Merge tag 'for-linus-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len, ret;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                                sdkp->max_retries, &data, &sshdr);
195         if (ret) {
196                 if (ret > 0 && scsi_sense_valid(&sshdr))
197                         sd_print_sense_hdr(sdkp, &sshdr);
198                 return -EINVAL;
199         }
200         sd_revalidate_disk(sdkp->disk);
201         return count;
202 }
203
204 static ssize_t
205 manage_start_stop_show(struct device *dev,
206                        struct device_attribute *attr, char *buf)
207 {
208         struct scsi_disk *sdkp = to_scsi_disk(dev);
209         struct scsi_device *sdp = sdkp->device;
210
211         return sysfs_emit(buf, "%u\n",
212                           sdp->manage_system_start_stop &&
213                           sdp->manage_runtime_start_stop &&
214                           sdp->manage_shutdown);
215 }
216 static DEVICE_ATTR_RO(manage_start_stop);
217
218 static ssize_t
219 manage_system_start_stop_show(struct device *dev,
220                               struct device_attribute *attr, char *buf)
221 {
222         struct scsi_disk *sdkp = to_scsi_disk(dev);
223         struct scsi_device *sdp = sdkp->device;
224
225         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
226 }
227
228 static ssize_t
229 manage_system_start_stop_store(struct device *dev,
230                                struct device_attribute *attr,
231                                const char *buf, size_t count)
232 {
233         struct scsi_disk *sdkp = to_scsi_disk(dev);
234         struct scsi_device *sdp = sdkp->device;
235         bool v;
236
237         if (!capable(CAP_SYS_ADMIN))
238                 return -EACCES;
239
240         if (kstrtobool(buf, &v))
241                 return -EINVAL;
242
243         sdp->manage_system_start_stop = v;
244
245         return count;
246 }
247 static DEVICE_ATTR_RW(manage_system_start_stop);
248
249 static ssize_t
250 manage_runtime_start_stop_show(struct device *dev,
251                                struct device_attribute *attr, char *buf)
252 {
253         struct scsi_disk *sdkp = to_scsi_disk(dev);
254         struct scsi_device *sdp = sdkp->device;
255
256         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
257 }
258
259 static ssize_t
260 manage_runtime_start_stop_store(struct device *dev,
261                                 struct device_attribute *attr,
262                                 const char *buf, size_t count)
263 {
264         struct scsi_disk *sdkp = to_scsi_disk(dev);
265         struct scsi_device *sdp = sdkp->device;
266         bool v;
267
268         if (!capable(CAP_SYS_ADMIN))
269                 return -EACCES;
270
271         if (kstrtobool(buf, &v))
272                 return -EINVAL;
273
274         sdp->manage_runtime_start_stop = v;
275
276         return count;
277 }
278 static DEVICE_ATTR_RW(manage_runtime_start_stop);
279
280 static ssize_t manage_shutdown_show(struct device *dev,
281                                     struct device_attribute *attr, char *buf)
282 {
283         struct scsi_disk *sdkp = to_scsi_disk(dev);
284         struct scsi_device *sdp = sdkp->device;
285
286         return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
287 }
288
289 static ssize_t manage_shutdown_store(struct device *dev,
290                                      struct device_attribute *attr,
291                                      const char *buf, size_t count)
292 {
293         struct scsi_disk *sdkp = to_scsi_disk(dev);
294         struct scsi_device *sdp = sdkp->device;
295         bool v;
296
297         if (!capable(CAP_SYS_ADMIN))
298                 return -EACCES;
299
300         if (kstrtobool(buf, &v))
301                 return -EINVAL;
302
303         sdp->manage_shutdown = v;
304
305         return count;
306 }
307 static DEVICE_ATTR_RW(manage_shutdown);
308
309 static ssize_t
310 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312         struct scsi_disk *sdkp = to_scsi_disk(dev);
313
314         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
315 }
316
317 static ssize_t
318 allow_restart_store(struct device *dev, struct device_attribute *attr,
319                     const char *buf, size_t count)
320 {
321         bool v;
322         struct scsi_disk *sdkp = to_scsi_disk(dev);
323         struct scsi_device *sdp = sdkp->device;
324
325         if (!capable(CAP_SYS_ADMIN))
326                 return -EACCES;
327
328         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
329                 return -EINVAL;
330
331         if (kstrtobool(buf, &v))
332                 return -EINVAL;
333
334         sdp->allow_restart = v;
335
336         return count;
337 }
338 static DEVICE_ATTR_RW(allow_restart);
339
340 static ssize_t
341 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
342 {
343         struct scsi_disk *sdkp = to_scsi_disk(dev);
344         int ct = sdkp->RCD + 2*sdkp->WCE;
345
346         return sprintf(buf, "%s\n", sd_cache_types[ct]);
347 }
348 static DEVICE_ATTR_RW(cache_type);
349
350 static ssize_t
351 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353         struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355         return sprintf(buf, "%u\n", sdkp->DPOFUA);
356 }
357 static DEVICE_ATTR_RO(FUA);
358
359 static ssize_t
360 protection_type_show(struct device *dev, struct device_attribute *attr,
361                      char *buf)
362 {
363         struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365         return sprintf(buf, "%u\n", sdkp->protection_type);
366 }
367
368 static ssize_t
369 protection_type_store(struct device *dev, struct device_attribute *attr,
370                       const char *buf, size_t count)
371 {
372         struct scsi_disk *sdkp = to_scsi_disk(dev);
373         unsigned int val;
374         int err;
375
376         if (!capable(CAP_SYS_ADMIN))
377                 return -EACCES;
378
379         err = kstrtouint(buf, 10, &val);
380
381         if (err)
382                 return err;
383
384         if (val <= T10_PI_TYPE3_PROTECTION)
385                 sdkp->protection_type = val;
386
387         return count;
388 }
389 static DEVICE_ATTR_RW(protection_type);
390
391 static ssize_t
392 protection_mode_show(struct device *dev, struct device_attribute *attr,
393                      char *buf)
394 {
395         struct scsi_disk *sdkp = to_scsi_disk(dev);
396         struct scsi_device *sdp = sdkp->device;
397         unsigned int dif, dix;
398
399         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
400         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
401
402         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
403                 dif = 0;
404                 dix = 1;
405         }
406
407         if (!dif && !dix)
408                 return sprintf(buf, "none\n");
409
410         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
411 }
412 static DEVICE_ATTR_RO(protection_mode);
413
414 static ssize_t
415 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
416 {
417         struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419         return sprintf(buf, "%u\n", sdkp->ATO);
420 }
421 static DEVICE_ATTR_RO(app_tag_own);
422
423 static ssize_t
424 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
425                        char *buf)
426 {
427         struct scsi_disk *sdkp = to_scsi_disk(dev);
428
429         return sprintf(buf, "%u\n", sdkp->lbpme);
430 }
431 static DEVICE_ATTR_RO(thin_provisioning);
432
433 /* sysfs_match_string() requires dense arrays */
434 static const char *lbp_mode[] = {
435         [SD_LBP_FULL]           = "full",
436         [SD_LBP_UNMAP]          = "unmap",
437         [SD_LBP_WS16]           = "writesame_16",
438         [SD_LBP_WS10]           = "writesame_10",
439         [SD_LBP_ZERO]           = "writesame_zero",
440         [SD_LBP_DISABLE]        = "disabled",
441 };
442
443 static ssize_t
444 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
445                        char *buf)
446 {
447         struct scsi_disk *sdkp = to_scsi_disk(dev);
448
449         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
450 }
451
452 static ssize_t
453 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
454                         const char *buf, size_t count)
455 {
456         struct scsi_disk *sdkp = to_scsi_disk(dev);
457         struct scsi_device *sdp = sdkp->device;
458         int mode;
459
460         if (!capable(CAP_SYS_ADMIN))
461                 return -EACCES;
462
463         if (sd_is_zoned(sdkp)) {
464                 sd_config_discard(sdkp, SD_LBP_DISABLE);
465                 return count;
466         }
467
468         if (sdp->type != TYPE_DISK)
469                 return -EINVAL;
470
471         mode = sysfs_match_string(lbp_mode, buf);
472         if (mode < 0)
473                 return -EINVAL;
474
475         sd_config_discard(sdkp, mode);
476
477         return count;
478 }
479 static DEVICE_ATTR_RW(provisioning_mode);
480
481 /* sysfs_match_string() requires dense arrays */
482 static const char *zeroing_mode[] = {
483         [SD_ZERO_WRITE]         = "write",
484         [SD_ZERO_WS]            = "writesame",
485         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
486         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
487 };
488
489 static ssize_t
490 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
491                   char *buf)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
496 }
497
498 static ssize_t
499 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
500                    const char *buf, size_t count)
501 {
502         struct scsi_disk *sdkp = to_scsi_disk(dev);
503         int mode;
504
505         if (!capable(CAP_SYS_ADMIN))
506                 return -EACCES;
507
508         mode = sysfs_match_string(zeroing_mode, buf);
509         if (mode < 0)
510                 return -EINVAL;
511
512         sdkp->zeroing_mode = mode;
513
514         return count;
515 }
516 static DEVICE_ATTR_RW(zeroing_mode);
517
518 static ssize_t
519 max_medium_access_timeouts_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct scsi_disk *sdkp = to_scsi_disk(dev);
523
524         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
525 }
526
527 static ssize_t
528 max_medium_access_timeouts_store(struct device *dev,
529                                  struct device_attribute *attr, const char *buf,
530                                  size_t count)
531 {
532         struct scsi_disk *sdkp = to_scsi_disk(dev);
533         int err;
534
535         if (!capable(CAP_SYS_ADMIN))
536                 return -EACCES;
537
538         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
539
540         return err ? err : count;
541 }
542 static DEVICE_ATTR_RW(max_medium_access_timeouts);
543
544 static ssize_t
545 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
546                            char *buf)
547 {
548         struct scsi_disk *sdkp = to_scsi_disk(dev);
549
550         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
551 }
552
553 static ssize_t
554 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
555                             const char *buf, size_t count)
556 {
557         struct scsi_disk *sdkp = to_scsi_disk(dev);
558         struct scsi_device *sdp = sdkp->device;
559         unsigned long max;
560         int err;
561
562         if (!capable(CAP_SYS_ADMIN))
563                 return -EACCES;
564
565         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
566                 return -EINVAL;
567
568         err = kstrtoul(buf, 10, &max);
569
570         if (err)
571                 return err;
572
573         if (max == 0)
574                 sdp->no_write_same = 1;
575         else if (max <= SD_MAX_WS16_BLOCKS) {
576                 sdp->no_write_same = 0;
577                 sdkp->max_ws_blocks = max;
578         }
579
580         sd_config_write_same(sdkp);
581
582         return count;
583 }
584 static DEVICE_ATTR_RW(max_write_same_blocks);
585
586 static ssize_t
587 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
588 {
589         struct scsi_disk *sdkp = to_scsi_disk(dev);
590
591         if (sdkp->device->type == TYPE_ZBC)
592                 return sprintf(buf, "host-managed\n");
593         if (sdkp->zoned == 1)
594                 return sprintf(buf, "host-aware\n");
595         if (sdkp->zoned == 2)
596                 return sprintf(buf, "drive-managed\n");
597         return sprintf(buf, "none\n");
598 }
599 static DEVICE_ATTR_RO(zoned_cap);
600
601 static ssize_t
602 max_retries_store(struct device *dev, struct device_attribute *attr,
603                   const char *buf, size_t count)
604 {
605         struct scsi_disk *sdkp = to_scsi_disk(dev);
606         struct scsi_device *sdev = sdkp->device;
607         int retries, err;
608
609         err = kstrtoint(buf, 10, &retries);
610         if (err)
611                 return err;
612
613         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
614                 sdkp->max_retries = retries;
615                 return count;
616         }
617
618         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
619                     SD_MAX_RETRIES);
620         return -EINVAL;
621 }
622
623 static ssize_t
624 max_retries_show(struct device *dev, struct device_attribute *attr,
625                  char *buf)
626 {
627         struct scsi_disk *sdkp = to_scsi_disk(dev);
628
629         return sprintf(buf, "%d\n", sdkp->max_retries);
630 }
631
632 static DEVICE_ATTR_RW(max_retries);
633
634 static struct attribute *sd_disk_attrs[] = {
635         &dev_attr_cache_type.attr,
636         &dev_attr_FUA.attr,
637         &dev_attr_allow_restart.attr,
638         &dev_attr_manage_start_stop.attr,
639         &dev_attr_manage_system_start_stop.attr,
640         &dev_attr_manage_runtime_start_stop.attr,
641         &dev_attr_manage_shutdown.attr,
642         &dev_attr_protection_type.attr,
643         &dev_attr_protection_mode.attr,
644         &dev_attr_app_tag_own.attr,
645         &dev_attr_thin_provisioning.attr,
646         &dev_attr_provisioning_mode.attr,
647         &dev_attr_zeroing_mode.attr,
648         &dev_attr_max_write_same_blocks.attr,
649         &dev_attr_max_medium_access_timeouts.attr,
650         &dev_attr_zoned_cap.attr,
651         &dev_attr_max_retries.attr,
652         NULL,
653 };
654 ATTRIBUTE_GROUPS(sd_disk);
655
656 static struct class sd_disk_class = {
657         .name           = "scsi_disk",
658         .dev_release    = scsi_disk_release,
659         .dev_groups     = sd_disk_groups,
660 };
661
662 /*
663  * Don't request a new module, as that could deadlock in multipath
664  * environment.
665  */
666 static void sd_default_probe(dev_t devt)
667 {
668 }
669
670 /*
671  * Device no to disk mapping:
672  * 
673  *       major         disc2     disc  p1
674  *   |............|.............|....|....| <- dev_t
675  *    31        20 19          8 7  4 3  0
676  * 
677  * Inside a major, we have 16k disks, however mapped non-
678  * contiguously. The first 16 disks are for major0, the next
679  * ones with major1, ... Disk 256 is for major0 again, disk 272 
680  * for major1, ... 
681  * As we stay compatible with our numbering scheme, we can reuse 
682  * the well-know SCSI majors 8, 65--71, 136--143.
683  */
684 static int sd_major(int major_idx)
685 {
686         switch (major_idx) {
687         case 0:
688                 return SCSI_DISK0_MAJOR;
689         case 1 ... 7:
690                 return SCSI_DISK1_MAJOR + major_idx - 1;
691         case 8 ... 15:
692                 return SCSI_DISK8_MAJOR + major_idx - 8;
693         default:
694                 BUG();
695                 return 0;       /* shut up gcc */
696         }
697 }
698
699 #ifdef CONFIG_BLK_SED_OPAL
700 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
701                 size_t len, bool send)
702 {
703         struct scsi_disk *sdkp = data;
704         struct scsi_device *sdev = sdkp->device;
705         u8 cdb[12] = { 0, };
706         const struct scsi_exec_args exec_args = {
707                 .req_flags = BLK_MQ_REQ_PM,
708         };
709         int ret;
710
711         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
712         cdb[1] = secp;
713         put_unaligned_be16(spsp, &cdb[2]);
714         put_unaligned_be32(len, &cdb[6]);
715
716         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
717                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
718                                &exec_args);
719         return ret <= 0 ? ret : -EIO;
720 }
721 #endif /* CONFIG_BLK_SED_OPAL */
722
723 /*
724  * Look up the DIX operation based on whether the command is read or
725  * write and whether dix and dif are enabled.
726  */
727 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
728 {
729         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
730         static const unsigned int ops[] = {     /* wrt dix dif */
731                 SCSI_PROT_NORMAL,               /*  0   0   0  */
732                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
733                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
734                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
735                 SCSI_PROT_NORMAL,               /*  1   0   0  */
736                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
737                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
738                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
739         };
740
741         return ops[write << 2 | dix << 1 | dif];
742 }
743
744 /*
745  * Returns a mask of the protection flags that are valid for a given DIX
746  * operation.
747  */
748 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
749 {
750         static const unsigned int flag_mask[] = {
751                 [SCSI_PROT_NORMAL]              = 0,
752
753                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
754                                                   SCSI_PROT_GUARD_CHECK |
755                                                   SCSI_PROT_REF_CHECK |
756                                                   SCSI_PROT_REF_INCREMENT,
757
758                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
759                                                   SCSI_PROT_IP_CHECKSUM,
760
761                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
762                                                   SCSI_PROT_GUARD_CHECK |
763                                                   SCSI_PROT_REF_CHECK |
764                                                   SCSI_PROT_REF_INCREMENT |
765                                                   SCSI_PROT_IP_CHECKSUM,
766
767                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
768                                                   SCSI_PROT_REF_INCREMENT,
769
770                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
771                                                   SCSI_PROT_REF_CHECK |
772                                                   SCSI_PROT_REF_INCREMENT |
773                                                   SCSI_PROT_IP_CHECKSUM,
774
775                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
776                                                   SCSI_PROT_GUARD_CHECK |
777                                                   SCSI_PROT_REF_CHECK |
778                                                   SCSI_PROT_REF_INCREMENT |
779                                                   SCSI_PROT_IP_CHECKSUM,
780         };
781
782         return flag_mask[prot_op];
783 }
784
785 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
786                                            unsigned int dix, unsigned int dif)
787 {
788         struct request *rq = scsi_cmd_to_rq(scmd);
789         struct bio *bio = rq->bio;
790         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
791         unsigned int protect = 0;
792
793         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
794                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
795                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
796
797                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
799         }
800
801         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
802                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
803
804                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
805                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
806         }
807
808         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
809                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
810
811                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
812                         protect = 3 << 5;       /* Disable target PI checking */
813                 else
814                         protect = 1 << 5;       /* Enable target PI checking */
815         }
816
817         scsi_set_prot_op(scmd, prot_op);
818         scsi_set_prot_type(scmd, dif);
819         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
820
821         return protect;
822 }
823
824 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
825 {
826         struct request_queue *q = sdkp->disk->queue;
827         unsigned int logical_block_size = sdkp->device->sector_size;
828         unsigned int max_blocks = 0;
829
830         q->limits.discard_alignment =
831                 sdkp->unmap_alignment * logical_block_size;
832         q->limits.discard_granularity =
833                 max(sdkp->physical_block_size,
834                     sdkp->unmap_granularity * logical_block_size);
835         sdkp->provisioning_mode = mode;
836
837         switch (mode) {
838
839         case SD_LBP_FULL:
840         case SD_LBP_DISABLE:
841                 blk_queue_max_discard_sectors(q, 0);
842                 return;
843
844         case SD_LBP_UNMAP:
845                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
846                                           (u32)SD_MAX_WS16_BLOCKS);
847                 break;
848
849         case SD_LBP_WS16:
850                 if (sdkp->device->unmap_limit_for_ws)
851                         max_blocks = sdkp->max_unmap_blocks;
852                 else
853                         max_blocks = sdkp->max_ws_blocks;
854
855                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
856                 break;
857
858         case SD_LBP_WS10:
859                 if (sdkp->device->unmap_limit_for_ws)
860                         max_blocks = sdkp->max_unmap_blocks;
861                 else
862                         max_blocks = sdkp->max_ws_blocks;
863
864                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
865                 break;
866
867         case SD_LBP_ZERO:
868                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
869                                           (u32)SD_MAX_WS10_BLOCKS);
870                 break;
871         }
872
873         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
874 }
875
876 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
877 {
878         struct page *page;
879
880         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881         if (!page)
882                 return NULL;
883         clear_highpage(page);
884         bvec_set_page(&rq->special_vec, page, data_len, 0);
885         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886         return bvec_virt(&rq->special_vec);
887 }
888
889 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
890 {
891         struct scsi_device *sdp = cmd->device;
892         struct request *rq = scsi_cmd_to_rq(cmd);
893         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
894         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896         unsigned int data_len = 24;
897         char *buf;
898
899         buf = sd_set_special_bvec(rq, data_len);
900         if (!buf)
901                 return BLK_STS_RESOURCE;
902
903         cmd->cmd_len = 10;
904         cmd->cmnd[0] = UNMAP;
905         cmd->cmnd[8] = 24;
906
907         put_unaligned_be16(6 + 16, &buf[0]);
908         put_unaligned_be16(16, &buf[2]);
909         put_unaligned_be64(lba, &buf[8]);
910         put_unaligned_be32(nr_blocks, &buf[16]);
911
912         cmd->allowed = sdkp->max_retries;
913         cmd->transfersize = data_len;
914         rq->timeout = SD_TIMEOUT;
915
916         return scsi_alloc_sgtables(cmd);
917 }
918
919 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
920                 bool unmap)
921 {
922         struct scsi_device *sdp = cmd->device;
923         struct request *rq = scsi_cmd_to_rq(cmd);
924         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
925         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927         u32 data_len = sdp->sector_size;
928
929         if (!sd_set_special_bvec(rq, data_len))
930                 return BLK_STS_RESOURCE;
931
932         cmd->cmd_len = 16;
933         cmd->cmnd[0] = WRITE_SAME_16;
934         if (unmap)
935                 cmd->cmnd[1] = 0x8; /* UNMAP */
936         put_unaligned_be64(lba, &cmd->cmnd[2]);
937         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
938
939         cmd->allowed = sdkp->max_retries;
940         cmd->transfersize = data_len;
941         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
942
943         return scsi_alloc_sgtables(cmd);
944 }
945
946 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
947                 bool unmap)
948 {
949         struct scsi_device *sdp = cmd->device;
950         struct request *rq = scsi_cmd_to_rq(cmd);
951         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
952         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
953         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
954         u32 data_len = sdp->sector_size;
955
956         if (!sd_set_special_bvec(rq, data_len))
957                 return BLK_STS_RESOURCE;
958
959         cmd->cmd_len = 10;
960         cmd->cmnd[0] = WRITE_SAME;
961         if (unmap)
962                 cmd->cmnd[1] = 0x8; /* UNMAP */
963         put_unaligned_be32(lba, &cmd->cmnd[2]);
964         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
965
966         cmd->allowed = sdkp->max_retries;
967         cmd->transfersize = data_len;
968         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
969
970         return scsi_alloc_sgtables(cmd);
971 }
972
973 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
974 {
975         struct request *rq = scsi_cmd_to_rq(cmd);
976         struct scsi_device *sdp = cmd->device;
977         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
978         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
979         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
980
981         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
982                 switch (sdkp->zeroing_mode) {
983                 case SD_ZERO_WS16_UNMAP:
984                         return sd_setup_write_same16_cmnd(cmd, true);
985                 case SD_ZERO_WS10_UNMAP:
986                         return sd_setup_write_same10_cmnd(cmd, true);
987                 }
988         }
989
990         if (sdp->no_write_same) {
991                 rq->rq_flags |= RQF_QUIET;
992                 return BLK_STS_TARGET;
993         }
994
995         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
996                 return sd_setup_write_same16_cmnd(cmd, false);
997
998         return sd_setup_write_same10_cmnd(cmd, false);
999 }
1000
1001 static void sd_config_write_same(struct scsi_disk *sdkp)
1002 {
1003         struct request_queue *q = sdkp->disk->queue;
1004         unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006         if (sdkp->device->no_write_same) {
1007                 sdkp->max_ws_blocks = 0;
1008                 goto out;
1009         }
1010
1011         /* Some devices can not handle block counts above 0xffff despite
1012          * supporting WRITE SAME(16). Consequently we default to 64k
1013          * blocks per I/O unless the device explicitly advertises a
1014          * bigger limit.
1015          */
1016         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018                                                    (u32)SD_MAX_WS16_BLOCKS);
1019         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021                                                    (u32)SD_MAX_WS10_BLOCKS);
1022         else {
1023                 sdkp->device->no_write_same = 1;
1024                 sdkp->max_ws_blocks = 0;
1025         }
1026
1027         if (sdkp->lbprz && sdkp->lbpws)
1028                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029         else if (sdkp->lbprz && sdkp->lbpws10)
1030                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031         else if (sdkp->max_ws_blocks)
1032                 sdkp->zeroing_mode = SD_ZERO_WS;
1033         else
1034                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036         if (sdkp->max_ws_blocks &&
1037             sdkp->physical_block_size > logical_block_size) {
1038                 /*
1039                  * Reporting a maximum number of blocks that is not aligned
1040                  * on the device physical size would cause a large write same
1041                  * request to be split into physically unaligned chunks by
1042                  * __blkdev_issue_write_zeroes() even if the caller of this
1043                  * functions took care to align the large request. So make sure
1044                  * the maximum reported is aligned to the device physical block
1045                  * size. This is only an optional optimization for regular
1046                  * disks, but this is mandatory to avoid failure of large write
1047                  * same requests directed at sequential write required zones of
1048                  * host-managed ZBC disks.
1049                  */
1050                 sdkp->max_ws_blocks =
1051                         round_down(sdkp->max_ws_blocks,
1052                                    bytes_to_logical(sdkp->device,
1053                                                     sdkp->physical_block_size));
1054         }
1055
1056 out:
1057         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058                                          (logical_block_size >> 9));
1059 }
1060
1061 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062 {
1063         struct request *rq = scsi_cmd_to_rq(cmd);
1064         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065
1066         /* flush requests don't perform I/O, zero the S/G table */
1067         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069         if (cmd->device->use_16_for_sync) {
1070                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071                 cmd->cmd_len = 16;
1072         } else {
1073                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074                 cmd->cmd_len = 10;
1075         }
1076         cmd->transfersize = 0;
1077         cmd->allowed = sdkp->max_retries;
1078
1079         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080         return BLK_STS_OK;
1081 }
1082
1083 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084                                        sector_t lba, unsigned int nr_blocks,
1085                                        unsigned char flags, unsigned int dld)
1086 {
1087         cmd->cmd_len = SD_EXT_CDB_SIZE;
1088         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091         cmd->cmnd[10] = flags;
1092         cmd->cmnd[11] = dld & 0x07;
1093         put_unaligned_be64(lba, &cmd->cmnd[12]);
1094         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097         return BLK_STS_OK;
1098 }
1099
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101                                        sector_t lba, unsigned int nr_blocks,
1102                                        unsigned char flags, unsigned int dld)
1103 {
1104         cmd->cmd_len  = 16;
1105         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107         cmd->cmnd[14] = (dld & 0x03) << 6;
1108         cmd->cmnd[15] = 0;
1109         put_unaligned_be64(lba, &cmd->cmnd[2]);
1110         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112         return BLK_STS_OK;
1113 }
1114
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116                                        sector_t lba, unsigned int nr_blocks,
1117                                        unsigned char flags)
1118 {
1119         cmd->cmd_len = 10;
1120         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121         cmd->cmnd[1] = flags;
1122         cmd->cmnd[6] = 0;
1123         cmd->cmnd[9] = 0;
1124         put_unaligned_be32(lba, &cmd->cmnd[2]);
1125         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127         return BLK_STS_OK;
1128 }
1129
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131                                       sector_t lba, unsigned int nr_blocks,
1132                                       unsigned char flags)
1133 {
1134         /* Avoid that 0 blocks gets translated into 256 blocks. */
1135         if (WARN_ON_ONCE(nr_blocks == 0))
1136                 return BLK_STS_IOERR;
1137
1138         if (unlikely(flags & 0x8)) {
1139                 /*
1140                  * This happens only if this drive failed 10byte rw
1141                  * command with ILLEGAL_REQUEST during operation and
1142                  * thus turned off use_10_for_rw.
1143                  */
1144                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145                 return BLK_STS_IOERR;
1146         }
1147
1148         cmd->cmd_len = 6;
1149         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151         cmd->cmnd[2] = (lba >> 8) & 0xff;
1152         cmd->cmnd[3] = lba & 0xff;
1153         cmd->cmnd[4] = nr_blocks;
1154         cmd->cmnd[5] = 0;
1155
1156         return BLK_STS_OK;
1157 }
1158
1159 /*
1160  * Check if a command has a duration limit set. If it does, and the target
1161  * device supports CDL and the feature is enabled, return the limit
1162  * descriptor index to use. Return 0 (no limit) otherwise.
1163  */
1164 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165 {
1166         struct scsi_device *sdp = sdkp->device;
1167         int hint;
1168
1169         if (!sdp->cdl_supported || !sdp->cdl_enable)
1170                 return 0;
1171
1172         /*
1173          * Use "no limit" if the request ioprio does not specify a duration
1174          * limit hint.
1175          */
1176         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179                 return 0;
1180
1181         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182 }
1183
1184 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185 {
1186         struct request *rq = scsi_cmd_to_rq(cmd);
1187         struct scsi_device *sdp = cmd->device;
1188         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190         sector_t threshold;
1191         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193         bool write = rq_data_dir(rq) == WRITE;
1194         unsigned char protect, fua;
1195         unsigned int dld;
1196         blk_status_t ret;
1197         unsigned int dif;
1198         bool dix;
1199
1200         ret = scsi_alloc_sgtables(cmd);
1201         if (ret != BLK_STS_OK)
1202                 return ret;
1203
1204         ret = BLK_STS_IOERR;
1205         if (!scsi_device_online(sdp) || sdp->changed) {
1206                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207                 goto fail;
1208         }
1209
1210         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212                 goto fail;
1213         }
1214
1215         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217                 goto fail;
1218         }
1219
1220         /*
1221          * Some SD card readers can't handle accesses which touch the
1222          * last one or two logical blocks. Split accesses as needed.
1223          */
1224         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227                 if (lba < threshold) {
1228                         /* Access up to the threshold but not beyond */
1229                         nr_blocks = threshold - lba;
1230                 } else {
1231                         /* Access only a single logical block */
1232                         nr_blocks = 1;
1233                 }
1234         }
1235
1236         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238                 if (ret)
1239                         goto fail;
1240         }
1241
1242         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243         dix = scsi_prot_sg_count(cmd);
1244         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245         dld = sd_cdl_dld(sdkp, cmd);
1246
1247         if (dif || dix)
1248                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249         else
1250                 protect = 0;
1251
1252         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254                                          protect | fua, dld);
1255         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257                                          protect | fua, dld);
1258         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259                    sdp->use_10_for_rw || protect) {
1260                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261                                          protect | fua);
1262         } else {
1263                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264                                         protect | fua);
1265         }
1266
1267         if (unlikely(ret != BLK_STS_OK))
1268                 goto fail;
1269
1270         /*
1271          * We shouldn't disconnect in the middle of a sector, so with a dumb
1272          * host adapter, it's safe to assume that we can at least transfer
1273          * this many bytes between each connect / disconnect.
1274          */
1275         cmd->transfersize = sdp->sector_size;
1276         cmd->underflow = nr_blocks << 9;
1277         cmd->allowed = sdkp->max_retries;
1278         cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280         SCSI_LOG_HLQUEUE(1,
1281                          scmd_printk(KERN_INFO, cmd,
1282                                      "%s: block=%llu, count=%d\n", __func__,
1283                                      (unsigned long long)blk_rq_pos(rq),
1284                                      blk_rq_sectors(rq)));
1285         SCSI_LOG_HLQUEUE(2,
1286                          scmd_printk(KERN_INFO, cmd,
1287                                      "%s %d/%u 512 byte blocks.\n",
1288                                      write ? "writing" : "reading", nr_blocks,
1289                                      blk_rq_sectors(rq)));
1290
1291         /*
1292          * This indicates that the command is ready from our end to be queued.
1293          */
1294         return BLK_STS_OK;
1295 fail:
1296         scsi_free_sgtables(cmd);
1297         return ret;
1298 }
1299
1300 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301 {
1302         struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304         switch (req_op(rq)) {
1305         case REQ_OP_DISCARD:
1306                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307                 case SD_LBP_UNMAP:
1308                         return sd_setup_unmap_cmnd(cmd);
1309                 case SD_LBP_WS16:
1310                         return sd_setup_write_same16_cmnd(cmd, true);
1311                 case SD_LBP_WS10:
1312                         return sd_setup_write_same10_cmnd(cmd, true);
1313                 case SD_LBP_ZERO:
1314                         return sd_setup_write_same10_cmnd(cmd, false);
1315                 default:
1316                         return BLK_STS_TARGET;
1317                 }
1318         case REQ_OP_WRITE_ZEROES:
1319                 return sd_setup_write_zeroes_cmnd(cmd);
1320         case REQ_OP_FLUSH:
1321                 return sd_setup_flush_cmnd(cmd);
1322         case REQ_OP_READ:
1323         case REQ_OP_WRITE:
1324         case REQ_OP_ZONE_APPEND:
1325                 return sd_setup_read_write_cmnd(cmd);
1326         case REQ_OP_ZONE_RESET:
1327                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328                                                    false);
1329         case REQ_OP_ZONE_RESET_ALL:
1330                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331                                                    true);
1332         case REQ_OP_ZONE_OPEN:
1333                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334         case REQ_OP_ZONE_CLOSE:
1335                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336         case REQ_OP_ZONE_FINISH:
1337                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338         default:
1339                 WARN_ON_ONCE(1);
1340                 return BLK_STS_NOTSUPP;
1341         }
1342 }
1343
1344 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345 {
1346         struct request *rq = scsi_cmd_to_rq(SCpnt);
1347
1348         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350 }
1351
1352 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353 {
1354         if (sdkp->device->removable || sdkp->write_prot) {
1355                 if (disk_check_media_change(disk))
1356                         return true;
1357         }
1358
1359         /*
1360          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361          * nothing to do with partitions, BLKRRPART is used to force a full
1362          * revalidate after things like a format for historical reasons.
1363          */
1364         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365 }
1366
1367 /**
1368  *      sd_open - open a scsi disk device
1369  *      @disk: disk to open
1370  *      @mode: open mode
1371  *
1372  *      Returns 0 if successful. Returns a negated errno value in case 
1373  *      of error.
1374  *
1375  *      Note: This can be called from a user context (e.g. fsck(1) )
1376  *      or from within the kernel (e.g. as a result of a mount(1) ).
1377  *      In the latter case @inode and @filp carry an abridged amount
1378  *      of information as noted above.
1379  *
1380  *      Locking: called with disk->open_mutex held.
1381  **/
1382 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383 {
1384         struct scsi_disk *sdkp = scsi_disk(disk);
1385         struct scsi_device *sdev = sdkp->device;
1386         int retval;
1387
1388         if (scsi_device_get(sdev))
1389                 return -ENXIO;
1390
1391         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
1393         /*
1394          * If the device is in error recovery, wait until it is done.
1395          * If the device is offline, then disallow any access to it.
1396          */
1397         retval = -ENXIO;
1398         if (!scsi_block_when_processing_errors(sdev))
1399                 goto error_out;
1400
1401         if (sd_need_revalidate(disk, sdkp))
1402                 sd_revalidate_disk(disk);
1403
1404         /*
1405          * If the drive is empty, just let the open fail.
1406          */
1407         retval = -ENOMEDIUM;
1408         if (sdev->removable && !sdkp->media_present &&
1409             !(mode & BLK_OPEN_NDELAY))
1410                 goto error_out;
1411
1412         /*
1413          * If the device has the write protect tab set, have the open fail
1414          * if the user expects to be able to write to the thing.
1415          */
1416         retval = -EROFS;
1417         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418                 goto error_out;
1419
1420         /*
1421          * It is possible that the disk changing stuff resulted in
1422          * the device being taken offline.  If this is the case,
1423          * report this to the user, and don't pretend that the
1424          * open actually succeeded.
1425          */
1426         retval = -ENXIO;
1427         if (!scsi_device_online(sdev))
1428                 goto error_out;
1429
1430         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431                 if (scsi_block_when_processing_errors(sdev))
1432                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433         }
1434
1435         return 0;
1436
1437 error_out:
1438         scsi_device_put(sdev);
1439         return retval;  
1440 }
1441
1442 /**
1443  *      sd_release - invoked when the (last) close(2) is called on this
1444  *      scsi disk.
1445  *      @disk: disk to release
1446  *
1447  *      Returns 0. 
1448  *
1449  *      Note: may block (uninterruptible) if error recovery is underway
1450  *      on this disk.
1451  *
1452  *      Locking: called with disk->open_mutex held.
1453  **/
1454 static void sd_release(struct gendisk *disk)
1455 {
1456         struct scsi_disk *sdkp = scsi_disk(disk);
1457         struct scsi_device *sdev = sdkp->device;
1458
1459         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462                 if (scsi_block_when_processing_errors(sdev))
1463                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464         }
1465
1466         scsi_device_put(sdev);
1467 }
1468
1469 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470 {
1471         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472         struct scsi_device *sdp = sdkp->device;
1473         struct Scsi_Host *host = sdp->host;
1474         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475         int diskinfo[4];
1476
1477         /* default to most commonly used values */
1478         diskinfo[0] = 0x40;     /* 1 << 6 */
1479         diskinfo[1] = 0x20;     /* 1 << 5 */
1480         diskinfo[2] = capacity >> 11;
1481
1482         /* override with calculated, extended default, or driver values */
1483         if (host->hostt->bios_param)
1484                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485         else
1486                 scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488         geo->heads = diskinfo[0];
1489         geo->sectors = diskinfo[1];
1490         geo->cylinders = diskinfo[2];
1491         return 0;
1492 }
1493
1494 /**
1495  *      sd_ioctl - process an ioctl
1496  *      @bdev: target block device
1497  *      @mode: open mode
1498  *      @cmd: ioctl command number
1499  *      @arg: this is third argument given to ioctl(2) system call.
1500  *      Often contains a pointer.
1501  *
1502  *      Returns 0 if successful (some ioctls return positive numbers on
1503  *      success as well). Returns a negated errno value in case of error.
1504  *
1505  *      Note: most ioctls are forward onto the block subsystem or further
1506  *      down in the scsi subsystem.
1507  **/
1508 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509                     unsigned int cmd, unsigned long arg)
1510 {
1511         struct gendisk *disk = bdev->bd_disk;
1512         struct scsi_disk *sdkp = scsi_disk(disk);
1513         struct scsi_device *sdp = sdkp->device;
1514         void __user *p = (void __user *)arg;
1515         int error;
1516     
1517         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518                                     "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521                 return -ENOIOCTLCMD;
1522
1523         /*
1524          * If we are in the middle of error recovery, don't let anyone
1525          * else try and use this device.  Also, if error recovery fails, it
1526          * may try and take the device offline, in which case all further
1527          * access to the device is prohibited.
1528          */
1529         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530                         (mode & BLK_OPEN_NDELAY));
1531         if (error)
1532                 return error;
1533
1534         if (is_sed_ioctl(cmd))
1535                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1536         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537 }
1538
1539 static void set_media_not_present(struct scsi_disk *sdkp)
1540 {
1541         if (sdkp->media_present)
1542                 sdkp->device->changed = 1;
1543
1544         if (sdkp->device->removable) {
1545                 sdkp->media_present = 0;
1546                 sdkp->capacity = 0;
1547         }
1548 }
1549
1550 static int media_not_present(struct scsi_disk *sdkp,
1551                              struct scsi_sense_hdr *sshdr)
1552 {
1553         if (!scsi_sense_valid(sshdr))
1554                 return 0;
1555
1556         /* not invoked for commands that could return deferred errors */
1557         switch (sshdr->sense_key) {
1558         case UNIT_ATTENTION:
1559         case NOT_READY:
1560                 /* medium not present */
1561                 if (sshdr->asc == 0x3A) {
1562                         set_media_not_present(sdkp);
1563                         return 1;
1564                 }
1565         }
1566         return 0;
1567 }
1568
1569 /**
1570  *      sd_check_events - check media events
1571  *      @disk: kernel device descriptor
1572  *      @clearing: disk events currently being cleared
1573  *
1574  *      Returns mask of DISK_EVENT_*.
1575  *
1576  *      Note: this function is invoked from the block subsystem.
1577  **/
1578 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579 {
1580         struct scsi_disk *sdkp = disk->private_data;
1581         struct scsi_device *sdp;
1582         int retval;
1583         bool disk_changed;
1584
1585         if (!sdkp)
1586                 return 0;
1587
1588         sdp = sdkp->device;
1589         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591         /*
1592          * If the device is offline, don't send any commands - just pretend as
1593          * if the command failed.  If the device ever comes back online, we
1594          * can deal with it then.  It is only because of unrecoverable errors
1595          * that we would ever take a device offline in the first place.
1596          */
1597         if (!scsi_device_online(sdp)) {
1598                 set_media_not_present(sdkp);
1599                 goto out;
1600         }
1601
1602         /*
1603          * Using TEST_UNIT_READY enables differentiation between drive with
1604          * no cartridge loaded - NOT READY, drive with changed cartridge -
1605          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606          *
1607          * Drives that auto spin down. eg iomega jaz 1G, will be started
1608          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609          * sd_revalidate() is called.
1610          */
1611         if (scsi_block_when_processing_errors(sdp)) {
1612                 struct scsi_sense_hdr sshdr = { 0, };
1613
1614                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615                                               &sshdr);
1616
1617                 /* failed to execute TUR, assume media not present */
1618                 if (retval < 0 || host_byte(retval)) {
1619                         set_media_not_present(sdkp);
1620                         goto out;
1621                 }
1622
1623                 if (media_not_present(sdkp, &sshdr))
1624                         goto out;
1625         }
1626
1627         /*
1628          * For removable scsi disk we have to recognise the presence
1629          * of a disk in the drive.
1630          */
1631         if (!sdkp->media_present)
1632                 sdp->changed = 1;
1633         sdkp->media_present = 1;
1634 out:
1635         /*
1636          * sdp->changed is set under the following conditions:
1637          *
1638          *      Medium present state has changed in either direction.
1639          *      Device has indicated UNIT_ATTENTION.
1640          */
1641         disk_changed = sdp->changed;
1642         sdp->changed = 0;
1643         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644 }
1645
1646 static int sd_sync_cache(struct scsi_disk *sdkp)
1647 {
1648         int res;
1649         struct scsi_device *sdp = sdkp->device;
1650         const int timeout = sdp->request_queue->rq_timeout
1651                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1652         /* Leave the rest of the command zero to indicate flush everything. */
1653         const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1654                                 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1655         struct scsi_sense_hdr sshdr;
1656         struct scsi_failure failure_defs[] = {
1657                 {
1658                         .allowed = 3,
1659                         .result = SCMD_FAILURE_RESULT_ANY,
1660                 },
1661                 {}
1662         };
1663         struct scsi_failures failures = {
1664                 .failure_definitions = failure_defs,
1665         };
1666         const struct scsi_exec_args exec_args = {
1667                 .req_flags = BLK_MQ_REQ_PM,
1668                 .sshdr = &sshdr,
1669                 .failures = &failures,
1670         };
1671
1672         if (!scsi_device_online(sdp))
1673                 return -ENODEV;
1674
1675         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1676                                sdkp->max_retries, &exec_args);
1677         if (res) {
1678                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1679
1680                 if (res < 0)
1681                         return res;
1682
1683                 if (scsi_status_is_check_condition(res) &&
1684                     scsi_sense_valid(&sshdr)) {
1685                         sd_print_sense_hdr(sdkp, &sshdr);
1686
1687                         /* we need to evaluate the error return  */
1688                         if (sshdr.asc == 0x3a ||        /* medium not present */
1689                             sshdr.asc == 0x20 ||        /* invalid command */
1690                             (sshdr.asc == 0x74 && sshdr.ascq == 0x71))  /* drive is password locked */
1691                                 /* this is no error here */
1692                                 return 0;
1693                         /*
1694                          * This drive doesn't support sync and there's not much
1695                          * we can do because this is called during shutdown
1696                          * or suspend so just return success so those operations
1697                          * can proceed.
1698                          */
1699                         if (sshdr.sense_key == ILLEGAL_REQUEST)
1700                                 return 0;
1701                 }
1702
1703                 switch (host_byte(res)) {
1704                 /* ignore errors due to racing a disconnection */
1705                 case DID_BAD_TARGET:
1706                 case DID_NO_CONNECT:
1707                         return 0;
1708                 /* signal the upper layer it might try again */
1709                 case DID_BUS_BUSY:
1710                 case DID_IMM_RETRY:
1711                 case DID_REQUEUE:
1712                 case DID_SOFT_ERROR:
1713                         return -EBUSY;
1714                 default:
1715                         return -EIO;
1716                 }
1717         }
1718         return 0;
1719 }
1720
1721 static void sd_rescan(struct device *dev)
1722 {
1723         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1724
1725         sd_revalidate_disk(sdkp->disk);
1726 }
1727
1728 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1729                 enum blk_unique_id type)
1730 {
1731         struct scsi_device *sdev = scsi_disk(disk)->device;
1732         const struct scsi_vpd *vpd;
1733         const unsigned char *d;
1734         int ret = -ENXIO, len;
1735
1736         rcu_read_lock();
1737         vpd = rcu_dereference(sdev->vpd_pg83);
1738         if (!vpd)
1739                 goto out_unlock;
1740
1741         ret = -EINVAL;
1742         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1743                 /* we only care about designators with LU association */
1744                 if (((d[1] >> 4) & 0x3) != 0x00)
1745                         continue;
1746                 if ((d[1] & 0xf) != type)
1747                         continue;
1748
1749                 /*
1750                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1751                  * keep looking as one with more entropy might still show up.
1752                  */
1753                 len = d[3];
1754                 if (len != 8 && len != 12 && len != 16)
1755                         continue;
1756                 ret = len;
1757                 memcpy(id, d + 4, len);
1758                 if (len == 16)
1759                         break;
1760         }
1761 out_unlock:
1762         rcu_read_unlock();
1763         return ret;
1764 }
1765
1766 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1767 {
1768         switch (host_byte(result)) {
1769         case DID_TRANSPORT_MARGINAL:
1770         case DID_TRANSPORT_DISRUPTED:
1771         case DID_BUS_BUSY:
1772                 return PR_STS_RETRY_PATH_FAILURE;
1773         case DID_NO_CONNECT:
1774                 return PR_STS_PATH_FAILED;
1775         case DID_TRANSPORT_FAILFAST:
1776                 return PR_STS_PATH_FAST_FAILED;
1777         }
1778
1779         switch (status_byte(result)) {
1780         case SAM_STAT_RESERVATION_CONFLICT:
1781                 return PR_STS_RESERVATION_CONFLICT;
1782         case SAM_STAT_CHECK_CONDITION:
1783                 if (!scsi_sense_valid(sshdr))
1784                         return PR_STS_IOERR;
1785
1786                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1787                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1788                         return -EINVAL;
1789
1790                 fallthrough;
1791         default:
1792                 return PR_STS_IOERR;
1793         }
1794 }
1795
1796 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1797                             unsigned char *data, int data_len)
1798 {
1799         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1800         struct scsi_device *sdev = sdkp->device;
1801         struct scsi_sense_hdr sshdr;
1802         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1803         struct scsi_failure failure_defs[] = {
1804                 {
1805                         .sense = UNIT_ATTENTION,
1806                         .asc = SCMD_FAILURE_ASC_ANY,
1807                         .ascq = SCMD_FAILURE_ASCQ_ANY,
1808                         .allowed = 5,
1809                         .result = SAM_STAT_CHECK_CONDITION,
1810                 },
1811                 {}
1812         };
1813         struct scsi_failures failures = {
1814                 .failure_definitions = failure_defs,
1815         };
1816         const struct scsi_exec_args exec_args = {
1817                 .sshdr = &sshdr,
1818                 .failures = &failures,
1819         };
1820         int result;
1821
1822         put_unaligned_be16(data_len, &cmd[7]);
1823
1824         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1825                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1826         if (scsi_status_is_check_condition(result) &&
1827             scsi_sense_valid(&sshdr)) {
1828                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1829                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1830         }
1831
1832         if (result <= 0)
1833                 return result;
1834
1835         return sd_scsi_to_pr_err(&sshdr, result);
1836 }
1837
1838 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1839 {
1840         int result, i, data_offset, num_copy_keys;
1841         u32 num_keys = keys_info->num_keys;
1842         int data_len = num_keys * 8 + 8;
1843         u8 *data;
1844
1845         data = kzalloc(data_len, GFP_KERNEL);
1846         if (!data)
1847                 return -ENOMEM;
1848
1849         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1850         if (result)
1851                 goto free_data;
1852
1853         keys_info->generation = get_unaligned_be32(&data[0]);
1854         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1855
1856         data_offset = 8;
1857         num_copy_keys = min(num_keys, keys_info->num_keys);
1858
1859         for (i = 0; i < num_copy_keys; i++) {
1860                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1861                 data_offset += 8;
1862         }
1863
1864 free_data:
1865         kfree(data);
1866         return result;
1867 }
1868
1869 static int sd_pr_read_reservation(struct block_device *bdev,
1870                                   struct pr_held_reservation *rsv)
1871 {
1872         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1873         struct scsi_device *sdev = sdkp->device;
1874         u8 data[24] = { };
1875         int result, len;
1876
1877         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1878         if (result)
1879                 return result;
1880
1881         len = get_unaligned_be32(&data[4]);
1882         if (!len)
1883                 return 0;
1884
1885         /* Make sure we have at least the key and type */
1886         if (len < 14) {
1887                 sdev_printk(KERN_INFO, sdev,
1888                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1889                             len);
1890                 return -EINVAL;
1891         }
1892
1893         rsv->generation = get_unaligned_be32(&data[0]);
1894         rsv->key = get_unaligned_be64(&data[8]);
1895         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1896         return 0;
1897 }
1898
1899 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1900                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1901 {
1902         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1903         struct scsi_device *sdev = sdkp->device;
1904         struct scsi_sense_hdr sshdr;
1905         struct scsi_failure failure_defs[] = {
1906                 {
1907                         .sense = UNIT_ATTENTION,
1908                         .asc = SCMD_FAILURE_ASC_ANY,
1909                         .ascq = SCMD_FAILURE_ASCQ_ANY,
1910                         .allowed = 5,
1911                         .result = SAM_STAT_CHECK_CONDITION,
1912                 },
1913                 {}
1914         };
1915         struct scsi_failures failures = {
1916                 .failure_definitions = failure_defs,
1917         };
1918         const struct scsi_exec_args exec_args = {
1919                 .sshdr = &sshdr,
1920                 .failures = &failures,
1921         };
1922         int result;
1923         u8 cmd[16] = { 0, };
1924         u8 data[24] = { 0, };
1925
1926         cmd[0] = PERSISTENT_RESERVE_OUT;
1927         cmd[1] = sa;
1928         cmd[2] = type;
1929         put_unaligned_be32(sizeof(data), &cmd[5]);
1930
1931         put_unaligned_be64(key, &data[0]);
1932         put_unaligned_be64(sa_key, &data[8]);
1933         data[20] = flags;
1934
1935         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1936                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1937                                   &exec_args);
1938
1939         if (scsi_status_is_check_condition(result) &&
1940             scsi_sense_valid(&sshdr)) {
1941                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1942                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1943         }
1944
1945         if (result <= 0)
1946                 return result;
1947
1948         return sd_scsi_to_pr_err(&sshdr, result);
1949 }
1950
1951 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1952                 u32 flags)
1953 {
1954         if (flags & ~PR_FL_IGNORE_KEY)
1955                 return -EOPNOTSUPP;
1956         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1957                         old_key, new_key, 0,
1958                         (1 << 0) /* APTPL */);
1959 }
1960
1961 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1962                 u32 flags)
1963 {
1964         if (flags)
1965                 return -EOPNOTSUPP;
1966         return sd_pr_out_command(bdev, 0x01, key, 0,
1967                                  block_pr_type_to_scsi(type), 0);
1968 }
1969
1970 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1971 {
1972         return sd_pr_out_command(bdev, 0x02, key, 0,
1973                                  block_pr_type_to_scsi(type), 0);
1974 }
1975
1976 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1977                 enum pr_type type, bool abort)
1978 {
1979         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1980                                  block_pr_type_to_scsi(type), 0);
1981 }
1982
1983 static int sd_pr_clear(struct block_device *bdev, u64 key)
1984 {
1985         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1986 }
1987
1988 static const struct pr_ops sd_pr_ops = {
1989         .pr_register    = sd_pr_register,
1990         .pr_reserve     = sd_pr_reserve,
1991         .pr_release     = sd_pr_release,
1992         .pr_preempt     = sd_pr_preempt,
1993         .pr_clear       = sd_pr_clear,
1994         .pr_read_keys   = sd_pr_read_keys,
1995         .pr_read_reservation = sd_pr_read_reservation,
1996 };
1997
1998 static void scsi_disk_free_disk(struct gendisk *disk)
1999 {
2000         struct scsi_disk *sdkp = scsi_disk(disk);
2001
2002         put_device(&sdkp->disk_dev);
2003 }
2004
2005 static const struct block_device_operations sd_fops = {
2006         .owner                  = THIS_MODULE,
2007         .open                   = sd_open,
2008         .release                = sd_release,
2009         .ioctl                  = sd_ioctl,
2010         .getgeo                 = sd_getgeo,
2011         .compat_ioctl           = blkdev_compat_ptr_ioctl,
2012         .check_events           = sd_check_events,
2013         .unlock_native_capacity = sd_unlock_native_capacity,
2014         .report_zones           = sd_zbc_report_zones,
2015         .get_unique_id          = sd_get_unique_id,
2016         .free_disk              = scsi_disk_free_disk,
2017         .pr_ops                 = &sd_pr_ops,
2018 };
2019
2020 /**
2021  *      sd_eh_reset - reset error handling callback
2022  *      @scmd:          sd-issued command that has failed
2023  *
2024  *      This function is called by the SCSI midlayer before starting
2025  *      SCSI EH. When counting medium access failures we have to be
2026  *      careful to register it only only once per device and SCSI EH run;
2027  *      there might be several timed out commands which will cause the
2028  *      'max_medium_access_timeouts' counter to trigger after the first
2029  *      SCSI EH run already and set the device to offline.
2030  *      So this function resets the internal counter before starting SCSI EH.
2031  **/
2032 static void sd_eh_reset(struct scsi_cmnd *scmd)
2033 {
2034         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2035
2036         /* New SCSI EH run, reset gate variable */
2037         sdkp->ignore_medium_access_errors = false;
2038 }
2039
2040 /**
2041  *      sd_eh_action - error handling callback
2042  *      @scmd:          sd-issued command that has failed
2043  *      @eh_disp:       The recovery disposition suggested by the midlayer
2044  *
2045  *      This function is called by the SCSI midlayer upon completion of an
2046  *      error test command (currently TEST UNIT READY). The result of sending
2047  *      the eh command is passed in eh_disp.  We're looking for devices that
2048  *      fail medium access commands but are OK with non access commands like
2049  *      test unit ready (so wrongly see the device as having a successful
2050  *      recovery)
2051  **/
2052 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2053 {
2054         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2055         struct scsi_device *sdev = scmd->device;
2056
2057         if (!scsi_device_online(sdev) ||
2058             !scsi_medium_access_command(scmd) ||
2059             host_byte(scmd->result) != DID_TIME_OUT ||
2060             eh_disp != SUCCESS)
2061                 return eh_disp;
2062
2063         /*
2064          * The device has timed out executing a medium access command.
2065          * However, the TEST UNIT READY command sent during error
2066          * handling completed successfully. Either the device is in the
2067          * process of recovering or has it suffered an internal failure
2068          * that prevents access to the storage medium.
2069          */
2070         if (!sdkp->ignore_medium_access_errors) {
2071                 sdkp->medium_access_timed_out++;
2072                 sdkp->ignore_medium_access_errors = true;
2073         }
2074
2075         /*
2076          * If the device keeps failing read/write commands but TEST UNIT
2077          * READY always completes successfully we assume that medium
2078          * access is no longer possible and take the device offline.
2079          */
2080         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2081                 scmd_printk(KERN_ERR, scmd,
2082                             "Medium access timeout failure. Offlining disk!\n");
2083                 mutex_lock(&sdev->state_mutex);
2084                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2085                 mutex_unlock(&sdev->state_mutex);
2086
2087                 return SUCCESS;
2088         }
2089
2090         return eh_disp;
2091 }
2092
2093 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2094 {
2095         struct request *req = scsi_cmd_to_rq(scmd);
2096         struct scsi_device *sdev = scmd->device;
2097         unsigned int transferred, good_bytes;
2098         u64 start_lba, end_lba, bad_lba;
2099
2100         /*
2101          * Some commands have a payload smaller than the device logical
2102          * block size (e.g. INQUIRY on a 4K disk).
2103          */
2104         if (scsi_bufflen(scmd) <= sdev->sector_size)
2105                 return 0;
2106
2107         /* Check if we have a 'bad_lba' information */
2108         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2109                                      SCSI_SENSE_BUFFERSIZE,
2110                                      &bad_lba))
2111                 return 0;
2112
2113         /*
2114          * If the bad lba was reported incorrectly, we have no idea where
2115          * the error is.
2116          */
2117         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2118         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2119         if (bad_lba < start_lba || bad_lba >= end_lba)
2120                 return 0;
2121
2122         /*
2123          * resid is optional but mostly filled in.  When it's unused,
2124          * its value is zero, so we assume the whole buffer transferred
2125          */
2126         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2127
2128         /* This computation should always be done in terms of the
2129          * resolution of the device's medium.
2130          */
2131         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2132
2133         return min(good_bytes, transferred);
2134 }
2135
2136 /**
2137  *      sd_done - bottom half handler: called when the lower level
2138  *      driver has completed (successfully or otherwise) a scsi command.
2139  *      @SCpnt: mid-level's per command structure.
2140  *
2141  *      Note: potentially run from within an ISR. Must not block.
2142  **/
2143 static int sd_done(struct scsi_cmnd *SCpnt)
2144 {
2145         int result = SCpnt->result;
2146         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2147         unsigned int sector_size = SCpnt->device->sector_size;
2148         unsigned int resid;
2149         struct scsi_sense_hdr sshdr;
2150         struct request *req = scsi_cmd_to_rq(SCpnt);
2151         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2152         int sense_valid = 0;
2153         int sense_deferred = 0;
2154
2155         switch (req_op(req)) {
2156         case REQ_OP_DISCARD:
2157         case REQ_OP_WRITE_ZEROES:
2158         case REQ_OP_ZONE_RESET:
2159         case REQ_OP_ZONE_RESET_ALL:
2160         case REQ_OP_ZONE_OPEN:
2161         case REQ_OP_ZONE_CLOSE:
2162         case REQ_OP_ZONE_FINISH:
2163                 if (!result) {
2164                         good_bytes = blk_rq_bytes(req);
2165                         scsi_set_resid(SCpnt, 0);
2166                 } else {
2167                         good_bytes = 0;
2168                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2169                 }
2170                 break;
2171         default:
2172                 /*
2173                  * In case of bogus fw or device, we could end up having
2174                  * an unaligned partial completion. Check this here and force
2175                  * alignment.
2176                  */
2177                 resid = scsi_get_resid(SCpnt);
2178                 if (resid & (sector_size - 1)) {
2179                         sd_printk(KERN_INFO, sdkp,
2180                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2181                                 resid, sector_size);
2182                         scsi_print_command(SCpnt);
2183                         resid = min(scsi_bufflen(SCpnt),
2184                                     round_up(resid, sector_size));
2185                         scsi_set_resid(SCpnt, resid);
2186                 }
2187         }
2188
2189         if (result) {
2190                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2191                 if (sense_valid)
2192                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2193         }
2194         sdkp->medium_access_timed_out = 0;
2195
2196         if (!scsi_status_is_check_condition(result) &&
2197             (!sense_valid || sense_deferred))
2198                 goto out;
2199
2200         switch (sshdr.sense_key) {
2201         case HARDWARE_ERROR:
2202         case MEDIUM_ERROR:
2203                 good_bytes = sd_completed_bytes(SCpnt);
2204                 break;
2205         case RECOVERED_ERROR:
2206                 good_bytes = scsi_bufflen(SCpnt);
2207                 break;
2208         case NO_SENSE:
2209                 /* This indicates a false check condition, so ignore it.  An
2210                  * unknown amount of data was transferred so treat it as an
2211                  * error.
2212                  */
2213                 SCpnt->result = 0;
2214                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2215                 break;
2216         case ABORTED_COMMAND:
2217                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2218                         good_bytes = sd_completed_bytes(SCpnt);
2219                 break;
2220         case ILLEGAL_REQUEST:
2221                 switch (sshdr.asc) {
2222                 case 0x10:      /* DIX: Host detected corruption */
2223                         good_bytes = sd_completed_bytes(SCpnt);
2224                         break;
2225                 case 0x20:      /* INVALID COMMAND OPCODE */
2226                 case 0x24:      /* INVALID FIELD IN CDB */
2227                         switch (SCpnt->cmnd[0]) {
2228                         case UNMAP:
2229                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2230                                 break;
2231                         case WRITE_SAME_16:
2232                         case WRITE_SAME:
2233                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2234                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2235                                 } else {
2236                                         sdkp->device->no_write_same = 1;
2237                                         sd_config_write_same(sdkp);
2238                                         req->rq_flags |= RQF_QUIET;
2239                                 }
2240                                 break;
2241                         }
2242                 }
2243                 break;
2244         default:
2245                 break;
2246         }
2247
2248  out:
2249         if (sd_is_zoned(sdkp))
2250                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2251
2252         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2253                                            "sd_done: completed %d of %d bytes\n",
2254                                            good_bytes, scsi_bufflen(SCpnt)));
2255
2256         return good_bytes;
2257 }
2258
2259 /*
2260  * spinup disk - called only in sd_revalidate_disk()
2261  */
2262 static void
2263 sd_spinup_disk(struct scsi_disk *sdkp)
2264 {
2265         static const u8 cmd[10] = { TEST_UNIT_READY };
2266         unsigned long spintime_expire = 0;
2267         int spintime, sense_valid = 0;
2268         unsigned int the_result;
2269         struct scsi_sense_hdr sshdr;
2270         struct scsi_failure failure_defs[] = {
2271                 /* Do not retry Medium Not Present */
2272                 {
2273                         .sense = UNIT_ATTENTION,
2274                         .asc = 0x3A,
2275                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2276                         .result = SAM_STAT_CHECK_CONDITION,
2277                 },
2278                 {
2279                         .sense = NOT_READY,
2280                         .asc = 0x3A,
2281                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2282                         .result = SAM_STAT_CHECK_CONDITION,
2283                 },
2284                 /* Retry when scsi_status_is_good would return false 3 times */
2285                 {
2286                         .result = SCMD_FAILURE_STAT_ANY,
2287                         .allowed = 3,
2288                 },
2289                 {}
2290         };
2291         struct scsi_failures failures = {
2292                 .failure_definitions = failure_defs,
2293         };
2294         const struct scsi_exec_args exec_args = {
2295                 .sshdr = &sshdr,
2296                 .failures = &failures,
2297         };
2298
2299         spintime = 0;
2300
2301         /* Spin up drives, as required.  Only do this at boot time */
2302         /* Spinup needs to be done for module loads too. */
2303         do {
2304                 bool media_was_present = sdkp->media_present;
2305
2306                 scsi_failures_reset_retries(&failures);
2307
2308                 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2309                                               NULL, 0, SD_TIMEOUT,
2310                                               sdkp->max_retries, &exec_args);
2311
2312
2313                 if (the_result > 0) {
2314                         /*
2315                          * If the drive has indicated to us that it doesn't
2316                          * have any media in it, don't bother with any more
2317                          * polling.
2318                          */
2319                         if (media_not_present(sdkp, &sshdr)) {
2320                                 if (media_was_present)
2321                                         sd_printk(KERN_NOTICE, sdkp,
2322                                                   "Media removed, stopped polling\n");
2323                                 return;
2324                         }
2325                         sense_valid = scsi_sense_valid(&sshdr);
2326                 }
2327
2328                 if (!scsi_status_is_check_condition(the_result)) {
2329                         /* no sense, TUR either succeeded or failed
2330                          * with a status error */
2331                         if(!spintime && !scsi_status_is_good(the_result)) {
2332                                 sd_print_result(sdkp, "Test Unit Ready failed",
2333                                                 the_result);
2334                         }
2335                         break;
2336                 }
2337
2338                 /*
2339                  * The device does not want the automatic start to be issued.
2340                  */
2341                 if (sdkp->device->no_start_on_add)
2342                         break;
2343
2344                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2345                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2346                                 break;  /* manual intervention required */
2347                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2348                                 break;  /* standby */
2349                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2350                                 break;  /* unavailable */
2351                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2352                                 break;  /* sanitize in progress */
2353                         if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2354                                 break;  /* depopulation in progress */
2355                         if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2356                                 break;  /* depopulation restoration in progress */
2357                         /*
2358                          * Issue command to spin up drive when not ready
2359                          */
2360                         if (!spintime) {
2361                                 /* Return immediately and start spin cycle */
2362                                 const u8 start_cmd[10] = {
2363                                         [0] = START_STOP,
2364                                         [1] = 1,
2365                                         [4] = sdkp->device->start_stop_pwr_cond ?
2366                                                 0x11 : 1,
2367                                 };
2368
2369                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2370                                 scsi_execute_cmd(sdkp->device, start_cmd,
2371                                                  REQ_OP_DRV_IN, NULL, 0,
2372                                                  SD_TIMEOUT, sdkp->max_retries,
2373                                                  &exec_args);
2374                                 spintime_expire = jiffies + 100 * HZ;
2375                                 spintime = 1;
2376                         }
2377                         /* Wait 1 second for next try */
2378                         msleep(1000);
2379                         printk(KERN_CONT ".");
2380
2381                 /*
2382                  * Wait for USB flash devices with slow firmware.
2383                  * Yes, this sense key/ASC combination shouldn't
2384                  * occur here.  It's characteristic of these devices.
2385                  */
2386                 } else if (sense_valid &&
2387                                 sshdr.sense_key == UNIT_ATTENTION &&
2388                                 sshdr.asc == 0x28) {
2389                         if (!spintime) {
2390                                 spintime_expire = jiffies + 5 * HZ;
2391                                 spintime = 1;
2392                         }
2393                         /* Wait 1 second for next try */
2394                         msleep(1000);
2395                 } else {
2396                         /* we don't understand the sense code, so it's
2397                          * probably pointless to loop */
2398                         if(!spintime) {
2399                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2400                                 sd_print_sense_hdr(sdkp, &sshdr);
2401                         }
2402                         break;
2403                 }
2404                                 
2405         } while (spintime && time_before_eq(jiffies, spintime_expire));
2406
2407         if (spintime) {
2408                 if (scsi_status_is_good(the_result))
2409                         printk(KERN_CONT "ready\n");
2410                 else
2411                         printk(KERN_CONT "not responding...\n");
2412         }
2413 }
2414
2415 /*
2416  * Determine whether disk supports Data Integrity Field.
2417  */
2418 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2419 {
2420         struct scsi_device *sdp = sdkp->device;
2421         u8 type;
2422
2423         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2424                 sdkp->protection_type = 0;
2425                 return 0;
2426         }
2427
2428         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2429
2430         if (type > T10_PI_TYPE3_PROTECTION) {
2431                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2432                           " protection type %u. Disabling disk!\n",
2433                           type);
2434                 sdkp->protection_type = 0;
2435                 return -ENODEV;
2436         }
2437
2438         sdkp->protection_type = type;
2439
2440         return 0;
2441 }
2442
2443 static void sd_config_protection(struct scsi_disk *sdkp)
2444 {
2445         struct scsi_device *sdp = sdkp->device;
2446
2447         sd_dif_config_host(sdkp);
2448
2449         if (!sdkp->protection_type)
2450                 return;
2451
2452         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2453                 sd_first_printk(KERN_NOTICE, sdkp,
2454                                 "Disabling DIF Type %u protection\n",
2455                                 sdkp->protection_type);
2456                 sdkp->protection_type = 0;
2457         }
2458
2459         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2460                         sdkp->protection_type);
2461 }
2462
2463 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2464                         struct scsi_sense_hdr *sshdr, int sense_valid,
2465                         int the_result)
2466 {
2467         if (sense_valid)
2468                 sd_print_sense_hdr(sdkp, sshdr);
2469         else
2470                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2471
2472         /*
2473          * Set dirty bit for removable devices if not ready -
2474          * sometimes drives will not report this properly.
2475          */
2476         if (sdp->removable &&
2477             sense_valid && sshdr->sense_key == NOT_READY)
2478                 set_media_not_present(sdkp);
2479
2480         /*
2481          * We used to set media_present to 0 here to indicate no media
2482          * in the drive, but some drives fail read capacity even with
2483          * media present, so we can't do that.
2484          */
2485         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2486 }
2487
2488 #define RC16_LEN 32
2489 #if RC16_LEN > SD_BUF_SIZE
2490 #error RC16_LEN must not be more than SD_BUF_SIZE
2491 #endif
2492
2493 #define READ_CAPACITY_RETRIES_ON_RESET  10
2494
2495 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2496                                                 unsigned char *buffer)
2497 {
2498         unsigned char cmd[16];
2499         struct scsi_sense_hdr sshdr;
2500         const struct scsi_exec_args exec_args = {
2501                 .sshdr = &sshdr,
2502         };
2503         int sense_valid = 0;
2504         int the_result;
2505         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2506         unsigned int alignment;
2507         unsigned long long lba;
2508         unsigned sector_size;
2509
2510         if (sdp->no_read_capacity_16)
2511                 return -EINVAL;
2512
2513         do {
2514                 memset(cmd, 0, 16);
2515                 cmd[0] = SERVICE_ACTION_IN_16;
2516                 cmd[1] = SAI_READ_CAPACITY_16;
2517                 cmd[13] = RC16_LEN;
2518                 memset(buffer, 0, RC16_LEN);
2519
2520                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2521                                               buffer, RC16_LEN, SD_TIMEOUT,
2522                                               sdkp->max_retries, &exec_args);
2523                 if (the_result > 0) {
2524                         if (media_not_present(sdkp, &sshdr))
2525                                 return -ENODEV;
2526
2527                         sense_valid = scsi_sense_valid(&sshdr);
2528                         if (sense_valid &&
2529                             sshdr.sense_key == ILLEGAL_REQUEST &&
2530                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2531                             sshdr.ascq == 0x00)
2532                                 /* Invalid Command Operation Code or
2533                                  * Invalid Field in CDB, just retry
2534                                  * silently with RC10 */
2535                                 return -EINVAL;
2536                         if (sense_valid &&
2537                             sshdr.sense_key == UNIT_ATTENTION &&
2538                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2539                                 /* Device reset might occur several times,
2540                                  * give it one more chance */
2541                                 if (--reset_retries > 0)
2542                                         continue;
2543                 }
2544                 retries--;
2545
2546         } while (the_result && retries);
2547
2548         if (the_result) {
2549                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2550                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2551                 return -EINVAL;
2552         }
2553
2554         sector_size = get_unaligned_be32(&buffer[8]);
2555         lba = get_unaligned_be64(&buffer[0]);
2556
2557         if (sd_read_protection_type(sdkp, buffer) < 0) {
2558                 sdkp->capacity = 0;
2559                 return -ENODEV;
2560         }
2561
2562         /* Logical blocks per physical block exponent */
2563         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2564
2565         /* RC basis */
2566         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2567
2568         /* Lowest aligned logical block */
2569         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2570         blk_queue_alignment_offset(sdp->request_queue, alignment);
2571         if (alignment && sdkp->first_scan)
2572                 sd_printk(KERN_NOTICE, sdkp,
2573                           "physical block alignment offset: %u\n", alignment);
2574
2575         if (buffer[14] & 0x80) { /* LBPME */
2576                 sdkp->lbpme = 1;
2577
2578                 if (buffer[14] & 0x40) /* LBPRZ */
2579                         sdkp->lbprz = 1;
2580
2581                 sd_config_discard(sdkp, SD_LBP_WS16);
2582         }
2583
2584         sdkp->capacity = lba + 1;
2585         return sector_size;
2586 }
2587
2588 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2589                                                 unsigned char *buffer)
2590 {
2591         static const u8 cmd[10] = { READ_CAPACITY };
2592         struct scsi_sense_hdr sshdr;
2593         struct scsi_failure failure_defs[] = {
2594                 /* Do not retry Medium Not Present */
2595                 {
2596                         .sense = UNIT_ATTENTION,
2597                         .asc = 0x3A,
2598                         .result = SAM_STAT_CHECK_CONDITION,
2599                 },
2600                 {
2601                         .sense = NOT_READY,
2602                         .asc = 0x3A,
2603                         .result = SAM_STAT_CHECK_CONDITION,
2604                 },
2605                  /* Device reset might occur several times so retry a lot */
2606                 {
2607                         .sense = UNIT_ATTENTION,
2608                         .asc = 0x29,
2609                         .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2610                         .result = SAM_STAT_CHECK_CONDITION,
2611                 },
2612                 /* Any other error not listed above retry 3 times */
2613                 {
2614                         .result = SCMD_FAILURE_RESULT_ANY,
2615                         .allowed = 3,
2616                 },
2617                 {}
2618         };
2619         struct scsi_failures failures = {
2620                 .failure_definitions = failure_defs,
2621         };
2622         const struct scsi_exec_args exec_args = {
2623                 .sshdr = &sshdr,
2624                 .failures = &failures,
2625         };
2626         int sense_valid = 0;
2627         int the_result;
2628         sector_t lba;
2629         unsigned sector_size;
2630
2631         memset(buffer, 0, 8);
2632
2633         the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2634                                       8, SD_TIMEOUT, sdkp->max_retries,
2635                                       &exec_args);
2636
2637         if (the_result > 0) {
2638                 sense_valid = scsi_sense_valid(&sshdr);
2639
2640                 if (media_not_present(sdkp, &sshdr))
2641                         return -ENODEV;
2642         }
2643
2644         if (the_result) {
2645                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2646                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2647                 return -EINVAL;
2648         }
2649
2650         sector_size = get_unaligned_be32(&buffer[4]);
2651         lba = get_unaligned_be32(&buffer[0]);
2652
2653         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2654                 /* Some buggy (usb cardreader) devices return an lba of
2655                    0xffffffff when the want to report a size of 0 (with
2656                    which they really mean no media is present) */
2657                 sdkp->capacity = 0;
2658                 sdkp->physical_block_size = sector_size;
2659                 return sector_size;
2660         }
2661
2662         sdkp->capacity = lba + 1;
2663         sdkp->physical_block_size = sector_size;
2664         return sector_size;
2665 }
2666
2667 static int sd_try_rc16_first(struct scsi_device *sdp)
2668 {
2669         if (sdp->host->max_cmd_len < 16)
2670                 return 0;
2671         if (sdp->try_rc_10_first)
2672                 return 0;
2673         if (sdp->scsi_level > SCSI_SPC_2)
2674                 return 1;
2675         if (scsi_device_protection(sdp))
2676                 return 1;
2677         return 0;
2678 }
2679
2680 /*
2681  * read disk capacity
2682  */
2683 static void
2684 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2685 {
2686         int sector_size;
2687         struct scsi_device *sdp = sdkp->device;
2688
2689         if (sd_try_rc16_first(sdp)) {
2690                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2691                 if (sector_size == -EOVERFLOW)
2692                         goto got_data;
2693                 if (sector_size == -ENODEV)
2694                         return;
2695                 if (sector_size < 0)
2696                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2697                 if (sector_size < 0)
2698                         return;
2699         } else {
2700                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2701                 if (sector_size == -EOVERFLOW)
2702                         goto got_data;
2703                 if (sector_size < 0)
2704                         return;
2705                 if ((sizeof(sdkp->capacity) > 4) &&
2706                     (sdkp->capacity > 0xffffffffULL)) {
2707                         int old_sector_size = sector_size;
2708                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2709                                         "Trying to use READ CAPACITY(16).\n");
2710                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2711                         if (sector_size < 0) {
2712                                 sd_printk(KERN_NOTICE, sdkp,
2713                                         "Using 0xffffffff as device size\n");
2714                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2715                                 sector_size = old_sector_size;
2716                                 goto got_data;
2717                         }
2718                         /* Remember that READ CAPACITY(16) succeeded */
2719                         sdp->try_rc_10_first = 0;
2720                 }
2721         }
2722
2723         /* Some devices are known to return the total number of blocks,
2724          * not the highest block number.  Some devices have versions
2725          * which do this and others which do not.  Some devices we might
2726          * suspect of doing this but we don't know for certain.
2727          *
2728          * If we know the reported capacity is wrong, decrement it.  If
2729          * we can only guess, then assume the number of blocks is even
2730          * (usually true but not always) and err on the side of lowering
2731          * the capacity.
2732          */
2733         if (sdp->fix_capacity ||
2734             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2735                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2736                                 "from its reported value: %llu\n",
2737                                 (unsigned long long) sdkp->capacity);
2738                 --sdkp->capacity;
2739         }
2740
2741 got_data:
2742         if (sector_size == 0) {
2743                 sector_size = 512;
2744                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2745                           "assuming 512.\n");
2746         }
2747
2748         if (sector_size != 512 &&
2749             sector_size != 1024 &&
2750             sector_size != 2048 &&
2751             sector_size != 4096) {
2752                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2753                           sector_size);
2754                 /*
2755                  * The user might want to re-format the drive with
2756                  * a supported sectorsize.  Once this happens, it
2757                  * would be relatively trivial to set the thing up.
2758                  * For this reason, we leave the thing in the table.
2759                  */
2760                 sdkp->capacity = 0;
2761                 /*
2762                  * set a bogus sector size so the normal read/write
2763                  * logic in the block layer will eventually refuse any
2764                  * request on this device without tripping over power
2765                  * of two sector size assumptions
2766                  */
2767                 sector_size = 512;
2768         }
2769         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2770         blk_queue_physical_block_size(sdp->request_queue,
2771                                       sdkp->physical_block_size);
2772         sdkp->device->sector_size = sector_size;
2773
2774         if (sdkp->capacity > 0xffffffff)
2775                 sdp->use_16_for_rw = 1;
2776
2777 }
2778
2779 /*
2780  * Print disk capacity
2781  */
2782 static void
2783 sd_print_capacity(struct scsi_disk *sdkp,
2784                   sector_t old_capacity)
2785 {
2786         int sector_size = sdkp->device->sector_size;
2787         char cap_str_2[10], cap_str_10[10];
2788
2789         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2790                 return;
2791
2792         string_get_size(sdkp->capacity, sector_size,
2793                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2794         string_get_size(sdkp->capacity, sector_size,
2795                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2796
2797         sd_printk(KERN_NOTICE, sdkp,
2798                   "%llu %d-byte logical blocks: (%s/%s)\n",
2799                   (unsigned long long)sdkp->capacity,
2800                   sector_size, cap_str_10, cap_str_2);
2801
2802         if (sdkp->physical_block_size != sector_size)
2803                 sd_printk(KERN_NOTICE, sdkp,
2804                           "%u-byte physical blocks\n",
2805                           sdkp->physical_block_size);
2806 }
2807
2808 /* called with buffer of length 512 */
2809 static inline int
2810 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2811                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2812                  struct scsi_sense_hdr *sshdr)
2813 {
2814         /*
2815          * If we must use MODE SENSE(10), make sure that the buffer length
2816          * is at least 8 bytes so that the mode sense header fits.
2817          */
2818         if (sdkp->device->use_10_for_ms && len < 8)
2819                 len = 8;
2820
2821         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2822                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2823 }
2824
2825 /*
2826  * read write protect setting, if possible - called only in sd_revalidate_disk()
2827  * called with buffer of length SD_BUF_SIZE
2828  */
2829 static void
2830 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2831 {
2832         int res;
2833         struct scsi_device *sdp = sdkp->device;
2834         struct scsi_mode_data data;
2835         int old_wp = sdkp->write_prot;
2836
2837         set_disk_ro(sdkp->disk, 0);
2838         if (sdp->skip_ms_page_3f) {
2839                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2840                 return;
2841         }
2842
2843         if (sdp->use_192_bytes_for_3f) {
2844                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2845         } else {
2846                 /*
2847                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2848                  * We have to start carefully: some devices hang if we ask
2849                  * for more than is available.
2850                  */
2851                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2852
2853                 /*
2854                  * Second attempt: ask for page 0 When only page 0 is
2855                  * implemented, a request for page 3F may return Sense Key
2856                  * 5: Illegal Request, Sense Code 24: Invalid field in
2857                  * CDB.
2858                  */
2859                 if (res < 0)
2860                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2861
2862                 /*
2863                  * Third attempt: ask 255 bytes, as we did earlier.
2864                  */
2865                 if (res < 0)
2866                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2867                                                &data, NULL);
2868         }
2869
2870         if (res < 0) {
2871                 sd_first_printk(KERN_WARNING, sdkp,
2872                           "Test WP failed, assume Write Enabled\n");
2873         } else {
2874                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2875                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2876                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2877                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2878                                   sdkp->write_prot ? "on" : "off");
2879                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2880                 }
2881         }
2882 }
2883
2884 /*
2885  * sd_read_cache_type - called only from sd_revalidate_disk()
2886  * called with buffer of length SD_BUF_SIZE
2887  */
2888 static void
2889 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2890 {
2891         int len = 0, res;
2892         struct scsi_device *sdp = sdkp->device;
2893
2894         int dbd;
2895         int modepage;
2896         int first_len;
2897         struct scsi_mode_data data;
2898         struct scsi_sense_hdr sshdr;
2899         int old_wce = sdkp->WCE;
2900         int old_rcd = sdkp->RCD;
2901         int old_dpofua = sdkp->DPOFUA;
2902
2903
2904         if (sdkp->cache_override)
2905                 return;
2906
2907         first_len = 4;
2908         if (sdp->skip_ms_page_8) {
2909                 if (sdp->type == TYPE_RBC)
2910                         goto defaults;
2911                 else {
2912                         if (sdp->skip_ms_page_3f)
2913                                 goto defaults;
2914                         modepage = 0x3F;
2915                         if (sdp->use_192_bytes_for_3f)
2916                                 first_len = 192;
2917                         dbd = 0;
2918                 }
2919         } else if (sdp->type == TYPE_RBC) {
2920                 modepage = 6;
2921                 dbd = 8;
2922         } else {
2923                 modepage = 8;
2924                 dbd = 0;
2925         }
2926
2927         /* cautiously ask */
2928         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2929                         &data, &sshdr);
2930
2931         if (res < 0)
2932                 goto bad_sense;
2933
2934         if (!data.header_length) {
2935                 modepage = 6;
2936                 first_len = 0;
2937                 sd_first_printk(KERN_ERR, sdkp,
2938                                 "Missing header in MODE_SENSE response\n");
2939         }
2940
2941         /* that went OK, now ask for the proper length */
2942         len = data.length;
2943
2944         /*
2945          * We're only interested in the first three bytes, actually.
2946          * But the data cache page is defined for the first 20.
2947          */
2948         if (len < 3)
2949                 goto bad_sense;
2950         else if (len > SD_BUF_SIZE) {
2951                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2952                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2953                 len = SD_BUF_SIZE;
2954         }
2955         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2956                 len = 192;
2957
2958         /* Get the data */
2959         if (len > first_len)
2960                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2961                                 &data, &sshdr);
2962
2963         if (!res) {
2964                 int offset = data.header_length + data.block_descriptor_length;
2965
2966                 while (offset < len) {
2967                         u8 page_code = buffer[offset] & 0x3F;
2968                         u8 spf       = buffer[offset] & 0x40;
2969
2970                         if (page_code == 8 || page_code == 6) {
2971                                 /* We're interested only in the first 3 bytes.
2972                                  */
2973                                 if (len - offset <= 2) {
2974                                         sd_first_printk(KERN_ERR, sdkp,
2975                                                 "Incomplete mode parameter "
2976                                                         "data\n");
2977                                         goto defaults;
2978                                 } else {
2979                                         modepage = page_code;
2980                                         goto Page_found;
2981                                 }
2982                         } else {
2983                                 /* Go to the next page */
2984                                 if (spf && len - offset > 3)
2985                                         offset += 4 + (buffer[offset+2] << 8) +
2986                                                 buffer[offset+3];
2987                                 else if (!spf && len - offset > 1)
2988                                         offset += 2 + buffer[offset+1];
2989                                 else {
2990                                         sd_first_printk(KERN_ERR, sdkp,
2991                                                         "Incomplete mode "
2992                                                         "parameter data\n");
2993                                         goto defaults;
2994                                 }
2995                         }
2996                 }
2997
2998                 sd_first_printk(KERN_WARNING, sdkp,
2999                                 "No Caching mode page found\n");
3000                 goto defaults;
3001
3002         Page_found:
3003                 if (modepage == 8) {
3004                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3005                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3006                 } else {
3007                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3008                         sdkp->RCD = 0;
3009                 }
3010
3011                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3012                 if (sdp->broken_fua) {
3013                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3014                         sdkp->DPOFUA = 0;
3015                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3016                            !sdkp->device->use_16_for_rw) {
3017                         sd_first_printk(KERN_NOTICE, sdkp,
3018                                   "Uses READ/WRITE(6), disabling FUA\n");
3019                         sdkp->DPOFUA = 0;
3020                 }
3021
3022                 /* No cache flush allowed for write protected devices */
3023                 if (sdkp->WCE && sdkp->write_prot)
3024                         sdkp->WCE = 0;
3025
3026                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3027                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3028                         sd_printk(KERN_NOTICE, sdkp,
3029                                   "Write cache: %s, read cache: %s, %s\n",
3030                                   sdkp->WCE ? "enabled" : "disabled",
3031                                   sdkp->RCD ? "disabled" : "enabled",
3032                                   sdkp->DPOFUA ? "supports DPO and FUA"
3033                                   : "doesn't support DPO or FUA");
3034
3035                 return;
3036         }
3037
3038 bad_sense:
3039         if (res == -EIO && scsi_sense_valid(&sshdr) &&
3040             sshdr.sense_key == ILLEGAL_REQUEST &&
3041             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3042                 /* Invalid field in CDB */
3043                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3044         else
3045                 sd_first_printk(KERN_ERR, sdkp,
3046                                 "Asking for cache data failed\n");
3047
3048 defaults:
3049         if (sdp->wce_default_on) {
3050                 sd_first_printk(KERN_NOTICE, sdkp,
3051                                 "Assuming drive cache: write back\n");
3052                 sdkp->WCE = 1;
3053         } else {
3054                 sd_first_printk(KERN_WARNING, sdkp,
3055                                 "Assuming drive cache: write through\n");
3056                 sdkp->WCE = 0;
3057         }
3058         sdkp->RCD = 0;
3059         sdkp->DPOFUA = 0;
3060 }
3061
3062 /*
3063  * The ATO bit indicates whether the DIF application tag is available
3064  * for use by the operating system.
3065  */
3066 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3067 {
3068         int res, offset;
3069         struct scsi_device *sdp = sdkp->device;
3070         struct scsi_mode_data data;
3071         struct scsi_sense_hdr sshdr;
3072
3073         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3074                 return;
3075
3076         if (sdkp->protection_type == 0)
3077                 return;
3078
3079         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3080                               sdkp->max_retries, &data, &sshdr);
3081
3082         if (res < 0 || !data.header_length ||
3083             data.length < 6) {
3084                 sd_first_printk(KERN_WARNING, sdkp,
3085                           "getting Control mode page failed, assume no ATO\n");
3086
3087                 if (res == -EIO && scsi_sense_valid(&sshdr))
3088                         sd_print_sense_hdr(sdkp, &sshdr);
3089
3090                 return;
3091         }
3092
3093         offset = data.header_length + data.block_descriptor_length;
3094
3095         if ((buffer[offset] & 0x3f) != 0x0a) {
3096                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3097                 return;
3098         }
3099
3100         if ((buffer[offset + 5] & 0x80) == 0)
3101                 return;
3102
3103         sdkp->ATO = 1;
3104
3105         return;
3106 }
3107
3108 /**
3109  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3110  * @sdkp: disk to query
3111  */
3112 static void sd_read_block_limits(struct scsi_disk *sdkp)
3113 {
3114         struct scsi_vpd *vpd;
3115
3116         rcu_read_lock();
3117
3118         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3119         if (!vpd || vpd->len < 16)
3120                 goto out;
3121
3122         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3123         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3124         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3125
3126         if (vpd->len >= 64) {
3127                 unsigned int lba_count, desc_count;
3128
3129                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3130
3131                 if (!sdkp->lbpme)
3132                         goto out;
3133
3134                 lba_count = get_unaligned_be32(&vpd->data[20]);
3135                 desc_count = get_unaligned_be32(&vpd->data[24]);
3136
3137                 if (lba_count && desc_count)
3138                         sdkp->max_unmap_blocks = lba_count;
3139
3140                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3141
3142                 if (vpd->data[32] & 0x80)
3143                         sdkp->unmap_alignment =
3144                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3145
3146                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3147
3148                         if (sdkp->max_unmap_blocks)
3149                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3150                         else
3151                                 sd_config_discard(sdkp, SD_LBP_WS16);
3152
3153                 } else {        /* LBP VPD page tells us what to use */
3154                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3155                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3156                         else if (sdkp->lbpws)
3157                                 sd_config_discard(sdkp, SD_LBP_WS16);
3158                         else if (sdkp->lbpws10)
3159                                 sd_config_discard(sdkp, SD_LBP_WS10);
3160                         else
3161                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3162                 }
3163         }
3164
3165  out:
3166         rcu_read_unlock();
3167 }
3168
3169 /**
3170  * sd_read_block_characteristics - Query block dev. characteristics
3171  * @sdkp: disk to query
3172  */
3173 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3174 {
3175         struct request_queue *q = sdkp->disk->queue;
3176         struct scsi_vpd *vpd;
3177         u16 rot;
3178
3179         rcu_read_lock();
3180         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3181
3182         if (!vpd || vpd->len < 8) {
3183                 rcu_read_unlock();
3184                 return;
3185         }
3186
3187         rot = get_unaligned_be16(&vpd->data[4]);
3188         sdkp->zoned = (vpd->data[8] >> 4) & 3;
3189         rcu_read_unlock();
3190
3191         if (rot == 1) {
3192                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3193                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3194         }
3195
3196
3197 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3198         if (sdkp->device->type == TYPE_ZBC) {
3199                 /*
3200                  * Host-managed.
3201                  */
3202                 disk_set_zoned(sdkp->disk);
3203
3204                 /*
3205                  * Per ZBC and ZAC specifications, writes in sequential write
3206                  * required zones of host-managed devices must be aligned to
3207                  * the device physical block size.
3208                  */
3209                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3210         } else {
3211                 /*
3212                  * Host-aware devices are treated as conventional.
3213                  */
3214                 WARN_ON_ONCE(blk_queue_is_zoned(q));
3215         }
3216 #endif /* CONFIG_BLK_DEV_ZONED */
3217
3218         if (!sdkp->first_scan)
3219                 return;
3220
3221         if (blk_queue_is_zoned(q))
3222                 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3223         else if (sdkp->zoned == 1)
3224                 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3225         else if (sdkp->zoned == 2)
3226                 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3227 }
3228
3229 /**
3230  * sd_read_block_provisioning - Query provisioning VPD page
3231  * @sdkp: disk to query
3232  */
3233 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3234 {
3235         struct scsi_vpd *vpd;
3236
3237         if (sdkp->lbpme == 0)
3238                 return;
3239
3240         rcu_read_lock();
3241         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3242
3243         if (!vpd || vpd->len < 8) {
3244                 rcu_read_unlock();
3245                 return;
3246         }
3247
3248         sdkp->lbpvpd    = 1;
3249         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3250         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3251         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3252         rcu_read_unlock();
3253 }
3254
3255 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3256 {
3257         struct scsi_device *sdev = sdkp->device;
3258
3259         if (sdev->host->no_write_same) {
3260                 sdev->no_write_same = 1;
3261
3262                 return;
3263         }
3264
3265         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3266                 struct scsi_vpd *vpd;
3267
3268                 sdev->no_report_opcodes = 1;
3269
3270                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3271                  * CODES is unsupported and the device has an ATA
3272                  * Information VPD page (SAT).
3273                  */
3274                 rcu_read_lock();
3275                 vpd = rcu_dereference(sdev->vpd_pg89);
3276                 if (vpd)
3277                         sdev->no_write_same = 1;
3278                 rcu_read_unlock();
3279         }
3280
3281         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3282                 sdkp->ws16 = 1;
3283
3284         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3285                 sdkp->ws10 = 1;
3286 }
3287
3288 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3289 {
3290         struct scsi_device *sdev = sdkp->device;
3291
3292         if (!sdev->security_supported)
3293                 return;
3294
3295         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3296                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3297             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3298                         SECURITY_PROTOCOL_OUT, 0) == 1)
3299                 sdkp->security = 1;
3300 }
3301
3302 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3303 {
3304         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3305 }
3306
3307 /**
3308  * sd_read_cpr - Query concurrent positioning ranges
3309  * @sdkp:       disk to query
3310  */
3311 static void sd_read_cpr(struct scsi_disk *sdkp)
3312 {
3313         struct blk_independent_access_ranges *iars = NULL;
3314         unsigned char *buffer = NULL;
3315         unsigned int nr_cpr = 0;
3316         int i, vpd_len, buf_len = SD_BUF_SIZE;
3317         u8 *desc;
3318
3319         /*
3320          * We need to have the capacity set first for the block layer to be
3321          * able to check the ranges.
3322          */
3323         if (sdkp->first_scan)
3324                 return;
3325
3326         if (!sdkp->capacity)
3327                 goto out;
3328
3329         /*
3330          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3331          * leading to a maximum page size of 64 + 256*32 bytes.
3332          */
3333         buf_len = 64 + 256*32;
3334         buffer = kmalloc(buf_len, GFP_KERNEL);
3335         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3336                 goto out;
3337
3338         /* We must have at least a 64B header and one 32B range descriptor */
3339         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3340         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3341                 sd_printk(KERN_ERR, sdkp,
3342                           "Invalid Concurrent Positioning Ranges VPD page\n");
3343                 goto out;
3344         }
3345
3346         nr_cpr = (vpd_len - 64) / 32;
3347         if (nr_cpr == 1) {
3348                 nr_cpr = 0;
3349                 goto out;
3350         }
3351
3352         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3353         if (!iars) {
3354                 nr_cpr = 0;
3355                 goto out;
3356         }
3357
3358         desc = &buffer[64];
3359         for (i = 0; i < nr_cpr; i++, desc += 32) {
3360                 if (desc[0] != i) {
3361                         sd_printk(KERN_ERR, sdkp,
3362                                 "Invalid Concurrent Positioning Range number\n");
3363                         nr_cpr = 0;
3364                         break;
3365                 }
3366
3367                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3368                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3369         }
3370
3371 out:
3372         disk_set_independent_access_ranges(sdkp->disk, iars);
3373         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3374                 sd_printk(KERN_NOTICE, sdkp,
3375                           "%u concurrent positioning ranges\n", nr_cpr);
3376                 sdkp->nr_actuators = nr_cpr;
3377         }
3378
3379         kfree(buffer);
3380 }
3381
3382 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3383 {
3384         struct scsi_device *sdp = sdkp->device;
3385         unsigned int min_xfer_bytes =
3386                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3387
3388         if (sdkp->min_xfer_blocks == 0)
3389                 return false;
3390
3391         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3392                 sd_first_printk(KERN_WARNING, sdkp,
3393                                 "Preferred minimum I/O size %u bytes not a " \
3394                                 "multiple of physical block size (%u bytes)\n",
3395                                 min_xfer_bytes, sdkp->physical_block_size);
3396                 sdkp->min_xfer_blocks = 0;
3397                 return false;
3398         }
3399
3400         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3401                         min_xfer_bytes);
3402         return true;
3403 }
3404
3405 /*
3406  * Determine the device's preferred I/O size for reads and writes
3407  * unless the reported value is unreasonably small, large, not a
3408  * multiple of the physical block size, or simply garbage.
3409  */
3410 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3411                                       unsigned int dev_max)
3412 {
3413         struct scsi_device *sdp = sdkp->device;
3414         unsigned int opt_xfer_bytes =
3415                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3416         unsigned int min_xfer_bytes =
3417                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3418
3419         if (sdkp->opt_xfer_blocks == 0)
3420                 return false;
3421
3422         if (sdkp->opt_xfer_blocks > dev_max) {
3423                 sd_first_printk(KERN_WARNING, sdkp,
3424                                 "Optimal transfer size %u logical blocks " \
3425                                 "> dev_max (%u logical blocks)\n",
3426                                 sdkp->opt_xfer_blocks, dev_max);
3427                 return false;
3428         }
3429
3430         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3431                 sd_first_printk(KERN_WARNING, sdkp,
3432                                 "Optimal transfer size %u logical blocks " \
3433                                 "> sd driver limit (%u logical blocks)\n",
3434                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3435                 return false;
3436         }
3437
3438         if (opt_xfer_bytes < PAGE_SIZE) {
3439                 sd_first_printk(KERN_WARNING, sdkp,
3440                                 "Optimal transfer size %u bytes < " \
3441                                 "PAGE_SIZE (%u bytes)\n",
3442                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3443                 return false;
3444         }
3445
3446         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3447                 sd_first_printk(KERN_WARNING, sdkp,
3448                                 "Optimal transfer size %u bytes not a " \
3449                                 "multiple of preferred minimum block " \
3450                                 "size (%u bytes)\n",
3451                                 opt_xfer_bytes, min_xfer_bytes);
3452                 return false;
3453         }
3454
3455         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3456                 sd_first_printk(KERN_WARNING, sdkp,
3457                                 "Optimal transfer size %u bytes not a " \
3458                                 "multiple of physical block size (%u bytes)\n",
3459                                 opt_xfer_bytes, sdkp->physical_block_size);
3460                 return false;
3461         }
3462
3463         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3464                         opt_xfer_bytes);
3465         return true;
3466 }
3467
3468 static void sd_read_block_zero(struct scsi_disk *sdkp)
3469 {
3470         unsigned int buf_len = sdkp->device->sector_size;
3471         char *buffer, cmd[10] = { };
3472
3473         buffer = kmalloc(buf_len, GFP_KERNEL);
3474         if (!buffer)
3475                 return;
3476
3477         cmd[0] = READ_10;
3478         put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3479         put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3480
3481         scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3482                          SD_TIMEOUT, sdkp->max_retries, NULL);
3483         kfree(buffer);
3484 }
3485
3486 /**
3487  *      sd_revalidate_disk - called the first time a new disk is seen,
3488  *      performs disk spin up, read_capacity, etc.
3489  *      @disk: struct gendisk we care about
3490  **/
3491 static int sd_revalidate_disk(struct gendisk *disk)
3492 {
3493         struct scsi_disk *sdkp = scsi_disk(disk);
3494         struct scsi_device *sdp = sdkp->device;
3495         struct request_queue *q = sdkp->disk->queue;
3496         sector_t old_capacity = sdkp->capacity;
3497         unsigned char *buffer;
3498         unsigned int dev_max, rw_max;
3499
3500         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3501                                       "sd_revalidate_disk\n"));
3502
3503         /*
3504          * If the device is offline, don't try and read capacity or any
3505          * of the other niceties.
3506          */
3507         if (!scsi_device_online(sdp))
3508                 goto out;
3509
3510         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3511         if (!buffer) {
3512                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3513                           "allocation failure.\n");
3514                 goto out;
3515         }
3516
3517         sd_spinup_disk(sdkp);
3518
3519         /*
3520          * Without media there is no reason to ask; moreover, some devices
3521          * react badly if we do.
3522          */
3523         if (sdkp->media_present) {
3524                 sd_read_capacity(sdkp, buffer);
3525                 /*
3526                  * Some USB/UAS devices return generic values for mode pages
3527                  * until the media has been accessed. Trigger a READ operation
3528                  * to force the device to populate mode pages.
3529                  */
3530                 if (sdp->read_before_ms)
3531                         sd_read_block_zero(sdkp);
3532                 /*
3533                  * set the default to rotational.  All non-rotational devices
3534                  * support the block characteristics VPD page, which will
3535                  * cause this to be updated correctly and any device which
3536                  * doesn't support it should be treated as rotational.
3537                  */
3538                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3539                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3540
3541                 if (scsi_device_supports_vpd(sdp)) {
3542                         sd_read_block_provisioning(sdkp);
3543                         sd_read_block_limits(sdkp);
3544                         sd_read_block_characteristics(sdkp);
3545                         sd_zbc_read_zones(sdkp, buffer);
3546                         sd_read_cpr(sdkp);
3547                 }
3548
3549                 sd_print_capacity(sdkp, old_capacity);
3550
3551                 sd_read_write_protect_flag(sdkp, buffer);
3552                 sd_read_cache_type(sdkp, buffer);
3553                 sd_read_app_tag_own(sdkp, buffer);
3554                 sd_read_write_same(sdkp, buffer);
3555                 sd_read_security(sdkp, buffer);
3556                 sd_config_protection(sdkp);
3557         }
3558
3559         /*
3560          * We now have all cache related info, determine how we deal
3561          * with flush requests.
3562          */
3563         sd_set_flush_flag(sdkp);
3564
3565         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3566         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3567
3568         /* Some devices report a maximum block count for READ/WRITE requests. */
3569         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3570         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3571
3572         if (sd_validate_min_xfer_size(sdkp))
3573                 blk_queue_io_min(sdkp->disk->queue,
3574                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3575         else
3576                 blk_queue_io_min(sdkp->disk->queue, 0);
3577
3578         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3579                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3580                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3581         } else {
3582                 q->limits.io_opt = 0;
3583                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3584                                       (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3585         }
3586
3587         /*
3588          * Limit default to SCSI host optimal sector limit if set. There may be
3589          * an impact on performance for when the size of a request exceeds this
3590          * host limit.
3591          */
3592         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3593
3594         /* Do not exceed controller limit */
3595         rw_max = min(rw_max, queue_max_hw_sectors(q));
3596
3597         /*
3598          * Only update max_sectors if previously unset or if the current value
3599          * exceeds the capabilities of the hardware.
3600          */
3601         if (sdkp->first_scan ||
3602             q->limits.max_sectors > q->limits.max_dev_sectors ||
3603             q->limits.max_sectors > q->limits.max_hw_sectors)
3604                 q->limits.max_sectors = rw_max;
3605
3606         sdkp->first_scan = 0;
3607
3608         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3609         sd_config_write_same(sdkp);
3610         kfree(buffer);
3611
3612         /*
3613          * For a zoned drive, revalidating the zones can be done only once
3614          * the gendisk capacity is set. So if this fails, set back the gendisk
3615          * capacity to 0.
3616          */
3617         if (sd_zbc_revalidate_zones(sdkp))
3618                 set_capacity_and_notify(disk, 0);
3619
3620  out:
3621         return 0;
3622 }
3623
3624 /**
3625  *      sd_unlock_native_capacity - unlock native capacity
3626  *      @disk: struct gendisk to set capacity for
3627  *
3628  *      Block layer calls this function if it detects that partitions
3629  *      on @disk reach beyond the end of the device.  If the SCSI host
3630  *      implements ->unlock_native_capacity() method, it's invoked to
3631  *      give it a chance to adjust the device capacity.
3632  *
3633  *      CONTEXT:
3634  *      Defined by block layer.  Might sleep.
3635  */
3636 static void sd_unlock_native_capacity(struct gendisk *disk)
3637 {
3638         struct scsi_device *sdev = scsi_disk(disk)->device;
3639
3640         if (sdev->host->hostt->unlock_native_capacity)
3641                 sdev->host->hostt->unlock_native_capacity(sdev);
3642 }
3643
3644 /**
3645  *      sd_format_disk_name - format disk name
3646  *      @prefix: name prefix - ie. "sd" for SCSI disks
3647  *      @index: index of the disk to format name for
3648  *      @buf: output buffer
3649  *      @buflen: length of the output buffer
3650  *
3651  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3652  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3653  *      which is followed by sdaaa.
3654  *
3655  *      This is basically 26 base counting with one extra 'nil' entry
3656  *      at the beginning from the second digit on and can be
3657  *      determined using similar method as 26 base conversion with the
3658  *      index shifted -1 after each digit is computed.
3659  *
3660  *      CONTEXT:
3661  *      Don't care.
3662  *
3663  *      RETURNS:
3664  *      0 on success, -errno on failure.
3665  */
3666 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3667 {
3668         const int base = 'z' - 'a' + 1;
3669         char *begin = buf + strlen(prefix);
3670         char *end = buf + buflen;
3671         char *p;
3672         int unit;
3673
3674         p = end - 1;
3675         *p = '\0';
3676         unit = base;
3677         do {
3678                 if (p == begin)
3679                         return -EINVAL;
3680                 *--p = 'a' + (index % unit);
3681                 index = (index / unit) - 1;
3682         } while (index >= 0);
3683
3684         memmove(begin, p, end - p);
3685         memcpy(buf, prefix, strlen(prefix));
3686
3687         return 0;
3688 }
3689
3690 /**
3691  *      sd_probe - called during driver initialization and whenever a
3692  *      new scsi device is attached to the system. It is called once
3693  *      for each scsi device (not just disks) present.
3694  *      @dev: pointer to device object
3695  *
3696  *      Returns 0 if successful (or not interested in this scsi device 
3697  *      (e.g. scanner)); 1 when there is an error.
3698  *
3699  *      Note: this function is invoked from the scsi mid-level.
3700  *      This function sets up the mapping between a given 
3701  *      <host,channel,id,lun> (found in sdp) and new device name 
3702  *      (e.g. /dev/sda). More precisely it is the block device major 
3703  *      and minor number that is chosen here.
3704  *
3705  *      Assume sd_probe is not re-entrant (for time being)
3706  *      Also think about sd_probe() and sd_remove() running coincidentally.
3707  **/
3708 static int sd_probe(struct device *dev)
3709 {
3710         struct scsi_device *sdp = to_scsi_device(dev);
3711         struct scsi_disk *sdkp;
3712         struct gendisk *gd;
3713         int index;
3714         int error;
3715
3716         scsi_autopm_get_device(sdp);
3717         error = -ENODEV;
3718         if (sdp->type != TYPE_DISK &&
3719             sdp->type != TYPE_ZBC &&
3720             sdp->type != TYPE_MOD &&
3721             sdp->type != TYPE_RBC)
3722                 goto out;
3723
3724         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3725                 sdev_printk(KERN_WARNING, sdp,
3726                             "Unsupported ZBC host-managed device.\n");
3727                 goto out;
3728         }
3729
3730         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3731                                         "sd_probe\n"));
3732
3733         error = -ENOMEM;
3734         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3735         if (!sdkp)
3736                 goto out;
3737
3738         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3739                                          &sd_bio_compl_lkclass);
3740         if (!gd)
3741                 goto out_free;
3742
3743         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3744         if (index < 0) {
3745                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3746                 goto out_put;
3747         }
3748
3749         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3750         if (error) {
3751                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3752                 goto out_free_index;
3753         }
3754
3755         sdkp->device = sdp;
3756         sdkp->disk = gd;
3757         sdkp->index = index;
3758         sdkp->max_retries = SD_MAX_RETRIES;
3759         atomic_set(&sdkp->openers, 0);
3760         atomic_set(&sdkp->device->ioerr_cnt, 0);
3761
3762         if (!sdp->request_queue->rq_timeout) {
3763                 if (sdp->type != TYPE_MOD)
3764                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3765                 else
3766                         blk_queue_rq_timeout(sdp->request_queue,
3767                                              SD_MOD_TIMEOUT);
3768         }
3769
3770         device_initialize(&sdkp->disk_dev);
3771         sdkp->disk_dev.parent = get_device(dev);
3772         sdkp->disk_dev.class = &sd_disk_class;
3773         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3774
3775         error = device_add(&sdkp->disk_dev);
3776         if (error) {
3777                 put_device(&sdkp->disk_dev);
3778                 goto out;
3779         }
3780
3781         dev_set_drvdata(dev, sdkp);
3782
3783         gd->major = sd_major((index & 0xf0) >> 4);
3784         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3785         gd->minors = SD_MINORS;
3786
3787         gd->fops = &sd_fops;
3788         gd->private_data = sdkp;
3789
3790         /* defaults, until the device tells us otherwise */
3791         sdp->sector_size = 512;
3792         sdkp->capacity = 0;
3793         sdkp->media_present = 1;
3794         sdkp->write_prot = 0;
3795         sdkp->cache_override = 0;
3796         sdkp->WCE = 0;
3797         sdkp->RCD = 0;
3798         sdkp->ATO = 0;
3799         sdkp->first_scan = 1;
3800         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3801
3802         sd_revalidate_disk(gd);
3803
3804         if (sdp->removable) {
3805                 gd->flags |= GENHD_FL_REMOVABLE;
3806                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3807                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3808         }
3809
3810         blk_pm_runtime_init(sdp->request_queue, dev);
3811         if (sdp->rpm_autosuspend) {
3812                 pm_runtime_set_autosuspend_delay(dev,
3813                         sdp->host->rpm_autosuspend_delay);
3814         }
3815
3816         error = device_add_disk(dev, gd, NULL);
3817         if (error) {
3818                 put_device(&sdkp->disk_dev);
3819                 put_disk(gd);
3820                 goto out;
3821         }
3822
3823         if (sdkp->security) {
3824                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3825                 if (sdkp->opal_dev)
3826                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3827         }
3828
3829         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3830                   sdp->removable ? "removable " : "");
3831         scsi_autopm_put_device(sdp);
3832
3833         return 0;
3834
3835  out_free_index:
3836         ida_free(&sd_index_ida, index);
3837  out_put:
3838         put_disk(gd);
3839  out_free:
3840         kfree(sdkp);
3841  out:
3842         scsi_autopm_put_device(sdp);
3843         return error;
3844 }
3845
3846 /**
3847  *      sd_remove - called whenever a scsi disk (previously recognized by
3848  *      sd_probe) is detached from the system. It is called (potentially
3849  *      multiple times) during sd module unload.
3850  *      @dev: pointer to device object
3851  *
3852  *      Note: this function is invoked from the scsi mid-level.
3853  *      This function potentially frees up a device name (e.g. /dev/sdc)
3854  *      that could be re-used by a subsequent sd_probe().
3855  *      This function is not called when the built-in sd driver is "exit-ed".
3856  **/
3857 static int sd_remove(struct device *dev)
3858 {
3859         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3860
3861         scsi_autopm_get_device(sdkp->device);
3862
3863         device_del(&sdkp->disk_dev);
3864         del_gendisk(sdkp->disk);
3865         if (!sdkp->suspended)
3866                 sd_shutdown(dev);
3867
3868         put_disk(sdkp->disk);
3869         return 0;
3870 }
3871
3872 static void scsi_disk_release(struct device *dev)
3873 {
3874         struct scsi_disk *sdkp = to_scsi_disk(dev);
3875
3876         ida_free(&sd_index_ida, sdkp->index);
3877         sd_zbc_free_zone_info(sdkp);
3878         put_device(&sdkp->device->sdev_gendev);
3879         free_opal_dev(sdkp->opal_dev);
3880
3881         kfree(sdkp);
3882 }
3883
3884 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3885 {
3886         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3887         struct scsi_sense_hdr sshdr;
3888         const struct scsi_exec_args exec_args = {
3889                 .sshdr = &sshdr,
3890                 .req_flags = BLK_MQ_REQ_PM,
3891         };
3892         struct scsi_device *sdp = sdkp->device;
3893         int res;
3894
3895         if (start)
3896                 cmd[4] |= 1;    /* START */
3897
3898         if (sdp->start_stop_pwr_cond)
3899                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3900
3901         if (!scsi_device_online(sdp))
3902                 return -ENODEV;
3903
3904         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3905                                sdkp->max_retries, &exec_args);
3906         if (res) {
3907                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3908                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3909                         sd_print_sense_hdr(sdkp, &sshdr);
3910                         /* 0x3a is medium not present */
3911                         if (sshdr.asc == 0x3a)
3912                                 res = 0;
3913                 }
3914         }
3915
3916         /* SCSI error codes must not go to the generic layer */
3917         if (res)
3918                 return -EIO;
3919
3920         return 0;
3921 }
3922
3923 /*
3924  * Send a SYNCHRONIZE CACHE instruction down to the device through
3925  * the normal SCSI command structure.  Wait for the command to
3926  * complete.
3927  */
3928 static void sd_shutdown(struct device *dev)
3929 {
3930         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3931
3932         if (!sdkp)
3933                 return;         /* this can happen */
3934
3935         if (pm_runtime_suspended(dev))
3936                 return;
3937
3938         if (sdkp->WCE && sdkp->media_present) {
3939                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3940                 sd_sync_cache(sdkp);
3941         }
3942
3943         if ((system_state != SYSTEM_RESTART &&
3944              sdkp->device->manage_system_start_stop) ||
3945             (system_state == SYSTEM_POWER_OFF &&
3946              sdkp->device->manage_shutdown)) {
3947                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3948                 sd_start_stop_device(sdkp, 0);
3949         }
3950 }
3951
3952 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3953 {
3954         return (sdev->manage_system_start_stop && !runtime) ||
3955                 (sdev->manage_runtime_start_stop && runtime);
3956 }
3957
3958 static int sd_suspend_common(struct device *dev, bool runtime)
3959 {
3960         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3961         int ret = 0;
3962
3963         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3964                 return 0;
3965
3966         if (sdkp->WCE && sdkp->media_present) {
3967                 if (!sdkp->device->silence_suspend)
3968                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3969                 ret = sd_sync_cache(sdkp);
3970                 /* ignore OFFLINE device */
3971                 if (ret == -ENODEV)
3972                         return 0;
3973
3974                 if (ret)
3975                         return ret;
3976         }
3977
3978         if (sd_do_start_stop(sdkp->device, runtime)) {
3979                 if (!sdkp->device->silence_suspend)
3980                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3981                 /* an error is not worth aborting a system sleep */
3982                 ret = sd_start_stop_device(sdkp, 0);
3983                 if (!runtime)
3984                         ret = 0;
3985         }
3986
3987         if (!ret)
3988                 sdkp->suspended = true;
3989
3990         return ret;
3991 }
3992
3993 static int sd_suspend_system(struct device *dev)
3994 {
3995         if (pm_runtime_suspended(dev))
3996                 return 0;
3997
3998         return sd_suspend_common(dev, false);
3999 }
4000
4001 static int sd_suspend_runtime(struct device *dev)
4002 {
4003         return sd_suspend_common(dev, true);
4004 }
4005
4006 static int sd_resume(struct device *dev, bool runtime)
4007 {
4008         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4009         int ret;
4010
4011         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4012                 return 0;
4013
4014         if (!sd_do_start_stop(sdkp->device, runtime)) {
4015                 sdkp->suspended = false;
4016                 return 0;
4017         }
4018
4019         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4020         ret = sd_start_stop_device(sdkp, 1);
4021         if (!ret) {
4022                 opal_unlock_from_suspend(sdkp->opal_dev);
4023                 sdkp->suspended = false;
4024         }
4025
4026         return ret;
4027 }
4028
4029 static int sd_resume_system(struct device *dev)
4030 {
4031         if (pm_runtime_suspended(dev)) {
4032                 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4033                 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4034
4035                 if (sdp && sdp->force_runtime_start_on_system_start)
4036                         pm_request_resume(dev);
4037
4038                 return 0;
4039         }
4040
4041         return sd_resume(dev, false);
4042 }
4043
4044 static int sd_resume_runtime(struct device *dev)
4045 {
4046         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4047         struct scsi_device *sdp;
4048
4049         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4050                 return 0;
4051
4052         sdp = sdkp->device;
4053
4054         if (sdp->ignore_media_change) {
4055                 /* clear the device's sense data */
4056                 static const u8 cmd[10] = { REQUEST_SENSE };
4057                 const struct scsi_exec_args exec_args = {
4058                         .req_flags = BLK_MQ_REQ_PM,
4059                 };
4060
4061                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4062                                      sdp->request_queue->rq_timeout, 1,
4063                                      &exec_args))
4064                         sd_printk(KERN_NOTICE, sdkp,
4065                                   "Failed to clear sense data\n");
4066         }
4067
4068         return sd_resume(dev, true);
4069 }
4070
4071 static const struct dev_pm_ops sd_pm_ops = {
4072         .suspend                = sd_suspend_system,
4073         .resume                 = sd_resume_system,
4074         .poweroff               = sd_suspend_system,
4075         .restore                = sd_resume_system,
4076         .runtime_suspend        = sd_suspend_runtime,
4077         .runtime_resume         = sd_resume_runtime,
4078 };
4079
4080 static struct scsi_driver sd_template = {
4081         .gendrv = {
4082                 .name           = "sd",
4083                 .owner          = THIS_MODULE,
4084                 .probe          = sd_probe,
4085                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
4086                 .remove         = sd_remove,
4087                 .shutdown       = sd_shutdown,
4088                 .pm             = &sd_pm_ops,
4089         },
4090         .rescan                 = sd_rescan,
4091         .init_command           = sd_init_command,
4092         .uninit_command         = sd_uninit_command,
4093         .done                   = sd_done,
4094         .eh_action              = sd_eh_action,
4095         .eh_reset               = sd_eh_reset,
4096 };
4097
4098 /**
4099  *      init_sd - entry point for this driver (both when built in or when
4100  *      a module).
4101  *
4102  *      Note: this function registers this driver with the scsi mid-level.
4103  **/
4104 static int __init init_sd(void)
4105 {
4106         int majors = 0, i, err;
4107
4108         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4109
4110         for (i = 0; i < SD_MAJORS; i++) {
4111                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4112                         continue;
4113                 majors++;
4114         }
4115
4116         if (!majors)
4117                 return -ENODEV;
4118
4119         err = class_register(&sd_disk_class);
4120         if (err)
4121                 goto err_out;
4122
4123         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4124         if (!sd_page_pool) {
4125                 printk(KERN_ERR "sd: can't init discard page pool\n");
4126                 err = -ENOMEM;
4127                 goto err_out_class;
4128         }
4129
4130         err = scsi_register_driver(&sd_template.gendrv);
4131         if (err)
4132                 goto err_out_driver;
4133
4134         return 0;
4135
4136 err_out_driver:
4137         mempool_destroy(sd_page_pool);
4138 err_out_class:
4139         class_unregister(&sd_disk_class);
4140 err_out:
4141         for (i = 0; i < SD_MAJORS; i++)
4142                 unregister_blkdev(sd_major(i), "sd");
4143         return err;
4144 }
4145
4146 /**
4147  *      exit_sd - exit point for this driver (when it is a module).
4148  *
4149  *      Note: this function unregisters this driver from the scsi mid-level.
4150  **/
4151 static void __exit exit_sd(void)
4152 {
4153         int i;
4154
4155         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4156
4157         scsi_unregister_driver(&sd_template.gendrv);
4158         mempool_destroy(sd_page_pool);
4159
4160         class_unregister(&sd_disk_class);
4161
4162         for (i = 0; i < SD_MAJORS; i++)
4163                 unregister_blkdev(sd_major(i), "sd");
4164 }
4165
4166 module_init(init_sd);
4167 module_exit(exit_sd);
4168
4169 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4170 {
4171         scsi_print_sense_hdr(sdkp->device,
4172                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4173 }
4174
4175 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4176 {
4177         const char *hb_string = scsi_hostbyte_string(result);
4178
4179         if (hb_string)
4180                 sd_printk(KERN_INFO, sdkp,
4181                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4182                           hb_string ? hb_string : "invalid",
4183                           "DRIVER_OK");
4184         else
4185                 sd_printk(KERN_INFO, sdkp,
4186                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4187                           msg, host_byte(result), "DRIVER_OK");
4188 }