f) {
2781                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2782                 return;
2783         }
2784
2785         if (sdp->use_192_bytes_for_3f) {
2786                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2787         } else {
2788                 /*
2789                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2790                  * We have to start carefully: some devices hang if we ask
2791                  * for more than is available.
2792                  */
2793                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2794
2795                 /*
2796                  * Second attempt: ask for page 0 When only page 0 is
2797                  * implemented, a request for page 3F may return Sense Key
2798                  * 5: Illegal Request, Sense Code 24: Invalid field in
2799                  * CDB.
2800                  */
2801                 if (res < 0)
2802                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2803
2804                 /*
2805                  * Third attempt: ask 255 bytes, as we did earlier.
2806                  */
2807                 if (res < 0)
2808                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2809                                                &data, NULL);
2810         }
2811
2812         if (res < 0) {
2813                 sd_first_printk(KERN_WARNING, sdkp,
2814                           "Test WP failed, assume Write Enabled\n");
2815         } else {
2816                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2817                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2818                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2819                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2820                                   sdkp->write_prot ? "on" : "off");
2821                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2822                 }
2823         }
2824 }
2825
2826 /*
2827  * sd_read_cache_type - called only from sd_revalidate_disk()
2828  * called with buffer of length SD_BUF_SIZE
2829  */
2830 static void
2831 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2832 {
2833         int len = 0, res;
2834         struct scsi_device *sdp = sdkp->device;
2835
2836         int dbd;
2837         int modepage;
2838         int first_len;
2839         struct scsi_mode_data data;
2840         struct scsi_sense_hdr sshdr;
2841         int old_wce = sdkp->WCE;
2842         int old_rcd = sdkp->RCD;
2843         int old_dpofua = sdkp->DPOFUA;
2844
2845
2846         if (sdkp->cache_override)
2847                 return;
2848
2849         first_len = 4;
2850         if (sdp->skip_ms_page_8) {
2851                 if (sdp->type == TYPE_RBC)
2852                         goto defaults;
2853                 else {
2854                         if (sdp->skip_ms_page_3f)
2855                                 goto defaults;
2856                         modepage = 0x3F;
2857                         if (sdp->use_192_bytes_for_3f)
2858                                 first_len = 192;
2859                         dbd = 0;
2860                 }
2861         } else if (sdp->type == TYPE_RBC) {
2862                 modepage = 6;
2863                 dbd = 8;
2864         } else {
2865                 modepage = 8;
2866                 dbd = 0;
2867         }
2868
2869         /* cautiously ask */
2870         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2871                         &data, &sshdr);
2872
2873         if (res < 0)
2874                 goto bad_sense;
2875
2876         if (!data.header_length) {
2877                 modepage = 6;
2878                 first_len = 0;
2879                 sd_first_printk(KERN_ERR, sdkp,
2880                                 "Missing header in MODE_SENSE response\n");
2881         }
2882
2883         /* that went OK, now ask for the proper length */
2884         len = data.length;
2885
2886         /*
2887          * We're only interested in the first three bytes, actually.
2888          * But the data cache page is defined for the first 20.
2889          */
2890         if (len < 3)
2891                 goto bad_sense;
2892         else if (len > SD_BUF_SIZE) {
2893                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2894                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2895                 len = SD_BUF_SIZE;
2896         }
2897         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2898                 len = 192;
2899
2900         /* Get the data */
2901         if (len > first_len)
2902                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2903                                 &data, &sshdr);
2904
2905         if (!res) {
2906                 int offset = data.header_length + data.block_descriptor_length;
2907
2908                 while (offset < len) {
2909                         u8 page_code = buffer[offset] & 0x3F;
2910                         u8 spf       = buffer[offset] & 0x40;
2911
2912                         if (page_code == 8 || page_code == 6) {
2913                                 /* We're interested only in the first 3 bytes.
2914                                  */
2915                                 if (len - offset <= 2) {
2916                                         sd_first_printk(KERN_ERR, sdkp,
2917                                                 "Incomplete mode parameter "
2918                                                         "data\n");
2919                                         goto defaults;
2920                                 } else {
2921                                         modepage = page_code;
2922                                         goto Page_found;
2923                                 }
2924                         } else {
2925                                 /* Go to the next page */
2926                                 if (spf && len - offset > 3)
2927                                         offset += 4 + (buffer[offset+2] << 8) +
2928                                                 buffer[offset+3];
2929                                 else if (!spf && len - offset > 1)
2930                                         offset += 2 + buffer[offset+1];
2931                                 else {
2932                                         sd_first_printk(KERN_ERR, sdkp,
2933                                                         "Incomplete mode "
2934                                                         "parameter data\n");
2935                                         goto defaults;
2936                                 }
2937                         }
2938                 }
2939
2940                 sd_first_printk(KERN_WARNING, sdkp,
2941                                 "No Caching mode page found\n");
2942                 goto defaults;
2943
2944         Page_found:
2945                 if (modepage == 8) {
2946                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2947                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2948                 } else {
2949                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2950                         sdkp->RCD = 0;
2951                 }
2952
2953                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2954                 if (sdp->broken_fua) {
2955                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2956                         sdkp->DPOFUA = 0;
2957                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2958                            !sdkp->device->use_16_for_rw) {
2959                         sd_first_printk(KERN_NOTICE, sdkp,
2960                                   "Uses READ/WRITE(6), disabling FUA\n");
2961                         sdkp->DPOFUA = 0;
2962                 }
2963
2964                 /* No cache flush allowed for write protected devices */
2965                 if (sdkp->WCE && sdkp->write_prot)
2966                         sdkp->WCE = 0;
2967
2968                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2969                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2970                         sd_printk(KERN_NOTICE, sdkp,
2971                                   "Write cache: %s, read cache: %s, %s\n",
2972                                   sdkp->WCE ? "enabled" : "disabled",
2973                                   sdkp->RCD ? "disabled" : "enabled",
2974                                   sdkp->DPOFUA ? "supports DPO and FUA"
2975                                   : "doesn't support DPO or FUA");
2976
2977                 return;
2978         }
2979
2980 bad_sense:
2981         if (res == -EIO && scsi_sense_valid(&sshdr) &&
2982             sshdr.sense_key == ILLEGAL_REQUEST &&
2983             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2984                 /* Invalid field in CDB */
2985                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2986         else
2987                 sd_first_printk(KERN_ERR, sdkp,
2988                                 "Asking for cache data failed\n");
2989
2990 defaults:
2991         if (sdp->wce_default_on) {
2992                 sd_first_printk(KERN_NOTICE, sdkp,
2993                                 "Assuming drive cache: write back\n");
2994                 sdkp->WCE = 1;
2995         } else {
2996                 sd_first_printk(KERN_WARNING, sdkp,
2997                                 "Assuming drive cache: write through\n");
2998                 sdkp->WCE = 0;
2999         }
3000         sdkp->RCD = 0;
3001         sdkp->DPOFUA = 0;
3002 }
3003
3004 /*
3005  * The ATO bit indicates whether the DIF application tag is available
3006  * for use by the operating system.
3007  */
3008 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3009 {
3010         int res, offset;
3011         struct scsi_device *sdp = sdkp->device;
3012         struct scsi_mode_data data;
3013         struct scsi_sense_hdr sshdr;
3014
3015         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3016                 return;
3017
3018         if (sdkp->protection_type == 0)
3019                 return;
3020
3021         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3022                               sdkp->max_retries, &data, &sshdr);
3023
3024         if (res < 0 || !data.header_length ||
3025             data.length < 6) {
3026                 sd_first_printk(KERN_WARNING, sdkp,
3027                           "getting Control mode page failed, assume no ATO\n");
3028
3029                 if (res == -EIO && scsi_sense_valid(&sshdr))
3030                         sd_print_sense_hdr(sdkp, &sshdr);
3031
3032                 return;
3033         }
3034
3035         offset = data.header_length + data.block_descriptor_length;
3036
3037         if ((buffer[offset] & 0x3f) != 0x0a) {
3038                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3039                 return;
3040         }
3041
3042         if ((buffer[offset + 5] & 0x80) == 0)
3043                 return;
3044
3045         sdkp->ATO = 1;
3046
3047         return;
3048 }
3049
3050 /**
3051  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3052  * @sdkp: disk to query
3053  */
3054 static void sd_read_block_limits(struct scsi_disk *sdkp)
3055 {
3056         struct scsi_vpd *vpd;
3057
3058         rcu_read_lock();
3059
3060         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3061         if (!vpd || vpd->len < 16)
3062                 goto out;
3063
3064         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3065         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3066         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3067
3068         if (vpd->len >= 64) {
3069                 unsigned int lba_count, desc_count;
3070
3071                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3072
3073                 if (!sdkp->lbpme)
3074                         goto out;
3075
3076                 lba_count = get_unaligned_be32(&vpd->data[20]);
3077                 desc_count = get_unaligned_be32(&vpd->data[24]);
3078
3079                 if (lba_count && desc_count)
3080                         sdkp->max_unmap_blocks = lba_count;
3081
3082                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3083
3084                 if (vpd->data[32] & 0x80)
3085                         sdkp->unmap_alignment =
3086                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3087
3088                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3089
3090                         if (sdkp->max_unmap_blocks)
3091                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3092                         else
3093                                 sd_config_discard(sdkp, SD_LBP_WS16);
3094
3095                 } else {        /* LBP VPD page tells us what to use */
3096                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3097                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3098                         else if (sdkp->lbpws)
3099                                 sd_config_discard(sdkp, SD_LBP_WS16);
3100                         else if (sdkp->lbpws10)
3101                                 sd_config_discard(sdkp, SD_LBP_WS10);
3102                         else
3103                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3104                 }
3105         }
3106
3107  out:
3108         rcu_read_unlock();
3109 }
3110
3111 /**
3112  * sd_read_block_characteristics - Query block dev. characteristics
3113  * @sdkp: disk to query
3114  */
3115 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3116 {
3117         struct request_queue *q = sdkp->disk->queue;
3118         struct scsi_vpd *vpd;
3119         u16 rot;
3120
3121         rcu_read_lock();
3122         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3123
3124         if (!vpd || vpd->len < 8) {
3125                 rcu_read_unlock();
3126                 return;
3127         }
3128
3129         rot = get_unaligned_be16(&vpd->data[4]);
3130         sdkp->zoned = (vpd->data[8] >> 4) & 3;
3131         rcu_read_unlock();
3132
3133         if (rot == 1) {
3134                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3135                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3136         }
3137
3138
3139 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3140         if (sdkp->device->type == TYPE_ZBC) {
3141                 /*
3142                  * Host-managed.
3143                  */
3144                 disk_set_zoned(sdkp->disk);
3145
3146                 /*
3147                  * Per ZBC and ZAC specifications, writes in sequential write
3148                  * required zones of host-managed devices must be aligned to
3149                  * the device physical block size.
3150                  */
3151                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3152         } else {
3153                 /*
3154                  * Host-aware devices are treated as conventional.
3155                  */
3156                 WARN_ON_ONCE(blk_queue_is_zoned(q));
3157         }
3158 #endif /* CONFIG_BLK_DEV_ZONED */
3159
3160         if (!sdkp->first_scan)
3161                 return;
3162
3163         if (blk_queue_is_zoned(q))
3164                 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3165         else if (sdkp->zoned == 1)
3166                 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3167         else if (sdkp->zoned == 2)
3168                 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3169 }
3170
3171 /**
3172  * sd_read_block_provisioning - Query provisioning VPD page
3173  * @sdkp: disk to query
3174  */
3175 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3176 {
3177         struct scsi_vpd *vpd;
3178
3179         if (sdkp->lbpme == 0)
3180                 return;
3181
3182         rcu_read_lock();
3183         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3184
3185         if (!vpd || vpd->len < 8) {
3186                 rcu_read_unlock();
3187                 return;
3188         }
3189
3190         sdkp->lbpvpd    = 1;
3191         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3192         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3193         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3194         rcu_read_unlock();
3195 }
3196
3197 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3198 {
3199         struct scsi_device *sdev = sdkp->device;
3200
3201         if (sdev->host->no_write_same) {
3202                 sdev->no_write_same = 1;
3203
3204                 return;
3205         }
3206
3207         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3208                 struct scsi_vpd *vpd;
3209
3210                 sdev->no_report_opcodes = 1;
3211
3212                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3213                  * CODES is unsupported and the device has an ATA
3214                  * Information VPD page (SAT).
3215                  */
3216                 rcu_read_lock();
3217                 vpd = rcu_dereference(sdev->vpd_pg89);
3218                 if (vpd)
3219                         sdev->no_write_same = 1;
3220                 rcu_read_unlock();
3221         }
3222
3223         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3224                 sdkp->ws16 = 1;
3225
3226         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3227                 sdkp->ws10 = 1;
3228 }
3229
3230 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3231 {
3232         struct scsi_device *sdev = sdkp->device;
3233
3234         if (!sdev->security_supported)
3235                 return;
3236
3237         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3239             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3240                         SECURITY_PROTOCOL_OUT, 0) == 1)
3241                 sdkp->security = 1;
3242 }
3243
3244 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3245 {
3246         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3247 }
3248
3249 /**
3250  * sd_read_cpr - Query concurrent positioning ranges
3251  * @sdkp:       disk to query
3252  */
3253 static void sd_read_cpr(struct scsi_disk *sdkp)
3254 {
3255         struct blk_independent_access_ranges *iars = NULL;
3256         unsigned char *buffer = NULL;
3257         unsigned int nr_cpr = 0;
3258         int i, vpd_len, buf_len = SD_BUF_SIZE;
3259         u8 *desc;
3260
3261         /*
3262          * We need to have the capacity set first for the block layer to be
3263          * able to check the ranges.
3264          */
3265         if (sdkp->first_scan)
3266                 return;
3267
3268         if (!sdkp->capacity)
3269                 goto out;
3270
3271         /*
3272          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3273          * leading to a maximum page size of 64 + 256*32 bytes.
3274          */
3275         buf_len = 64 + 256*32;
3276         buffer = kmalloc(buf_len, GFP_KERNEL);
3277         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3278                 goto out;
3279
3280         /* We must have at least a 64B header and one 32B range descriptor */
3281         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3282         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3283                 sd_printk(KERN_ERR, sdkp,
3284                           "Invalid Concurrent Positioning Ranges VPD page\n");
3285                 goto out;
3286         }
3287
3288         nr_cpr = (vpd_len - 64) / 32;
3289         if (nr_cpr == 1) {
3290                 nr_cpr = 0;
3291                 goto out;
3292         }
3293
3294         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3295         if (!iars) {
3296                 nr_cpr = 0;
3297                 goto out;
3298         }
3299
3300         desc = &buffer[64];
3301         for (i = 0; i < nr_cpr; i++, desc += 32) {
3302                 if (desc[0] != i) {
3303                         sd_printk(KERN_ERR, sdkp,
3304                                 "Invalid Concurrent Positioning Range number\n");
3305                         nr_cpr = 0;
3306                         break;
3307                 }
3308
3309                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3310                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3311         }
3312
3313 out:
3314         disk_set_independent_access_ranges(sdkp->disk, iars);
3315         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3316                 sd_printk(KERN_NOTICE, sdkp,
3317                           "%u concurrent positioning ranges\n", nr_cpr);
3318                 sdkp->nr_actuators = nr_cpr;
3319         }
3320
3321         kfree(buffer);
3322 }
3323
3324 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3325 {
3326         struct scsi_device *sdp = sdkp->device;
3327         unsigned int min_xfer_bytes =
3328                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3329
3330         if (sdkp->min_xfer_blocks == 0)
3331                 return false;
3332
3333         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3334                 sd_first_printk(KERN_WARNING, sdkp,
3335                                 "Preferred minimum I/O size %u bytes not a " \
3336                                 "multiple of physical block size (%u bytes)\n",
3337                                 min_xfer_bytes, sdkp->physical_block_size);
3338                 sdkp->min_xfer_blocks = 0;
3339                 return false;
3340         }
3341
3342         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3343                         min_xfer_bytes);
3344         return true;
3345 }
3346
3347 /*
3348  * Determine the device's preferred I/O size for reads and writes
3349  * unless the reported value is unreasonably small, large, not a
3350  * multiple of the physical block size, or simply garbage.
3351  */
3352 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3353                                       unsigned int dev_max)
3354 {
3355         struct scsi_device *sdp = sdkp->device;
3356         unsigned int opt_xfer_bytes =
3357                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3358         unsigned int min_xfer_bytes =
3359                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3360
3361         if (sdkp->opt_xfer_blocks == 0)
3362                 return false;
3363
3364         if (sdkp->opt_xfer_blocks > dev_max) {
3365                 sd_first_printk(KERN_WARNING, sdkp,
3366                                 "Optimal transfer size %u logical blocks " \
3367                                 "> dev_max (%u logical blocks)\n",
3368                                 sdkp->opt_xfer_blocks, dev_max);
3369                 return false;
3370         }
3371
3372         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3373                 sd_first_printk(KERN_WARNING, sdkp,
3374                                 "Optimal transfer size %u logical blocks " \
3375                                 "> sd driver limit (%u logical blocks)\n",
3376                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3377                 return false;
3378         }
3379
3380         if (opt_xfer_bytes < PAGE_SIZE) {
3381                 sd_first_printk(KERN_WARNING, sdkp,
3382                                 "Optimal transfer size %u bytes < " \
3383                                 "PAGE_SIZE (%u bytes)\n",
3384                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3385                 return false;
3386         }
3387
3388         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3389                 sd_first_printk(KERN_WARNING, sdkp,
3390                                 "Optimal transfer size %u bytes not a " \
3391                                 "multiple of preferred minimum block " \
3392                                 "size (%u bytes)\n",
3393                                 opt_xfer_bytes, min_xfer_bytes);
3394                 return false;
3395         }
3396
3397         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3398                 sd_first_printk(KERN_WARNING, sdkp,
3399                                 "Optimal transfer size %u bytes not a " \
3400                                 "multiple of physical block size (%u bytes)\n",
3401                                 opt_xfer_bytes, sdkp->physical_block_size);
3402                 return false;
3403         }
3404
3405         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3406                         opt_xfer_bytes);
3407         return true;
3408 }
3409
3410 static void sd_read_block_zero(struct scsi_disk *sdkp)
3411 {
3412         unsigned int buf_len = sdkp->device->sector_size;
3413         char *buffer, cmd[10] = { };
3414
3415         buffer = kmalloc(buf_len, GFP_KERNEL);
3416         if (!buffer)
3417                 return;
3418
3419         cmd[0] = READ_10;
3420         put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3421         put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3422
3423         scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3424                          SD_TIMEOUT, sdkp->max_retries, NULL);
3425         kfree(buffer);
3426 }
3427
3428 /**
3429  *      sd_revalidate_disk - called the first time a new disk is seen,
3430  *      performs disk spin up, read_capacity, etc.
3431  *      @disk: struct gendisk we care about
3432  **/
3433 static int sd_revalidate_disk(struct gendisk *disk)
3434 {
3435         struct scsi_disk *sdkp = scsi_disk(disk);
3436         struct scsi_device *sdp = sdkp->device;
3437         struct request_queue *q = sdkp->disk->queue;
3438         sector_t old_capacity = sdkp->capacity;
3439         unsigned char *buffer;
3440         unsigned int dev_max, rw_max;
3441
3442         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3443                                       "sd_revalidate_disk\n"));
3444
3445         /*
3446          * If the device is offline, don't try and read capacity or any
3447          * of the other niceties.
3448          */
3449         if (!scsi_device_online(sdp))
3450                 goto out;
3451
3452         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3453         if (!buffer) {
3454                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3455                           "allocation failure.\n");
3456                 goto out;
3457         }
3458
3459         sd_spinup_disk(sdkp);
3460
3461         /*
3462          * Without media there is no reason to ask; moreover, some devices
3463          * react badly if we do.
3464          */
3465         if (sdkp->media_present) {
3466                 sd_read_capacity(sdkp, buffer);
3467                 /*
3468                  * Some USB/UAS devices return generic values for mode pages
3469                  * until the media has been accessed. Trigger a READ operation
3470                  * to force the device to populate mode pages.
3471                  */
3472                 if (sdp->read_before_ms)
3473                         sd_read_block_zero(sdkp);
3474                 /*
3475                  * set the default to rotational.  All non-rotational devices
3476                  * support the block characteristics VPD page, which will
3477                  * cause this to be updated correctly and any device which
3478                  * doesn't support it should be treated as rotational.
3479                  */
3480                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3481                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3482
3483                 if (scsi_device_supports_vpd(sdp)) {
3484                         sd_read_block_provisioning(sdkp);
3485                         sd_read_block_limits(sdkp);
3486                         sd_read_block_characteristics(sdkp);
3487                         sd_zbc_read_zones(sdkp, buffer);
3488                         sd_read_cpr(sdkp);
3489                 }
3490
3491                 sd_print_capacity(sdkp, old_capacity);
3492
3493                 sd_read_write_protect_flag(sdkp, buffer);
3494                 sd_read_cache_type(sdkp, buffer);
3495                 sd_read_app_tag_own(sdkp, buffer);
3496                 sd_read_write_same(sdkp, buffer);
3497                 sd_read_security(sdkp, buffer);
3498                 sd_config_protection(sdkp);
3499         }
3500
3501         /*
3502          * We now have all cache related info, determine how we deal
3503          * with flush requests.
3504          */
3505         sd_set_flush_flag(sdkp);
3506
3507         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3508         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3509
3510         /* Some devices report a maximum block count for READ/WRITE requests. */
3511         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3512         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3513
3514         if (sd_validate_min_xfer_size(sdkp))
3515                 blk_queue_io_min(sdkp->disk->queue,
3516                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3517         else
3518                 blk_queue_io_min(sdkp->disk->queue, 0);
3519
3520         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3521                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3522                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3523         } else {
3524                 q->limits.io_opt = 0;
3525                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3526                                       (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3527         }
3528
3529         /*
3530          * Limit default to SCSI host optimal sector limit if set. There may be
3531          * an impact on performance for when the size of a request exceeds this
3532          * host limit.
3533          */
3534         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3535
3536         /* Do not exceed controller limit */
3537         rw_max = min(rw_max, queue_max_hw_sectors(q));
3538
3539         /*
3540          * Only update max_sectors if previously unset or if the current value
3541          * exceeds the capabilities of the hardware.
3542          */
3543         if (sdkp->first_scan ||
3544             q->limits.max_sectors > q->limits.max_dev_sectors ||
3545             q->limits.max_sectors > q->limits.max_hw_sectors)
3546                 q->limits.max_sectors = rw_max;
3547
3548         sdkp->first_scan = 0;
3549
3550         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3551         sd_config_write_same(sdkp);
3552         kfree(buffer);
3553
3554         /*
3555          * For a zoned drive, revalidating the zones can be done only once
3556          * the gendisk capacity is set. So if this fails, set back the gendisk
3557          * capacity to 0.
3558          */
3559         if (sd_zbc_revalidate_zones(sdkp))
3560                 set_capacity_and_notify(disk, 0);
3561
3562  out:
3563         return 0;
3564 }
3565
3566 /**
3567  *      sd_unlock_native_capacity - unlock native capacity
3568  *      @disk: struct gendisk to set capacity for
3569  *
3570  *      Block layer calls this function if it detects that partitions
3571  *      on @disk reach beyond the end of the device.  If the SCSI host
3572  *      implements ->unlock_native_capacity() method, it's invoked to
3573  *      give it a chance to adjust the device capacity.
3574  *
3575  *      CONTEXT:
3576  *      Defined by block layer.  Might sleep.
3577  */
3578 static void sd_unlock_native_capacity(struct gendisk *disk)
3579 {
3580         struct scsi_device *sdev = scsi_disk(disk)->device;
3581
3582         if (sdev->host->hostt->unlock_native_capacity)
3583                 sdev->host->hostt->unlock_native_capacity(sdev);
3584 }
3585
3586 /**
3587  *      sd_format_disk_name - format disk name
3588  *      @prefix: name prefix - ie. "sd" for SCSI disks
3589  *      @index: index of the disk to format name for
3590  *      @buf: output buffer
3591  *      @buflen: length of the output buffer
3592  *
3593  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3594  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3595  *      which is followed by sdaaa.
3596  *
3597  *      This is basically 26 base counting with one extra 'nil' entry
3598  *      at the beginning from the second digit on and can be
3599  *      determined using similar method as 26 base conversion with the
3600  *      index shifted -1 after each digit is computed.
3601  *
3602  *      CONTEXT:
3603  *      Don't care.
3604  *
3605  *      RETURNS:
3606  *      0 on success, -errno on failure.
3607  */
3608 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3609 {
3610         const int base = 'z' - 'a' + 1;
3611         char *begin = buf + strlen(prefix);
3612         char *end = buf + buflen;
3613         char *p;
3614         int unit;
3615
3616         p = end - 1;
3617         *p = '\0';
3618         unit = base;
3619         do {
3620                 if (p == begin)
3621                         return -EINVAL;
3622                 *--p = 'a' + (index % unit);
3623                 index = (index / unit) - 1;
3624         } while (index >= 0);
3625
3626         memmove(begin, p, end - p);
3627         memcpy(buf, prefix, strlen(prefix));
3628
3629         return 0;
3630 }
3631
3632 /**
3633  *      sd_probe - called during driver initialization and whenever a
3634  *      new scsi device is attached to the system. It is called once
3635  *      for each scsi device (not just disks) present.
3636  *      @dev: pointer to device object
3637  *
3638  *      Returns 0 if successful (or not interested in this scsi device 
3639  *      (e.g. scanner)); 1 when there is an error.
3640  *
3641  *      Note: this function is invoked from the scsi mid-level.
3642  *      This function sets up the mapping between a given 
3643  *      <host,channel,id,lun> (found in sdp) and new device name 
3644  *      (e.g. /dev/sda). More precisely it is the block device major 
3645  *      and minor number that is chosen here.
3646  *
3647  *      Assume sd_probe is not re-entrant (for time being)
3648  *      Also think about sd_probe() and sd_remove() running coincidentally.
3649  **/
3650 static int sd_probe(struct device *dev)
3651 {
3652         struct scsi_device *sdp = to_scsi_device(dev);
3653         struct scsi_disk *sdkp;
3654         struct gendisk *gd;
3655         int index;
3656         int error;
3657
3658         scsi_autopm_get_device(sdp);
3659         error = -ENODEV;
3660         if (sdp->type != TYPE_DISK &&
3661             sdp->type != TYPE_ZBC &&
3662             sdp->type != TYPE_MOD &&
3663             sdp->type != TYPE_RBC)
3664                 goto out;
3665
3666         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3667                 sdev_printk(KERN_WARNING, sdp,
3668                             "Unsupported ZBC host-managed device.\n");
3669                 goto out;
3670         }
3671
3672         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3673                                         "sd_probe\n"));
3674
3675         error = -ENOMEM;
3676         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3677         if (!sdkp)
3678                 goto out;
3679
3680         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3681                                          &sd_bio_compl_lkclass);
3682         if (!gd)
3683                 goto out_free;
3684
3685         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3686         if (index < 0) {
3687                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3688                 goto out_put;
3689         }
3690
3691         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3692         if (error) {
3693                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3694                 goto out_free_index;
3695         }
3696
3697         sdkp->device = sdp;
3698         sdkp->disk = gd;
3699         sdkp->index = index;
3700         sdkp->max_retries = SD_MAX_RETRIES;
3701         atomic_set(&sdkp->openers, 0);
3702         atomic_set(&sdkp->device->ioerr_cnt, 0);
3703
3704         if (!sdp->request_queue->rq_timeout) {
3705                 if (sdp->type != TYPE_MOD)
3706                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3707                 else
3708                         blk_queue_rq_timeout(sdp->request_queue,
3709                                              SD_MOD_TIMEOUT);
3710         }
3711
3712         device_initialize(&sdkp->disk_dev);
3713         sdkp->disk_dev.parent = get_device(dev);
3714         sdkp->disk_dev.class = &sd_disk_class;
3715         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3716
3717         error = device_add(&sdkp->disk_dev);
3718         if (error) {
3719                 put_device(&sdkp->disk_dev);
3720                 goto out;
3721         }
3722
3723         dev_set_drvdata(dev, sdkp);
3724
3725         gd->major = sd_major((index & 0xf0) >> 4);
3726         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3727         gd->minors = SD_MINORS;
3728
3729         gd->fops = &sd_fops;
3730         gd->private_data = sdkp;
3731
3732         /* defaults, until the device tells us otherwise */
3733         sdp->sector_size = 512;
3734         sdkp->capacity = 0;
3735         sdkp->media_present = 1;
3736         sdkp->write_prot = 0;
3737         sdkp->cache_override = 0;
3738         sdkp->WCE = 0;
3739         sdkp->RCD = 0;
3740         sdkp->ATO = 0;
3741         sdkp->first_scan = 1;
3742         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3743
3744         sd_revalidate_disk(gd);
3745
3746         if (sdp->removable) {
3747                 gd->flags |= GENHD_FL_REMOVABLE;
3748                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3749                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3750         }
3751
3752         blk_pm_runtime_init(sdp->request_queue, dev);
3753         if (sdp->rpm_autosuspend) {
3754                 pm_runtime_set_autosuspend_delay(dev,
3755                         sdp->host->hostt->rpm_autosuspend_delay);
3756         }
3757
3758         error = device_add_disk(dev, gd, NULL);
3759         if (error) {
3760                 put_device(&sdkp->disk_dev);
3761                 put_disk(gd);
3762                 goto out;
3763         }
3764
3765         if (sdkp->security) {
3766                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3767                 if (sdkp->opal_dev)
3768                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3769         }
3770
3771         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3772                   sdp->removable ? "removable " : "");
3773         scsi_autopm_put_device(sdp);
3774
3775         return 0;
3776
3777  out_free_index:
3778         ida_free(&sd_index_ida, index);
3779  out_put:
3780         put_disk(gd);
3781  out_free:
3782         kfree(sdkp);
3783  out:
3784         scsi_autopm_put_device(sdp);
3785         return error;
3786 }
3787
3788 /**
3789  *      sd_remove - called whenever a scsi disk (previously recognized by
3790  *      sd_probe) is detached from the system. It is called (potentially
3791  *      multiple times) during sd module unload.
3792  *      @dev: pointer to device object
3793  *
3794  *      Note: this function is invoked from the scsi mid-level.
3795  *      This function potentially frees up a device name (e.g. /dev/sdc)
3796  *      that could be re-used by a subsequent sd_probe().
3797  *      This function is not called when the built-in sd driver is "exit-ed".
3798  **/
3799 static int sd_remove(struct device *dev)
3800 {
3801         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3802
3803         scsi_autopm_get_device(sdkp->device);
3804
3805         device_del(&sdkp->disk_dev);
3806         del_gendisk(sdkp->disk);
3807         if (!sdkp->suspended)
3808                 sd_shutdown(dev);
3809
3810         put_disk(sdkp->disk);
3811         return 0;
3812 }
3813
3814 static void scsi_disk_release(struct device *dev)
3815 {
3816         struct scsi_disk *sdkp = to_scsi_disk(dev);
3817
3818         ida_free(&sd_index_ida, sdkp->index);
3819         sd_zbc_free_zone_info(sdkp);
3820         put_device(&sdkp->device->sdev_gendev);
3821         free_opal_dev(sdkp->opal_dev);
3822
3823         kfree(sdkp);
3824 }
3825
3826 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3827 {
3828         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3829         struct scsi_sense_hdr sshdr;
3830         const struct scsi_exec_args exec_args = {
3831                 .sshdr = &sshdr,
3832                 .req_flags = BLK_MQ_REQ_PM,
3833         };
3834         struct scsi_device *sdp = sdkp->device;
3835         int res;
3836
3837         if (start)
3838                 cmd[4] |= 1;    /* START */
3839
3840         if (sdp->start_stop_pwr_cond)
3841                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3842
3843         if (!scsi_device_online(sdp))
3844                 return -ENODEV;
3845
3846         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3847                                sdkp->max_retries, &exec_args);
3848         if (res) {
3849                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3850                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3851                         sd_print_sense_hdr(sdkp, &sshdr);
3852                         /* 0x3a is medium not present */
3853                         if (sshdr.asc == 0x3a)
3854                                 res = 0;
3855                 }
3856         }
3857
3858         /* SCSI error codes must not go to the generic layer */
3859         if (res)
3860                 return -EIO;
3861
3862         return 0;
3863 }
3864
3865 /*
3866  * Send a SYNCHRONIZE CACHE instruction down to the device through
3867  * the normal SCSI command structure.  Wait for the command to
3868  * complete.
3869  */
3870 static void sd_shutdown(struct device *dev)
3871 {
3872         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3873
3874         if (!sdkp)
3875                 return;         /* this can happen */
3876
3877         if (pm_runtime_suspended(dev))
3878                 return;
3879
3880         if (sdkp->WCE && sdkp->media_present) {
3881                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3882                 sd_sync_cache(sdkp);
3883         }
3884
3885         if ((system_state != SYSTEM_RESTART &&
3886              sdkp->device->manage_system_start_stop) ||
3887             (system_state == SYSTEM_POWER_OFF &&
3888              sdkp->device->manage_shutdown)) {
3889                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3890                 sd_start_stop_device(sdkp, 0);
3891         }
3892 }
3893
3894 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3895 {
3896         return (sdev->manage_system_start_stop && !runtime) ||
3897                 (sdev->manage_runtime_start_stop && runtime);
3898 }
3899
3900 static int sd_suspend_common(struct device *dev, bool runtime)
3901 {
3902         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3903         int ret = 0;
3904
3905         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3906                 return 0;
3907
3908         if (sdkp->WCE && sdkp->media_present) {
3909                 if (!sdkp->device->silence_suspend)
3910                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3911                 ret = sd_sync_cache(sdkp);
3912                 /* ignore OFFLINE device */
3913                 if (ret == -ENODEV)
3914                         return 0;
3915
3916                 if (ret)
3917                         return ret;
3918         }
3919
3920         if (sd_do_start_stop(sdkp->device, runtime)) {
3921                 if (!sdkp->device->silence_suspend)
3922                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3923                 /* an error is not worth aborting a system sleep */
3924                 ret = sd_start_stop_device(sdkp, 0);
3925                 if (!runtime)
3926                         ret = 0;
3927         }
3928
3929         if (!ret)
3930                 sdkp->suspended = true;
3931
3932         return ret;
3933 }
3934
3935 static int sd_suspend_system(struct device *dev)
3936 {
3937         if (pm_runtime_suspended(dev))
3938                 return 0;
3939
3940         return sd_suspend_common(dev, false);
3941 }
3942
3943 static int sd_suspend_runtime(struct device *dev)
3944 {
3945         return sd_suspend_common(dev, true);
3946 }
3947
3948 static int sd_resume(struct device *dev, bool runtime)
3949 {
3950         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951         int ret;
3952
3953         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3954                 return 0;
3955
3956         if (!sd_do_start_stop(sdkp->device, runtime)) {
3957                 sdkp->suspended = false;
3958                 return 0;
3959         }
3960
3961         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3962         ret = sd_start_stop_device(sdkp, 1);
3963         if (!ret) {
3964                 opal_unlock_from_suspend(sdkp->opal_dev);
3965                 sdkp->suspended = false;
3966         }
3967
3968         return ret;
3969 }
3970
3971 static int sd_resume_system(struct device *dev)
3972 {
3973         if (pm_runtime_suspended(dev)) {
3974                 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3975                 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3976
3977                 if (sdp && sdp->force_runtime_start_on_system_start)
3978                         pm_request_resume(dev);
3979
3980                 return 0;
3981         }
3982
3983         return sd_resume(dev, false);
3984 }
3985
3986 static int sd_resume_runtime(struct device *dev)
3987 {
3988         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3989         struct scsi_device *sdp;
3990
3991         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3992                 return 0;
3993
3994         sdp = sdkp->device;
3995
3996         if (sdp->ignore_media_change) {
3997                 /* clear the device's sense data */
3998                 static const u8 cmd[10] = { REQUEST_SENSE };
3999                 const struct scsi_exec_args exec_args = {
4000                         .req_flags = BLK_MQ_REQ_PM,
4001                 };
4002
4003                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4004                                      sdp->request_queue->rq_timeout, 1,
4005                                      &exec_args))
4006                         sd_printk(KERN_NOTICE, sdkp,
4007                                   "Failed to clear sense data\n");
4008         }
4009
4010         return sd_resume(dev, true);
4011 }
4012
4013 static const struct dev_pm_ops sd_pm_ops = {
4014         .suspend                = sd_suspend_system,
4015         .resume                 = sd_resume_system,
4016         .poweroff               = sd_suspend_system,
4017         .restore                = sd_resume_system,
4018         .runtime_suspend        = sd_suspend_runtime,
4019         .runtime_resume         = sd_resume_runtime,
4020 };
4021
4022 static struct scsi_driver sd_template = {
4023         .gendrv = {
4024                 .name           = "sd",
4025                 .owner          = THIS_MODULE,
4026                 .probe          = sd_probe,
4027                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
4028                 .remove         = sd_remove,
4029                 .shutdown       = sd_shutdown,
4030                 .pm             = &sd_pm_ops,
4031         },
4032         .rescan                 = sd_rescan,
4033         .init_command           = sd_init_command,
4034         .uninit_command         = sd_uninit_command,
4035         .done                   = sd_done,
4036         .eh_action              = sd_eh_action,
4037         .eh_reset               = sd_eh_reset,
4038 };
4039
4040 /**
4041  *      init_sd - entry point for this driver (both when built in or when
4042  *      a module).
4043  *
4044  *      Note: this function registers this driver with the scsi mid-level.
4045  **/
4046 static int __init init_sd(void)
4047 {
4048         int majors = 0, i, err;
4049
4050         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4051
4052         for (i = 0; i < SD_MAJORS; i++) {
4053                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4054                         continue;
4055                 majors++;
4056         }
4057
4058         if (!majors)
4059                 return -ENODEV;
4060
4061         err = class_register(&sd_disk_class);
4062         if (err)
4063                 goto err_out;
4064
4065         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4066         if (!sd_page_pool) {
4067                 printk(KERN_ERR "sd: can't init discard page pool\n");
4068                 err = -ENOMEM;
4069                 goto err_out_class;
4070         }
4071
4072         err = scsi_register_driver(&sd_template.gendrv);
4073         if (err)
4074                 goto err_out_driver;
4075
4076         return 0;
4077
4078 err_out_driver:
4079         mempool_destroy(sd_page_pool);
4080 err_out_class:
4081         class_unregister(&sd_disk_class);
4082 err_out:
4083         for (i = 0; i < SD_MAJORS; i++)
4084                 unregister_blkdev(sd_major(i), "sd");
4085         return err;
4086 }
4087
4088 /**
4089  *      exit_sd - exit point for this driver (when it is a module).
4090  *
4091  *      Note: this function unregisters this driver from the scsi mid-level.
4092  **/
4093 static void __exit exit_sd(void)
4094 {
4095         int i;
4096
4097         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4098
4099         scsi_unregister_driver(&sd_template.gendrv);
4100         mempool_destroy(sd_page_pool);
4101
4102         class_unregister(&sd_disk_class);
4103
4104         for (i = 0; i < SD_MAJORS; i++)
4105                 unregister_blkdev(sd_major(i), "sd");
4106 }
4107
4108 module_init(init_sd);
4109 module_exit(exit_sd);
4110
4111 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4112 {
4113         scsi_print_sense_hdr(sdkp->device,
4114                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4115 }
4116
4117 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4118 {
4119         const char *hb_string = scsi_hostbyte_string(result);
4120
4121         if (hb_string)
4122                 sd_printk(KERN_INFO, sdkp,
4123                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4124                           hb_string ? hb_string : "invalid",
4125                           "DRIVER_OK");
4126         else
4127                 sd_printk(KERN_INFO, sdkp,
4128                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4129                           msg, host_byte(result), "DRIVER_OK");
4130 }