sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtw_debug.h>
12 #include <rtl8723b_hal.h>
13 #include "hal_com_h2c.h"
14
15 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
16 {
17         u8 tmp, count = 0;
18
19         if (enable) {
20                 /*  8051 enable */
21                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
22                 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
23
24                 tmp = rtw_read8(padapter, REG_MCUFWDL);
25                 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
26
27                 do {
28                         tmp = rtw_read8(padapter, REG_MCUFWDL);
29                         if (tmp & 0x01)
30                                 break;
31                         rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
32                         msleep(1);
33                 } while (count++ < 100);
34
35                 /*  8051 reset */
36                 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
37                 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
38         } else {
39                 /*  MCU firmware download disable. */
40                 tmp = rtw_read8(padapter, REG_MCUFWDL);
41                 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
42         }
43 }
44
45 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
46 {
47         int ret = _SUCCESS;
48
49         u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
50         u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
51         u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
52         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
53         u32 remainSize_p1 = 0, remainSize_p2 = 0;
54         u8 *bufferPtr = buffer;
55         u32 i = 0, offset = 0;
56
57 /*      printk("====>%s %d\n", __func__, __LINE__); */
58
59         /* 3 Phase #1 */
60         blockCount_p1 = buffSize / blockSize_p1;
61         remainSize_p1 = buffSize % blockSize_p1;
62
63         for (i = 0; i < blockCount_p1; i++) {
64                 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
65                 if (ret == _FAIL) {
66                         printk("====>%s %d i:%d\n", __func__, __LINE__, i);
67                         goto exit;
68                 }
69         }
70
71         /* 3 Phase #2 */
72         if (remainSize_p1) {
73                 offset = blockCount_p1 * blockSize_p1;
74
75                 blockCount_p2 = remainSize_p1/blockSize_p2;
76                 remainSize_p2 = remainSize_p1%blockSize_p2;
77         }
78
79         /* 3 Phase #3 */
80         if (remainSize_p2) {
81                 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
82
83                 blockCount_p3 = remainSize_p2 / blockSize_p3;
84
85                 for (i = 0; i < blockCount_p3; i++) {
86                         ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
87
88                         if (ret == _FAIL) {
89                                 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
90                                 goto exit;
91                         }
92                 }
93         }
94 exit:
95         return ret;
96 }
97
98 static int _PageWrite(
99         struct adapter *padapter,
100         u32 page,
101         void *buffer,
102         u32 size
103 )
104 {
105         u8 value8;
106         u8 u8Page = (u8) (page & 0x07);
107
108         value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
109         rtw_write8(padapter, REG_MCUFWDL+2, value8);
110
111         return _BlockWrite(padapter, buffer, size);
112 }
113
114 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
115 {
116         /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
117         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
118         int ret = _SUCCESS;
119         u32 pageNums, remainSize;
120         u32 page, offset;
121         u8 *bufferPtr = buffer;
122
123         pageNums = size / MAX_DLFW_PAGE_SIZE;
124         remainSize = size % MAX_DLFW_PAGE_SIZE;
125
126         for (page = 0; page < pageNums; page++) {
127                 offset = page * MAX_DLFW_PAGE_SIZE;
128                 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
129
130                 if (ret == _FAIL) {
131                         printk("====>%s %d\n", __func__, __LINE__);
132                         goto exit;
133                 }
134         }
135
136         if (remainSize) {
137                 offset = pageNums * MAX_DLFW_PAGE_SIZE;
138                 page = pageNums;
139                 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
140
141                 if (ret == _FAIL) {
142                         printk("====>%s %d\n", __func__, __LINE__);
143                         goto exit;
144                 }
145         }
146
147 exit:
148         return ret;
149 }
150
151 void _8051Reset8723(struct adapter *padapter)
152 {
153         u8 cpu_rst;
154         u8 io_rst;
155
156
157         /*  Reset 8051(WLMCU) IO wrapper */
158         /*  0x1c[8] = 0 */
159         /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
160         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
161         io_rst &= ~BIT(0);
162         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
163
164         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
165         cpu_rst &= ~BIT(2);
166         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
167
168         /*  Enable 8051 IO wrapper */
169         /*  0x1c[8] = 1 */
170         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
171         io_rst |= BIT(0);
172         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
173
174         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
175         cpu_rst |= BIT(2);
176         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
177 }
178
179 u8 g_fwdl_chksum_fail;
180
181 static s32 polling_fwdl_chksum(
182         struct adapter *adapter, u32 min_cnt, u32 timeout_ms
183 )
184 {
185         s32 ret = _FAIL;
186         u32 value32;
187         unsigned long start = jiffies;
188         u32 cnt = 0;
189
190         /* polling CheckSum report */
191         do {
192                 cnt++;
193                 value32 = rtw_read32(adapter, REG_MCUFWDL);
194                 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
195                         break;
196                 yield();
197         } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
198
199         if (!(value32 & FWDL_ChkSum_rpt)) {
200                 goto exit;
201         }
202
203         if (g_fwdl_chksum_fail) {
204                 g_fwdl_chksum_fail--;
205                 goto exit;
206         }
207
208         ret = _SUCCESS;
209
210 exit:
211
212         return ret;
213 }
214
215 u8 g_fwdl_wintint_rdy_fail;
216
217 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
218 {
219         s32 ret = _FAIL;
220         u32 value32;
221         unsigned long start = jiffies;
222         u32 cnt = 0;
223
224         value32 = rtw_read32(adapter, REG_MCUFWDL);
225         value32 |= MCUFWDL_RDY;
226         value32 &= ~WINTINI_RDY;
227         rtw_write32(adapter, REG_MCUFWDL, value32);
228
229         _8051Reset8723(adapter);
230
231         /*  polling for FW ready */
232         do {
233                 cnt++;
234                 value32 = rtw_read32(adapter, REG_MCUFWDL);
235                 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
236                         break;
237                 yield();
238         } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
239
240         if (!(value32 & WINTINI_RDY)) {
241                 goto exit;
242         }
243
244         if (g_fwdl_wintint_rdy_fail) {
245                 g_fwdl_wintint_rdy_fail--;
246                 goto exit;
247         }
248
249         ret = _SUCCESS;
250
251 exit:
252
253         return ret;
254 }
255
256 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
257
258 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
259 {
260         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
261         u8 u1bTmp;
262         u8 Delay = 100;
263
264         if (
265                 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
266         ) { /*  after 88C Fw v33.1 */
267                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
268                 rtw_write8(padapter, REG_HMETFR+3, 0x20);
269
270                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
271                 while (u1bTmp & BIT2) {
272                         Delay--;
273                         if (Delay == 0)
274                                 break;
275                         udelay(50);
276                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
277                 }
278
279                 if (Delay == 0) {
280                         /* force firmware reset */
281                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
282                         rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
283                 }
284         }
285 }
286
287 /*  */
288 /*      Description: */
289 /*              Download 8192C firmware code. */
290 /*  */
291 /*  */
292 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
293 {
294         s32 rtStatus = _SUCCESS;
295         u8 write_fw = 0;
296         unsigned long fwdl_start_time;
297         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
298         struct rt_firmware *pFirmware;
299         struct rt_firmware *pBTFirmware;
300         struct rt_firmware_hdr *pFwHdr = NULL;
301         u8 *pFirmwareBuf;
302         u32 FirmwareLen;
303         const struct firmware *fw;
304         struct device *device = dvobj_to_dev(padapter->dvobj);
305         u8 *fwfilepath;
306         struct dvobj_priv *psdpriv = padapter->dvobj;
307         struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
308         u8 tmp_ps;
309
310         pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
311         if (!pFirmware)
312                 return _FAIL;
313         pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
314         if (!pBTFirmware) {
315                 kfree(pFirmware);
316                 return _FAIL;
317         }
318         tmp_ps = rtw_read8(padapter, 0xa3);
319         tmp_ps &= 0xf8;
320         tmp_ps |= 0x02;
321         /* 1. write 0xA3[:2:0] = 3b'010 */
322         rtw_write8(padapter, 0xa3, tmp_ps);
323         /* 2. read power_state = 0xA0[1:0] */
324         tmp_ps = rtw_read8(padapter, 0xa0);
325         tmp_ps &= 0x03;
326         if (tmp_ps != 0x01)
327                 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
328
329         fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
330
331         pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
332
333         rtStatus = request_firmware(&fw, fwfilepath, device);
334         if (rtStatus) {
335                 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
336                 rtStatus = _FAIL;
337                 goto exit;
338         }
339
340         if (!fw) {
341                 pr_err("Firmware %s not available\n", fwfilepath);
342                 rtStatus = _FAIL;
343                 goto exit;
344         }
345
346         if (fw->size > FW_8723B_SIZE) {
347                 rtStatus = _FAIL;
348                 goto exit;
349         }
350
351         pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
352         if (!pFirmware->fw_buffer_sz) {
353                 rtStatus = _FAIL;
354                 goto exit;
355         }
356
357         pFirmware->fw_length = fw->size;
358         release_firmware(fw);
359         if (pFirmware->fw_length > FW_8723B_SIZE) {
360                 rtStatus = _FAIL;
361                 netdev_emerg(padapter->pnetdev,
362                              "Firmware size:%u exceed %u\n",
363                              pFirmware->fw_length, FW_8723B_SIZE);
364                 goto release_fw1;
365         }
366
367         pFirmwareBuf = pFirmware->fw_buffer_sz;
368         FirmwareLen = pFirmware->fw_length;
369
370         /*  To Check Fw header. Added by tynli. 2009.12.04. */
371         pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
372
373         pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
374         pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
375         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
376
377         if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
378                 /*  Shift 32 bytes for FW header */
379                 pFirmwareBuf = pFirmwareBuf + 32;
380                 FirmwareLen = FirmwareLen - 32;
381         }
382
383         /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
384         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
385         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
386                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
387                 rtl8723b_FirmwareSelfReset(padapter);
388         }
389
390         _FWDownloadEnable(padapter, true);
391         fwdl_start_time = jiffies;
392         while (
393                 !padapter->bDriverStopped &&
394                 !padapter->bSurpriseRemoved &&
395                 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
396         ) {
397                 /* reset FWDL chksum */
398                 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
399
400                 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
401                 if (rtStatus != _SUCCESS)
402                         continue;
403
404                 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
405                 if (rtStatus == _SUCCESS)
406                         break;
407         }
408         _FWDownloadEnable(padapter, false);
409         if (_SUCCESS != rtStatus)
410                 goto fwdl_stat;
411
412         rtStatus = _FWFreeToGo(padapter, 10, 200);
413         if (_SUCCESS != rtStatus)
414                 goto fwdl_stat;
415
416 fwdl_stat:
417
418 exit:
419         kfree(pFirmware->fw_buffer_sz);
420         kfree(pFirmware);
421 release_fw1:
422         kfree(pBTFirmware);
423         return rtStatus;
424 }
425
426 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
427 {
428         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
429
430         /*  Init Fw LPS related. */
431         adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
432
433         /* Init H2C cmd. */
434         rtw_write8(padapter, REG_HMETFR, 0x0f);
435
436         /*  Init H2C counter. by tynli. 2009.12.09. */
437         pHalData->LastHMEBoxNum = 0;
438 /* pHalData->H2CQueueHead = 0; */
439 /* pHalData->H2CQueueTail = 0; */
440 /* pHalData->H2CStopInsertQueue = false; */
441 }
442
443 static void rtl8723b_free_hal_data(struct adapter *padapter)
444 {
445 }
446
447 /*  */
448 /*                              Efuse related code */
449 /*  */
450 static u8 hal_EfuseSwitchToBank(
451         struct adapter *padapter, u8 bank, bool bPseudoTest
452 )
453 {
454         u8 bRet = false;
455         u32 value32 = 0;
456 #ifdef HAL_EFUSE_MEMORY
457         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
458         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
459 #endif
460
461
462         if (bPseudoTest) {
463 #ifdef HAL_EFUSE_MEMORY
464                 pEfuseHal->fakeEfuseBank = bank;
465 #else
466                 fakeEfuseBank = bank;
467 #endif
468                 bRet = true;
469         } else {
470                 value32 = rtw_read32(padapter, EFUSE_TEST);
471                 bRet = true;
472                 switch (bank) {
473                 case 0:
474                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
475                         break;
476                 case 1:
477                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
478                         break;
479                 case 2:
480                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
481                         break;
482                 case 3:
483                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
484                         break;
485                 default:
486                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
487                         bRet = false;
488                         break;
489                 }
490                 rtw_write32(padapter, EFUSE_TEST, value32);
491         }
492
493         return bRet;
494 }
495
496 static void Hal_GetEfuseDefinition(
497         struct adapter *padapter,
498         u8 efuseType,
499         u8 type,
500         void *pOut,
501         bool bPseudoTest
502 )
503 {
504         switch (type) {
505         case TYPE_EFUSE_MAX_SECTION:
506                 {
507                         u8 *pMax_section;
508                         pMax_section = pOut;
509
510                         if (efuseType == EFUSE_WIFI)
511                                 *pMax_section = EFUSE_MAX_SECTION_8723B;
512                         else
513                                 *pMax_section = EFUSE_BT_MAX_SECTION;
514                 }
515                 break;
516
517         case TYPE_EFUSE_REAL_CONTENT_LEN:
518                 {
519                         u16 *pu2Tmp;
520                         pu2Tmp = pOut;
521
522                         if (efuseType == EFUSE_WIFI)
523                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
524                         else
525                                 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
526                 }
527                 break;
528
529         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
530                 {
531                         u16 *pu2Tmp;
532                         pu2Tmp = pOut;
533
534                         if (efuseType == EFUSE_WIFI)
535                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
536                         else
537                                 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
538                 }
539                 break;
540
541         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
542                 {
543                         u16 *pu2Tmp;
544                         pu2Tmp = pOut;
545
546                         if (efuseType == EFUSE_WIFI)
547                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
548                         else
549                                 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
550                 }
551                 break;
552
553         case TYPE_EFUSE_MAP_LEN:
554                 {
555                         u16 *pu2Tmp;
556                         pu2Tmp = pOut;
557
558                         if (efuseType == EFUSE_WIFI)
559                                 *pu2Tmp = EFUSE_MAX_MAP_LEN;
560                         else
561                                 *pu2Tmp = EFUSE_BT_MAP_LEN;
562                 }
563                 break;
564
565         case TYPE_EFUSE_PROTECT_BYTES_BANK:
566                 {
567                         u8 *pu1Tmp;
568                         pu1Tmp = pOut;
569
570                         if (efuseType == EFUSE_WIFI)
571                                 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
572                         else
573                                 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
574                 }
575                 break;
576
577         case TYPE_EFUSE_CONTENT_LEN_BANK:
578                 {
579                         u16 *pu2Tmp;
580                         pu2Tmp = pOut;
581
582                         if (efuseType == EFUSE_WIFI)
583                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
584                         else
585                                 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
586                 }
587                 break;
588
589         default:
590                 {
591                         u8 *pu1Tmp;
592                         pu1Tmp = pOut;
593                         *pu1Tmp = 0;
594                 }
595                 break;
596         }
597 }
598
599 #define VOLTAGE_V25             0x03
600
601 /*  */
602 /*      The following is for compile ok */
603 /*      That should be merged with the original in the future */
604 /*  */
605 #define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
606 #define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
607
608 /*  */
609 static void Hal_BT_EfusePowerSwitch(
610         struct adapter *padapter, u8 bWrite, u8 PwrState
611 )
612 {
613         u8 tempval;
614         if (PwrState) {
615                 /*  enable BT power cut */
616                 /*  0x6A[14] = 1 */
617                 tempval = rtw_read8(padapter, 0x6B);
618                 tempval |= BIT(6);
619                 rtw_write8(padapter, 0x6B, tempval);
620
621                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
622                 /*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
623                 msleep(1);
624                 /*  disable BT output isolation */
625                 /*  0x6A[15] = 0 */
626                 tempval = rtw_read8(padapter, 0x6B);
627                 tempval &= ~BIT(7);
628                 rtw_write8(padapter, 0x6B, tempval);
629         } else {
630                 /*  enable BT output isolation */
631                 /*  0x6A[15] = 1 */
632                 tempval = rtw_read8(padapter, 0x6B);
633                 tempval |= BIT(7);
634                 rtw_write8(padapter, 0x6B, tempval);
635
636                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
637                 /*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
638
639                 /*  disable BT power cut */
640                 /*  0x6A[14] = 1 */
641                 tempval = rtw_read8(padapter, 0x6B);
642                 tempval &= ~BIT(6);
643                 rtw_write8(padapter, 0x6B, tempval);
644         }
645
646 }
647 static void Hal_EfusePowerSwitch(
648         struct adapter *padapter, u8 bWrite, u8 PwrState
649 )
650 {
651         u8 tempval;
652         u16 tmpV16;
653
654
655         if (PwrState) {
656                 /*  To avoid cannot access efuse registers after disable/enable several times during DTM test. */
657                 /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
658                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
659                 if (tempval & BIT(0)) { /*  SDIO local register is suspend */
660                         u8 count = 0;
661
662
663                         tempval &= ~BIT(0);
664                         rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
665
666                         /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
667                         do {
668                                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
669                                 tempval &= 0x3;
670                                 if (tempval == 0x02)
671                                         break;
672
673                                 count++;
674                                 if (count >= 100)
675                                         break;
676
677                                 mdelay(10);
678                         } while (1);
679                 }
680
681                 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
682
683                 /*  Reset: 0x0000h[28], default valid */
684                 tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
685                 if (!(tmpV16 & FEN_ELDR)) {
686                         tmpV16 |= FEN_ELDR;
687                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
688                 }
689
690                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
691                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
692                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
693                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
694                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
695                 }
696
697                 if (bWrite) {
698                         /*  Enable LDO 2.5V before read/write action */
699                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
700                         tempval &= 0x0F;
701                         tempval |= (VOLTAGE_V25 << 4);
702                         rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
703
704                         /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
705                 }
706         } else {
707                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
708
709                 if (bWrite) {
710                         /*  Disable LDO 2.5V after read/write action */
711                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
712                         rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
713                 }
714
715         }
716 }
717
718 static void hal_ReadEFuse_WiFi(
719         struct adapter *padapter,
720         u16 _offset,
721         u16 _size_byte,
722         u8 *pbuf,
723         bool bPseudoTest
724 )
725 {
726 #ifdef HAL_EFUSE_MEMORY
727         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
728         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
729 #endif
730         u8 *efuseTbl = NULL;
731         u16 eFuse_Addr = 0;
732         u8 offset, wden;
733         u8 efuseHeader, efuseExtHdr, efuseData;
734         u16 i, total, used;
735         u8 efuse_usage = 0;
736
737         /*  */
738         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
739         /*  */
740         if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
741                 return;
742
743         efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
744         if (!efuseTbl)
745                 return;
746
747         /*  0xff will be efuse default value instead of 0x00. */
748         memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
749
750         /*  switch bank back to bank 0 for later BT and wifi use. */
751         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
752
753         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
754                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
755                 if (efuseHeader == 0xFF)
756                         break;
757
758                 /*  Check PG header for section num. */
759                 if (EXT_HEADER(efuseHeader)) { /* extended header */
760                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
761
762                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
763                         if (ALL_WORDS_DISABLED(efuseExtHdr))
764                                 continue;
765
766                         offset |= ((efuseExtHdr & 0xF0) >> 1);
767                         wden = (efuseExtHdr & 0x0F);
768                 } else {
769                         offset = ((efuseHeader >> 4) & 0x0f);
770                         wden = (efuseHeader & 0x0f);
771                 }
772
773                 if (offset < EFUSE_MAX_SECTION_8723B) {
774                         u16 addr;
775                         /*  Get word enable value from PG header */
776
777                         addr = offset * PGPKT_DATA_SIZE;
778                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
779                                 /*  Check word enable condition in the section */
780                                 if (!(wden & (0x01<<i))) {
781                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
782                                         efuseTbl[addr] = efuseData;
783
784                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
785                                         efuseTbl[addr+1] = efuseData;
786                                 }
787                                 addr += 2;
788                         }
789                 } else {
790                         eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
791                 }
792         }
793
794         /*  Copy from Efuse map to output pointer memory!!! */
795         for (i = 0; i < _size_byte; i++)
796                 pbuf[i] = efuseTbl[_offset+i];
797
798         /*  Calculate Efuse utilization */
799         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
800         used = eFuse_Addr - 1;
801         efuse_usage = (u8)((used*100)/total);
802         if (bPseudoTest) {
803 #ifdef HAL_EFUSE_MEMORY
804                 pEfuseHal->fakeEfuseUsedBytes = used;
805 #else
806                 fakeEfuseUsedBytes = used;
807 #endif
808         } else {
809                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
810                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
811         }
812
813         kfree(efuseTbl);
814 }
815
816 static void hal_ReadEFuse_BT(
817         struct adapter *padapter,
818         u16 _offset,
819         u16 _size_byte,
820         u8 *pbuf,
821         bool bPseudoTest
822 )
823 {
824 #ifdef HAL_EFUSE_MEMORY
825         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
826         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
827 #endif
828         u8 *efuseTbl;
829         u8 bank;
830         u16 eFuse_Addr;
831         u8 efuseHeader, efuseExtHdr, efuseData;
832         u8 offset, wden;
833         u16 i, total, used;
834         u8 efuse_usage;
835
836
837         /*  */
838         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
839         /*  */
840         if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
841                 return;
842
843         efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
844         if (!efuseTbl)
845                 return;
846
847         /*  0xff will be efuse default value instead of 0x00. */
848         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
849
850         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
851
852         for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
853                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
854                         goto exit;
855
856                 eFuse_Addr = 0;
857
858                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
859                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
860                         if (efuseHeader == 0xFF)
861                                 break;
862
863                         /*  Check PG header for section num. */
864                         if (EXT_HEADER(efuseHeader)) { /* extended header */
865                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
866
867                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
868                                 if (ALL_WORDS_DISABLED(efuseExtHdr))
869                                         continue;
870
871
872                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
873                                 wden = (efuseExtHdr & 0x0F);
874                         } else {
875                                 offset = ((efuseHeader >> 4) & 0x0f);
876                                 wden = (efuseHeader & 0x0f);
877                         }
878
879                         if (offset < EFUSE_BT_MAX_SECTION) {
880                                 u16 addr;
881
882                                 addr = offset * PGPKT_DATA_SIZE;
883                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
884                                         /*  Check word enable condition in the section */
885                                         if (!(wden & (0x01<<i))) {
886                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
887                                                 efuseTbl[addr] = efuseData;
888
889                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
890                                                 efuseTbl[addr+1] = efuseData;
891                                         }
892                                         addr += 2;
893                                 }
894                         } else {
895                                 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
896                         }
897                 }
898
899                 if ((eFuse_Addr - 1) < total)
900                         break;
901
902         }
903
904         /*  switch bank back to bank 0 for later BT and wifi use. */
905         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
906
907         /*  Copy from Efuse map to output pointer memory!!! */
908         for (i = 0; i < _size_byte; i++)
909                 pbuf[i] = efuseTbl[_offset+i];
910
911         /*  */
912         /*  Calculate Efuse utilization. */
913         /*  */
914         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
915         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
916         efuse_usage = (u8)((used*100)/total);
917         if (bPseudoTest) {
918 #ifdef HAL_EFUSE_MEMORY
919                 pEfuseHal->fakeBTEfuseUsedBytes = used;
920 #else
921                 fakeBTEfuseUsedBytes = used;
922 #endif
923         } else {
924                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
925                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
926         }
927
928 exit:
929         kfree(efuseTbl);
930 }
931
932 static void Hal_ReadEFuse(
933         struct adapter *padapter,
934         u8 efuseType,
935         u16 _offset,
936         u16 _size_byte,
937         u8 *pbuf,
938         bool bPseudoTest
939 )
940 {
941         if (efuseType == EFUSE_WIFI)
942                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
943         else
944                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
945 }
946
947 static u16 hal_EfuseGetCurrentSize_WiFi(
948         struct adapter *padapter, bool bPseudoTest
949 )
950 {
951 #ifdef HAL_EFUSE_MEMORY
952         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
953         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
954 #endif
955         u16 efuse_addr = 0;
956         u16 start_addr = 0; /*  for debug */
957         u8 hoffset = 0, hworden = 0;
958         u8 efuse_data, word_cnts = 0;
959         u32 count = 0; /*  for debug */
960
961
962         if (bPseudoTest) {
963 #ifdef HAL_EFUSE_MEMORY
964                 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
965 #else
966                 efuse_addr = (u16)fakeEfuseUsedBytes;
967 #endif
968         } else
969                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
970
971         start_addr = efuse_addr;
972
973         /*  switch bank back to bank 0 for later BT and wifi use. */
974         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
975
976         count = 0;
977         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
978                 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
979                         goto error;
980
981                 if (efuse_data == 0xFF)
982                         break;
983
984                 if ((start_addr != 0) && (efuse_addr == start_addr)) {
985                         count++;
986
987                         efuse_data = 0xFF;
988                         if (count < 4) {
989                                 /*  try again! */
990
991                                 if (count > 2) {
992                                         /*  try again form address 0 */
993                                         efuse_addr = 0;
994                                         start_addr = 0;
995                                 }
996
997                                 continue;
998                         }
999
1000                         goto error;
1001                 }
1002
1003                 if (EXT_HEADER(efuse_data)) {
1004                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1005                         efuse_addr++;
1006                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1007                         if (ALL_WORDS_DISABLED(efuse_data))
1008                                 continue;
1009
1010                         hoffset |= ((efuse_data & 0xF0) >> 1);
1011                         hworden = efuse_data & 0x0F;
1012                 } else {
1013                         hoffset = (efuse_data>>4) & 0x0F;
1014                         hworden = efuse_data & 0x0F;
1015                 }
1016
1017                 word_cnts = Efuse_CalculateWordCnts(hworden);
1018                 efuse_addr += (word_cnts*2)+1;
1019         }
1020
1021         if (bPseudoTest) {
1022 #ifdef HAL_EFUSE_MEMORY
1023                 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1024 #else
1025                 fakeEfuseUsedBytes = efuse_addr;
1026 #endif
1027         } else
1028                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1029
1030         goto exit;
1031
1032 error:
1033         /*  report max size to prevent write efuse */
1034         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1035
1036 exit:
1037
1038         return efuse_addr;
1039 }
1040
1041 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1042 {
1043 #ifdef HAL_EFUSE_MEMORY
1044         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1045         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1046 #endif
1047         u16 btusedbytes;
1048         u16 efuse_addr;
1049         u8 bank, startBank;
1050         u8 hoffset = 0, hworden = 0;
1051         u8 efuse_data, word_cnts = 0;
1052         u16 retU2 = 0;
1053
1054         if (bPseudoTest) {
1055 #ifdef HAL_EFUSE_MEMORY
1056                 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1057 #else
1058                 btusedbytes = fakeBTEfuseUsedBytes;
1059 #endif
1060         } else
1061                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1062
1063         efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1064         startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1065
1066         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1067
1068         for (bank = startBank; bank < 3; bank++) {
1069                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1070                         /* bank = EFUSE_MAX_BANK; */
1071                         break;
1072
1073                 /*  only when bank is switched we have to reset the efuse_addr. */
1074                 if (bank != startBank)
1075                         efuse_addr = 0;
1076 #if 1
1077
1078                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1079                         if (efuse_OneByteRead(padapter, efuse_addr,
1080                                               &efuse_data, bPseudoTest) == false)
1081                                 /* bank = EFUSE_MAX_BANK; */
1082                                 break;
1083
1084                         if (efuse_data == 0xFF)
1085                                 break;
1086
1087                         if (EXT_HEADER(efuse_data)) {
1088                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1089                                 efuse_addr++;
1090                                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1091
1092                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1093                                         efuse_addr++;
1094                                         continue;
1095                                 }
1096
1097 /*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1098                                 hoffset |= ((efuse_data & 0xF0) >> 1);
1099                                 hworden = efuse_data & 0x0F;
1100                         } else {
1101                                 hoffset = (efuse_data>>4) & 0x0F;
1102                                 hworden =  efuse_data & 0x0F;
1103                         }
1104
1105                         word_cnts = Efuse_CalculateWordCnts(hworden);
1106                         /* read next header */
1107                         efuse_addr += (word_cnts*2)+1;
1108                 }
1109 #else
1110         while (
1111                 bContinual &&
1112                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1113                 AVAILABLE_EFUSE_ADDR(efuse_addr)
1114         ) {
1115                         if (efuse_data != 0xFF) {
1116                                 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1117                                         hoffset = efuse_data;
1118                                         efuse_addr++;
1119                                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1120                                         if ((efuse_data & 0x0F) == 0x0F) {
1121                                                 efuse_addr++;
1122                                                 continue;
1123                                         } else {
1124                                                 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1125                                                 hworden = efuse_data & 0x0F;
1126                                         }
1127                                 } else {
1128                                         hoffset = (efuse_data>>4) & 0x0F;
1129                                         hworden =  efuse_data & 0x0F;
1130                                 }
1131                                 word_cnts = Efuse_CalculateWordCnts(hworden);
1132                                 /* read next header */
1133                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
1134                         } else
1135                                 bContinual = false;
1136                 }
1137 #endif
1138
1139
1140                 /*  Check if we need to check next bank efuse */
1141                 if (efuse_addr < retU2)
1142                         break; /*  don't need to check next bank. */
1143         }
1144
1145         retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1146         if (bPseudoTest) {
1147                 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1148         } else {
1149                 pEfuseHal->BTEfuseUsedBytes = retU2;
1150         }
1151
1152         return retU2;
1153 }
1154
1155 static u16 Hal_EfuseGetCurrentSize(
1156         struct adapter *padapter, u8 efuseType, bool bPseudoTest
1157 )
1158 {
1159         u16 ret = 0;
1160
1161         if (efuseType == EFUSE_WIFI)
1162                 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1163         else
1164                 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1165
1166         return ret;
1167 }
1168
1169 static u8 Hal_EfuseWordEnableDataWrite(
1170         struct adapter *padapter,
1171         u16 efuse_addr,
1172         u8 word_en,
1173         u8 *data,
1174         bool bPseudoTest
1175 )
1176 {
1177         u16 tmpaddr = 0;
1178         u16 start_addr = efuse_addr;
1179         u8 badworden = 0x0F;
1180         u8 tmpdata[PGPKT_DATA_SIZE];
1181
1182         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1183
1184         if (!(word_en & BIT(0))) {
1185                 tmpaddr = start_addr;
1186                 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1187                 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1188
1189                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1190                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1191                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1192                         badworden &= (~BIT(0));
1193                 }
1194         }
1195         if (!(word_en & BIT(1))) {
1196                 tmpaddr = start_addr;
1197                 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1198                 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1199
1200                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1201                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1202                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1203                         badworden &= (~BIT(1));
1204                 }
1205         }
1206
1207         if (!(word_en & BIT(2))) {
1208                 tmpaddr = start_addr;
1209                 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1210                 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1211
1212                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1213                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1214                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1215                         badworden &= (~BIT(2));
1216                 }
1217         }
1218
1219         if (!(word_en & BIT(3))) {
1220                 tmpaddr = start_addr;
1221                 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1222                 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1223
1224                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1225                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1226                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1227                         badworden &= (~BIT(3));
1228                 }
1229         }
1230
1231         return badworden;
1232 }
1233
1234 static s32 Hal_EfusePgPacketRead(
1235         struct adapter *padapter,
1236         u8 offset,
1237         u8 *data,
1238         bool bPseudoTest
1239 )
1240 {
1241         u8 efuse_data, word_cnts = 0;
1242         u16 efuse_addr = 0;
1243         u8 hoffset = 0, hworden = 0;
1244         u8 i;
1245         u8 max_section = 0;
1246         s32     ret;
1247
1248
1249         if (!data)
1250                 return false;
1251
1252         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1253         if (offset > max_section)
1254                 return false;
1255
1256         memset(data, 0xFF, PGPKT_DATA_SIZE);
1257         ret = true;
1258
1259         /*  */
1260         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1261         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1262         /*  By pass right now. 2009.02.19. */
1263         /*  */
1264         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1265                 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1266                         ret = false;
1267                         break;
1268                 }
1269
1270                 if (efuse_data == 0xFF)
1271                         break;
1272
1273                 if (EXT_HEADER(efuse_data)) {
1274                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1275                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1276                         if (ALL_WORDS_DISABLED(efuse_data))
1277                                 continue;
1278
1279                         hoffset |= ((efuse_data & 0xF0) >> 1);
1280                         hworden = efuse_data & 0x0F;
1281                 } else {
1282                         hoffset = (efuse_data>>4) & 0x0F;
1283                         hworden =  efuse_data & 0x0F;
1284                 }
1285
1286                 if (hoffset == offset) {
1287                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1288                                 /*  Check word enable condition in the section */
1289                                 if (!(hworden & (0x01<<i))) {
1290                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1291                                         data[i*2] = efuse_data;
1292
1293                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1294                                         data[(i*2)+1] = efuse_data;
1295                                 }
1296                         }
1297                 } else {
1298                         word_cnts = Efuse_CalculateWordCnts(hworden);
1299                         efuse_addr += word_cnts*2;
1300                 }
1301         }
1302
1303         return ret;
1304 }
1305
1306 static u8 hal_EfusePgCheckAvailableAddr(
1307         struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1308 )
1309 {
1310         u16 max_available = 0;
1311         u16 current_size;
1312
1313
1314         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1315
1316         current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1317         if (current_size >= max_available)
1318                 return false;
1319
1320         return true;
1321 }
1322
1323 static void hal_EfuseConstructPGPkt(
1324         u8 offset,
1325         u8 word_en,
1326         u8 *pData,
1327         struct pgpkt_struct *pTargetPkt
1328 )
1329 {
1330         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1331         pTargetPkt->offset = offset;
1332         pTargetPkt->word_en = word_en;
1333         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1334         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1335 }
1336
1337 static u8 hal_EfusePartialWriteCheck(
1338         struct adapter *padapter,
1339         u8 efuseType,
1340         u16 *pAddr,
1341         struct pgpkt_struct *pTargetPkt,
1342         u8 bPseudoTest
1343 )
1344 {
1345         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1346         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1347         u8 bRet = false;
1348         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1349         u8 efuse_data = 0;
1350
1351         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1352         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1353
1354         if (efuseType == EFUSE_WIFI) {
1355                 if (bPseudoTest) {
1356 #ifdef HAL_EFUSE_MEMORY
1357                         startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1358 #else
1359                         startAddr = (u16)fakeEfuseUsedBytes;
1360 #endif
1361                 } else
1362                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1363         } else {
1364                 if (bPseudoTest) {
1365 #ifdef HAL_EFUSE_MEMORY
1366                         startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1367 #else
1368                         startAddr = (u16)fakeBTEfuseUsedBytes;
1369 #endif
1370                 } else
1371                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1372         }
1373         startAddr %= efuse_max;
1374
1375         while (1) {
1376                 if (startAddr >= efuse_max_available_len) {
1377                         bRet = false;
1378                         break;
1379                 }
1380
1381                 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1382 #if 1
1383                         bRet = false;
1384                         break;
1385 #else
1386                         if (EXT_HEADER(efuse_data)) {
1387                                 cur_header = efuse_data;
1388                                 startAddr++;
1389                                 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1390                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1391                                         bRet = false;
1392                                         break;
1393                                 } else {
1394                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1395                                         curPkt.word_en = efuse_data & 0x0F;
1396                                 }
1397                         } else {
1398                                 cur_header  =  efuse_data;
1399                                 curPkt.offset = (cur_header>>4) & 0x0F;
1400                                 curPkt.word_en = cur_header & 0x0F;
1401                         }
1402
1403                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1404                         /*  if same header is found but no data followed */
1405                         /*  write some part of data followed by the header. */
1406                         if (
1407                                 (curPkt.offset == pTargetPkt->offset) &&
1408                                 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1409                                 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1410                         ) {
1411                                 /*  Here to write partial data */
1412                                 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1413                                 if (badworden != 0x0F) {
1414                                         u32 PgWriteSuccess = 0;
1415                                         /*  if write fail on some words, write these bad words again */
1416                                         if (efuseType == EFUSE_WIFI)
1417                                                 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1418                                         else
1419                                                 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1420
1421                                         if (!PgWriteSuccess) {
1422                                                 bRet = false;   /*  write fail, return */
1423                                                 break;
1424                                         }
1425                                 }
1426                                 /*  partial write ok, update the target packet for later use */
1427                                 for (i = 0; i < 4; i++) {
1428                                         if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1429                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1430                                         }
1431                                 }
1432                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1433                         }
1434                         /*  read from next header */
1435                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1436 #endif
1437                 } else {
1438                         /*  not used header, 0xff */
1439                         *pAddr = startAddr;
1440                         bRet = true;
1441                         break;
1442                 }
1443         }
1444
1445         return bRet;
1446 }
1447
1448 static u8 hal_EfusePgPacketWrite1ByteHeader(
1449         struct adapter *padapter,
1450         u8 efuseType,
1451         u16 *pAddr,
1452         struct pgpkt_struct *pTargetPkt,
1453         u8 bPseudoTest
1454 )
1455 {
1456         u8 pg_header = 0, tmp_header = 0;
1457         u16 efuse_addr = *pAddr;
1458         u8 repeatcnt = 0;
1459
1460         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1461
1462         do {
1463                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1464                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1465                 if (tmp_header != 0xFF)
1466                         break;
1467                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1468                         return false;
1469
1470         } while (1);
1471
1472         if (tmp_header != pg_header)
1473                 return false;
1474
1475         *pAddr = efuse_addr;
1476
1477         return true;
1478 }
1479
1480 static u8 hal_EfusePgPacketWrite2ByteHeader(
1481         struct adapter *padapter,
1482         u8 efuseType,
1483         u16 *pAddr,
1484         struct pgpkt_struct *pTargetPkt,
1485         u8 bPseudoTest
1486 )
1487 {
1488         u16 efuse_addr, efuse_max_available_len = 0;
1489         u8 pg_header = 0, tmp_header = 0;
1490         u8 repeatcnt = 0;
1491
1492         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1493
1494         efuse_addr = *pAddr;
1495         if (efuse_addr >= efuse_max_available_len)
1496                 return false;
1497
1498         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1499
1500         do {
1501                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1502                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1503                 if (tmp_header != 0xFF)
1504                         break;
1505                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1506                         return false;
1507
1508         } while (1);
1509
1510         if (tmp_header != pg_header)
1511                 return false;
1512
1513         /*  to write ext_header */
1514         efuse_addr++;
1515         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1516
1517         do {
1518                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1519                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1520                 if (tmp_header != 0xFF)
1521                         break;
1522                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1523                         return false;
1524
1525         } while (1);
1526
1527         if (tmp_header != pg_header) /* offset PG fail */
1528                 return false;
1529
1530         *pAddr = efuse_addr;
1531
1532         return true;
1533 }
1534
1535 static u8 hal_EfusePgPacketWriteHeader(
1536         struct adapter *padapter,
1537         u8 efuseType,
1538         u16 *pAddr,
1539         struct pgpkt_struct *pTargetPkt,
1540         u8 bPseudoTest
1541 )
1542 {
1543         u8 bRet = false;
1544
1545         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1546                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1547         else
1548                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1549
1550         return bRet;
1551 }
1552
1553 static u8 hal_EfusePgPacketWriteData(
1554         struct adapter *padapter,
1555         u8 efuseType,
1556         u16 *pAddr,
1557         struct pgpkt_struct *pTargetPkt,
1558         u8 bPseudoTest
1559 )
1560 {
1561         u16 efuse_addr;
1562         u8 badworden;
1563
1564
1565         efuse_addr = *pAddr;
1566         badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1567         if (badworden != 0x0F)
1568                 return false;
1569
1570         return true;
1571 }
1572
1573 static s32 Hal_EfusePgPacketWrite(
1574         struct adapter *padapter,
1575         u8 offset,
1576         u8 word_en,
1577         u8 *pData,
1578         bool bPseudoTest
1579 )
1580 {
1581         struct pgpkt_struct targetPkt;
1582         u16 startAddr = 0;
1583         u8 efuseType = EFUSE_WIFI;
1584
1585         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1586                 return false;
1587
1588         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1589
1590         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1591                 return false;
1592
1593         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1594                 return false;
1595
1596         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1597                 return false;
1598
1599         return true;
1600 }
1601
1602 static bool Hal_EfusePgPacketWrite_BT(
1603         struct adapter *padapter,
1604         u8 offset,
1605         u8 word_en,
1606         u8 *pData,
1607         bool bPseudoTest
1608 )
1609 {
1610         struct pgpkt_struct targetPkt;
1611         u16 startAddr = 0;
1612         u8 efuseType = EFUSE_BT;
1613
1614         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1615                 return false;
1616
1617         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1618
1619         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1620                 return false;
1621
1622         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1623                 return false;
1624
1625         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1626                 return false;
1627
1628         return true;
1629 }
1630
1631 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1632 {
1633         u32 value32;
1634         struct hal_version ChipVersion;
1635         struct hal_com_data *pHalData;
1636
1637 /* YJ, TODO, move read chip type here */
1638         pHalData = GET_HAL_DATA(padapter);
1639
1640         value32 = rtw_read32(padapter, REG_SYS_CFG);
1641         ChipVersion.ICType = CHIP_8723B;
1642         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1643         ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1644         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1645
1646         /*  For regulator mode. by tynli. 2011.01.14 */
1647         pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1648
1649         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1650         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1651
1652         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1653         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1654         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1655         pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1656         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1657         pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1658         pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1659 #if 1
1660         dump_chip_info(ChipVersion);
1661 #endif
1662         pHalData->VersionID = ChipVersion;
1663
1664         return ChipVersion;
1665 }
1666
1667 static void rtl8723b_read_chip_version(struct adapter *padapter)
1668 {
1669         ReadChipVersion8723B(padapter);
1670 }
1671
1672 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1673 {
1674         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1675         u16 val16;
1676         u8 val8;
1677
1678
1679         val8 = DIS_TSF_UDT;
1680         val16 = val8 | (val8 << 8); /*  port0 and port1 */
1681
1682         /*  Enable prot0 beacon function for PSTDMA */
1683         val16 |= EN_BCN_FUNCTION;
1684
1685         rtw_write16(padapter, REG_BCN_CTRL, val16);
1686
1687         /*  TODO: Remove these magic number */
1688         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1689         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1690         /*  so don't set this register on STA mode. */
1691         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1692                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1693         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1694
1695         /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1696         /*  because test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1697         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1698
1699         pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1700         pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1701         pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1702         pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1703         pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1704 }
1705
1706 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1707 {
1708         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1709
1710         rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1711         rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1712         rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1713         rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1714         rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1715         if (pHalData->AMPDUBurstMode)
1716                 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1717         rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1718
1719         /*  ARFB table 9 for 11ac 5G 2SS */
1720         rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1721         if (IS_NORMAL_CHIP(pHalData->VersionID))
1722                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1723         else
1724                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1725
1726         /*  ARFB table 10 for 11ac 5G 1SS */
1727         rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1728         rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1729 }
1730
1731 static void ResumeTxBeacon(struct adapter *padapter)
1732 {
1733         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1734
1735         pHalData->RegFwHwTxQCtrl |= BIT(6);
1736         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1737         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1738         pHalData->RegReg542 |= BIT(0);
1739         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1740 }
1741
1742 static void StopTxBeacon(struct adapter *padapter)
1743 {
1744         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1745
1746         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1747         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1748         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1749         pHalData->RegReg542 &= ~BIT(0);
1750         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1751
1752         CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
1753 }
1754
1755 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1756 {
1757         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1758         rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1759 }
1760
1761 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1762 {
1763         u8 val8;
1764         u32 value32;
1765         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1766         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1767         u32 bcn_ctrl_reg;
1768
1769         /* reset TSF, enable update TSF, correcting TSF On Beacon */
1770
1771         /* REG_BCN_INTERVAL */
1772         /* REG_BCNDMATIM */
1773         /* REG_ATIMWND */
1774         /* REG_TBTT_PROHIBIT */
1775         /* REG_DRVERLYINT */
1776         /* REG_BCN_MAX_ERR */
1777         /* REG_BCNTCFG (0x510) */
1778         /* REG_DUAL_TSF_RST */
1779         /* REG_BCN_CTRL (0x550) */
1780
1781
1782         bcn_ctrl_reg = REG_BCN_CTRL;
1783
1784         /*  */
1785         /*  ATIM window */
1786         /*  */
1787         rtw_write16(padapter, REG_ATIMWND, 2);
1788
1789         /*  */
1790         /*  Beacon interval (in unit of TU). */
1791         /*  */
1792         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1793
1794         rtl8723b_InitBeaconParameters(padapter);
1795
1796         rtw_write8(padapter, REG_SLOT, 0x09);
1797
1798         /*  */
1799         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1800         /*  */
1801         value32 = rtw_read32(padapter, REG_TCR);
1802         value32 &= ~TSFRST;
1803         rtw_write32(padapter, REG_TCR, value32);
1804
1805         value32 |= TSFRST;
1806         rtw_write32(padapter, REG_TCR, value32);
1807
1808         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1809         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1810                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1811                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1812         }
1813
1814         _BeaconFunctionEnable(padapter, true, true);
1815
1816         ResumeTxBeacon(padapter);
1817         val8 = rtw_read8(padapter, bcn_ctrl_reg);
1818         val8 |= DIS_BCNQ_SUB;
1819         rtw_write8(padapter, bcn_ctrl_reg, val8);
1820 }
1821
1822 static void rtl8723b_GetHalODMVar(
1823         struct adapter *Adapter,
1824         enum hal_odm_variable eVariable,
1825         void *pValue1,
1826         void *pValue2
1827 )
1828 {
1829         GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
1830 }
1831
1832 static void rtl8723b_SetHalODMVar(
1833         struct adapter *Adapter,
1834         enum hal_odm_variable eVariable,
1835         void *pValue1,
1836         bool bSet
1837 )
1838 {
1839         SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1840 }
1841
1842 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1843 {
1844         if (enable)
1845                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1846         else
1847                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1848 }
1849
1850 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1851 {
1852         u32 mask, rate_bitmap;
1853         u8 shortGIrate = false;
1854         struct sta_info *psta;
1855         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
1856         struct dm_priv *pdmpriv = &pHalData->dmpriv;
1857         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1858         struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1859
1860         if (mac_id >= NUM_STA) /* CAM_SIZE */
1861                 return;
1862
1863         psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1864         if (!psta)
1865                 return;
1866
1867         shortGIrate = query_ra_short_GI(psta);
1868
1869         mask = psta->ra_mask;
1870
1871         rate_bitmap = 0xffffffff;
1872         rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1873
1874         mask &= rate_bitmap;
1875
1876         rate_bitmap = hal_btcoex_GetRaMask(padapter);
1877         mask &= ~rate_bitmap;
1878
1879         if (pHalData->fw_ractrl) {
1880                 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1881         }
1882
1883         /* set correct initial date rate for each mac_id */
1884         pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1885 }
1886
1887
1888 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1889 {
1890         pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
1891
1892         pHalFunc->dm_init = &rtl8723b_init_dm_priv;
1893
1894         pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
1895
1896         pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
1897
1898         pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
1899         pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
1900         pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
1901
1902         pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
1903         pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
1904
1905         pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
1906         pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
1907
1908
1909         pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
1910
1911         pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
1912
1913         pHalFunc->run_thread = &rtl8723b_start_thread;
1914         pHalFunc->cancel_thread = &rtl8723b_stop_thread;
1915
1916         pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
1917         pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
1918         pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
1919         pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
1920
1921         /*  Efuse related function */
1922         pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
1923         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1924         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1925         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1926         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1927         pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
1928         pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
1929         pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1930         pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
1931
1932         pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
1933         pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1934
1935         pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1936         pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1937
1938         pHalFunc->c2h_handler = c2h_handler_8723b;
1939         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1940
1941         pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1942 }
1943
1944 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1945 {
1946         u8 val;
1947
1948         val = rtw_read8(padapter, REG_LEDCFG2);
1949         /*  Let 8051 take control antenna setting */
1950         val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
1951         rtw_write8(padapter, REG_LEDCFG2, val);
1952 }
1953
1954 void rtl8723b_init_default_value(struct adapter *padapter)
1955 {
1956         struct hal_com_data *pHalData;
1957         struct dm_priv *pdmpriv;
1958         u8 i;
1959
1960
1961         pHalData = GET_HAL_DATA(padapter);
1962         pdmpriv = &pHalData->dmpriv;
1963
1964         padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1965
1966         /*  init default value */
1967         pHalData->fw_ractrl = false;
1968         pHalData->bIQKInitialized = false;
1969         if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1970                 pHalData->LastHMEBoxNum = 0;
1971
1972         pHalData->bIQKInitialized = false;
1973
1974         /*  init dm default value */
1975         pdmpriv->TM_Trigger = 0;/* for IQK */
1976 /*      pdmpriv->binitialized = false; */
1977 /*      pdmpriv->prv_traffic_idx = 3; */
1978 /*      pdmpriv->initialize = 0; */
1979
1980         pdmpriv->ThermalValue_HP_index = 0;
1981         for (i = 0; i < HP_THERMAL_NUM; i++)
1982                 pdmpriv->ThermalValue_HP[i] = 0;
1983
1984         /*  init Efuse variables */
1985         pHalData->EfuseUsedBytes = 0;
1986         pHalData->EfuseUsedPercentage = 0;
1987 #ifdef HAL_EFUSE_MEMORY
1988         pHalData->EfuseHal.fakeEfuseBank = 0;
1989         pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1990         memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1991         memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1992         memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1993         pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1994         pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1995         memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1996         memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1997         memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1998         pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1999         memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2000         memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2001         memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2002 #endif
2003 }
2004
2005 u8 GetEEPROMSize8723B(struct adapter *padapter)
2006 {
2007         u8 size = 0;
2008         u32 cr;
2009
2010         cr = rtw_read16(padapter, REG_9346CR);
2011         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2012         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2013
2014         return size;
2015 }
2016
2017 /*  */
2018 /*  */
2019 /*  LLT R/W/Init function */
2020 /*  */
2021 /*  */
2022 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2023 {
2024         unsigned long start, passing_time;
2025         u32 val32;
2026         s32 ret;
2027
2028
2029         ret = _FAIL;
2030
2031         val32 = rtw_read32(padapter, REG_AUTO_LLT);
2032         val32 |= BIT_AUTO_INIT_LLT;
2033         rtw_write32(padapter, REG_AUTO_LLT, val32);
2034
2035         start = jiffies;
2036
2037         do {
2038                 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2039                 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2040                         ret = _SUCCESS;
2041                         break;
2042                 }
2043
2044                 passing_time = jiffies_to_msecs(jiffies - start);
2045                 if (passing_time > 1000)
2046                         break;
2047
2048                 msleep(1);
2049         } while (1);
2050
2051         return ret;
2052 }
2053
2054 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
2055 {
2056         if (1  <= channel && channel <= 2)
2057                 *group = 0;
2058         else if (3  <= channel && channel <= 5)
2059                 *group = 1;
2060         else if (6  <= channel && channel <= 8)
2061                 *group = 2;
2062         else if (9  <= channel && channel <= 11)
2063                 *group = 3;
2064         else if (12 <= channel && channel <= 14)
2065                 *group = 4;
2066 }
2067
2068 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2069 {
2070         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2071
2072         if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2073                 if (!pEEPROM->EepromOrEfuse) {
2074                         /*  Read EFUSE real map to shadow. */
2075                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2076                         memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2077                 }
2078         } else {/* autoload fail */
2079                 if (!pEEPROM->EepromOrEfuse)
2080                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2081                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2082         }
2083 }
2084
2085 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2086 {
2087         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2088 /*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2089         u16 EEPROMId;
2090
2091
2092         /*  Check 0x8129 again for making sure autoload status!! */
2093         EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2094         if (EEPROMId != RTL_EEPROM_ID) {
2095                 pEEPROM->bautoload_fail_flag = true;
2096         } else
2097                 pEEPROM->bautoload_fail_flag = false;
2098 }
2099
2100 static void Hal_ReadPowerValueFromPROM_8723B(
2101         struct adapter *Adapter,
2102         struct TxPowerInfo24G *pwrInfo24G,
2103         u8 *PROMContent,
2104         bool AutoLoadFail
2105 )
2106 {
2107         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2108         u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2109
2110         memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2111
2112         if (0xFF == PROMContent[eeAddr+1])
2113                 AutoLoadFail = true;
2114
2115         if (AutoLoadFail) {
2116                 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2117                         /* 2.4G default value */
2118                         for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2119                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2120                                 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2121                         }
2122
2123                         for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2124                                 if (TxCount == 0) {
2125                                         pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2126                                         pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2127                                 } else {
2128                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2129                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2130                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2131                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2132                                 }
2133                         }
2134                 }
2135
2136                 return;
2137         }
2138
2139         pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2140
2141         for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2142                 /* 2 2.4G default value */
2143                 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2144                         pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2145                         if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2146                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2147                 }
2148
2149                 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2150                         pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2151                         if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2152                                 pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2153                 }
2154
2155                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2156                         if (TxCount == 0) {
2157                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2158                                 if (PROMContent[eeAddr] == 0xFF)
2159                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2160                                 else {
2161                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2162                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2163                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2164                                 }
2165
2166                                 if (PROMContent[eeAddr] == 0xFF)
2167                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2168                                 else {
2169                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2170                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2171                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2172                                 }
2173                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2174                                 eeAddr++;
2175                         } else {
2176                                 if (PROMContent[eeAddr] == 0xFF)
2177                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2178                                 else {
2179                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2180                                         if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2181                                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2182                                 }
2183
2184                                 if (PROMContent[eeAddr] == 0xFF)
2185                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2186                                 else {
2187                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2188                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2189                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2190                                 }
2191                                 eeAddr++;
2192
2193                                 if (PROMContent[eeAddr] == 0xFF)
2194                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2195                                 else {
2196                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2197                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2198                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2199                                 }
2200
2201                                 if (PROMContent[eeAddr] == 0xFF)
2202                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2203                                 else {
2204                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2205                                         if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2206                                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2207                                 }
2208                                 eeAddr++;
2209                         }
2210                 }
2211         }
2212 }
2213
2214
2215 void Hal_EfuseParseTxPowerInfo_8723B(
2216         struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2217 )
2218 {
2219         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2220         struct TxPowerInfo24G   pwrInfo24G;
2221         u8      rfPath, ch, TxCount = 1;
2222
2223         Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2224         for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2225                 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2226                         u8 group = 0;
2227
2228                         hal_get_chnl_group_8723b(ch + 1, &group);
2229
2230                         if (ch == 14-1) {
2231                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2232                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2233                         } else {
2234                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2235                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2236                         }
2237                 }
2238
2239                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2240                         pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2241                         pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2242                         pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2243                         pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2244                 }
2245         }
2246
2247         /*  2010/10/19 MH Add Regulator recognize for CU. */
2248         if (!AutoLoadFail) {
2249                 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2250                 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2251                         pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2252         } else
2253                 pHalData->EEPROMRegulatory = 0;
2254 }
2255
2256 void Hal_EfuseParseBTCoexistInfo_8723B(
2257         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2258 )
2259 {
2260         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2261         u8 tempval;
2262         u32 tmpu4;
2263
2264         if (!AutoLoadFail) {
2265                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2266                 if (tmpu4 & BT_FUNC_EN)
2267                         pHalData->EEPROMBluetoothCoexist = true;
2268                 else
2269                         pHalData->EEPROMBluetoothCoexist = false;
2270
2271                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2272
2273                 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2274                 if (tempval != 0xFF) {
2275                         pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2276                         /*  EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
2277                         /*  EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
2278                         if (tempval & BIT(6))
2279                                 pHalData->ant_path = RF_PATH_B;
2280                         else
2281                                 pHalData->ant_path = RF_PATH_A;
2282                 } else {
2283                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2284                         if (pHalData->PackageType == PACKAGE_QFN68)
2285                                 pHalData->ant_path = RF_PATH_B;
2286                         else
2287                                 pHalData->ant_path = RF_PATH_A;
2288                 }
2289         } else {
2290                 pHalData->EEPROMBluetoothCoexist = false;
2291                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2292                 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2293                 pHalData->ant_path = RF_PATH_A;
2294         }
2295
2296         if (padapter->registrypriv.ant_num > 0) {
2297                 switch (padapter->registrypriv.ant_num) {
2298                 case 1:
2299                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2300                         break;
2301                 case 2:
2302                         pHalData->EEPROMBluetoothAntNum = Ant_x2;
2303                         break;
2304                 default:
2305                         break;
2306                 }
2307         }
2308
2309         hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2310         hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2311         if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2312                 hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2313 }
2314
2315 void Hal_EfuseParseEEPROMVer_8723B(
2316         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2317 )
2318 {
2319         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2320
2321         if (!AutoLoadFail)
2322                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2323         else
2324                 pHalData->EEPROMVersion = 1;
2325 }
2326
2327
2328
2329 void Hal_EfuseParsePackageType_8723B(
2330         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2331 )
2332 {
2333         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2334         u8 package;
2335         u8 efuseContent;
2336
2337         Efuse_PowerSwitch(padapter, false, true);
2338         efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2339         Efuse_PowerSwitch(padapter, false, false);
2340
2341         package = efuseContent & 0x7;
2342         switch (package) {
2343         case 0x4:
2344                 pHalData->PackageType = PACKAGE_TFBGA79;
2345                 break;
2346         case 0x5:
2347                 pHalData->PackageType = PACKAGE_TFBGA90;
2348                 break;
2349         case 0x6:
2350                 pHalData->PackageType = PACKAGE_QFN68;
2351                 break;
2352         case 0x7:
2353                 pHalData->PackageType = PACKAGE_TFBGA80;
2354                 break;
2355
2356         default:
2357                 pHalData->PackageType = PACKAGE_DEFAULT;
2358                 break;
2359         }
2360 }
2361
2362
2363 void Hal_EfuseParseVoltage_8723B(
2364         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2365 )
2366 {
2367         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2368
2369         /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2370         pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2371 }
2372
2373 void Hal_EfuseParseChnlPlan_8723B(
2374         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2375 )
2376 {
2377         padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2378                 padapter,
2379                 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2380                 padapter->registrypriv.channel_plan,
2381                 RT_CHANNEL_DOMAIN_WORLD_NULL,
2382                 AutoLoadFail
2383         );
2384
2385         Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2386 }
2387
2388 void Hal_EfuseParseCustomerID_8723B(
2389         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2390 )
2391 {
2392         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2393
2394         if (!AutoLoadFail)
2395                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2396         else
2397                 pHalData->EEPROMCustomerID = 0;
2398 }
2399
2400 void Hal_EfuseParseAntennaDiversity_8723B(
2401         struct adapter *padapter,
2402         u8 *hwinfo,
2403         bool AutoLoadFail
2404 )
2405 {
2406 }
2407
2408 void Hal_EfuseParseXtal_8723B(
2409         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2410 )
2411 {
2412         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2413
2414         if (!AutoLoadFail) {
2415                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2416                 if (pHalData->CrystalCap == 0xFF)
2417                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2418         } else
2419                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2420 }
2421
2422
2423 void Hal_EfuseParseThermalMeter_8723B(
2424         struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2425 )
2426 {
2427         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2428
2429         /*  */
2430         /*  ThermalMeter from EEPROM */
2431         /*  */
2432         if (!AutoLoadFail)
2433                 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2434         else
2435                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2436
2437         if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
2438                 pHalData->bAPKThermalMeterIgnore = true;
2439                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2440         }
2441 }
2442
2443
2444 void Hal_ReadRFGainOffset(
2445         struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2446 )
2447 {
2448         /*  */
2449         /*  BB_RF Gain Offset from EEPROM */
2450         /*  */
2451
2452         if (!AutoloadFail) {
2453                 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2454                 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2455         } else {
2456                 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2457                 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2458         }
2459 }
2460
2461 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2462 {
2463         u8 BWSettingOfDesc = 0;
2464         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2465
2466         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2467                 if (pattrib->bwmode == CHANNEL_WIDTH_40)
2468                         BWSettingOfDesc = 1;
2469                 else
2470                         BWSettingOfDesc = 0;
2471         } else
2472                 BWSettingOfDesc = 0;
2473
2474         /* if (pTcb->bBTTxPacket) */
2475         /*      BWSettingOfDesc = 0; */
2476
2477         return BWSettingOfDesc;
2478 }
2479
2480 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2481 {
2482         u8 SCSettingOfDesc = 0;
2483         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2484
2485         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2486                 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2487                         SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2488                 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2489                         if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2490                                 SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
2491                         } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2492                                 SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
2493                         } else {
2494                                 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2495                         }
2496                 }
2497         } else {
2498                 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2499         }
2500
2501         return SCSettingOfDesc;
2502 }
2503
2504 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2505 {
2506         u16 *usPtr = (u16 *)ptxdesc;
2507         u32 count;
2508         u32 index;
2509         u16 checksum = 0;
2510
2511
2512         /*  Clear first */
2513         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2514
2515         /*  checksum is always calculated by first 32 bytes, */
2516         /*  and it doesn't depend on TX DESC length. */
2517         /*  Thomas, Lucas@SD4, 20130515 */
2518         count = 16;
2519
2520         for (index = 0; index < count; index++) {
2521                 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2522         }
2523
2524         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2525 }
2526
2527 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2528 {
2529         u8 sectype = 0;
2530         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2531                 switch (pattrib->encrypt) {
2532                 /*  SEC_TYPE */
2533                 case _WEP40_:
2534                 case _WEP104_:
2535                 case _TKIP_:
2536                 case _TKIP_WTMIC_:
2537                         sectype = 1;
2538                         break;
2539
2540                 case _AES_:
2541                         sectype = 3;
2542                         break;
2543
2544                 case _NO_PRIVACY_:
2545                 default:
2546                         break;
2547                 }
2548         }
2549         return sectype;
2550 }
2551
2552 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2553 {
2554         if (pattrib->vcs_mode) {
2555                 switch (pattrib->vcs_mode) {
2556                 case RTS_CTS:
2557                         ptxdesc->rtsen = 1;
2558                         /*  ENABLE HW RTS */
2559                         ptxdesc->hw_rts_en = 1;
2560                         break;
2561
2562                 case CTS_TO_SELF:
2563                         ptxdesc->cts2self = 1;
2564                         break;
2565
2566                 case NONE_VCS:
2567                 default:
2568                         break;
2569                 }
2570
2571                 ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
2572                 ptxdesc->rts_ratefb_lmt = 0xF;
2573
2574                 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2575                         ptxdesc->rts_short = 1;
2576
2577                 /*  Set RTS BW */
2578                 if (pattrib->ht_en)
2579                         ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2580         }
2581 }
2582
2583 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2584 {
2585         if (pattrib->ht_en) {
2586                 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2587
2588                 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2589         }
2590 }
2591
2592 static void rtl8723b_fill_default_txdesc(
2593         struct xmit_frame *pxmitframe, u8 *pbuf
2594 )
2595 {
2596         struct adapter *padapter;
2597         struct hal_com_data *pHalData;
2598         struct mlme_ext_priv *pmlmeext;
2599         struct mlme_ext_info *pmlmeinfo;
2600         struct pkt_attrib *pattrib;
2601         struct txdesc_8723b *ptxdesc;
2602         s32 bmcst;
2603
2604         memset(pbuf, 0, TXDESC_SIZE);
2605
2606         padapter = pxmitframe->padapter;
2607         pHalData = GET_HAL_DATA(padapter);
2608         pmlmeext = &padapter->mlmeextpriv;
2609         pmlmeinfo = &(pmlmeext->mlmext_info);
2610
2611         pattrib = &pxmitframe->attrib;
2612         bmcst = is_multicast_ether_addr(pattrib->ra);
2613
2614         ptxdesc = (struct txdesc_8723b *)pbuf;
2615
2616         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2617                 u8 drv_userate = 0;
2618
2619                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2620                 ptxdesc->rate_id = pattrib->raid;
2621                 ptxdesc->qsel = pattrib->qsel;
2622                 ptxdesc->seq = pattrib->seqnum;
2623
2624                 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2625                 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2626
2627                 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2628                         drv_userate = 1;
2629
2630                 if (
2631                         (pattrib->ether_type != 0x888e) &&
2632                         (pattrib->ether_type != 0x0806) &&
2633                         (pattrib->ether_type != 0x88B4) &&
2634                         (pattrib->dhcp_pkt != 1) &&
2635                         (drv_userate != 1)
2636                 ) {
2637                         /*  Non EAP & ARP & DHCP type data packet */
2638
2639                         if (pattrib->ampdu_en) {
2640                                 ptxdesc->agg_en = 1; /*  AGG EN */
2641                                 ptxdesc->max_agg_num = 0x1f;
2642                                 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2643                         } else
2644                                 ptxdesc->bk = 1; /*  AGG BK */
2645
2646                         fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2647
2648                         ptxdesc->data_ratefb_lmt = 0x1F;
2649
2650                         if (!pHalData->fw_ractrl) {
2651                                 ptxdesc->userate = 1;
2652
2653                                 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2654                                         ptxdesc->data_short = 1;
2655
2656                                 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2657                         }
2658
2659                         if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
2660                                 ptxdesc->userate = 1;
2661                                 if (padapter->fix_rate & BIT(7))
2662                                         ptxdesc->data_short = 1;
2663
2664                                 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2665                                 ptxdesc->disdatafb = 1;
2666                         }
2667
2668                         if (pattrib->ldpc)
2669                                 ptxdesc->data_ldpc = 1;
2670                         if (pattrib->stbc)
2671                                 ptxdesc->data_stbc = 1;
2672                 } else {
2673                         /*  EAP data packet and ARP packet. */
2674                         /*  Use the 1M data rate to send the EAP/ARP packet. */
2675                         /*  This will maybe make the handshake smooth. */
2676
2677                         ptxdesc->bk = 1; /*  AGG BK */
2678                         ptxdesc->userate = 1; /*  driver uses rate */
2679                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2680                                 ptxdesc->data_short = 1;/*  DATA_SHORT */
2681                         ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2682                 }
2683
2684                 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2685         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2686                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2687                 ptxdesc->qsel = pattrib->qsel;
2688                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2689                 ptxdesc->seq = pattrib->seqnum;
2690                 ptxdesc->userate = 1; /*  driver uses rate, 1M */
2691
2692                 ptxdesc->mbssid = pattrib->mbssid & 0xF;
2693
2694                 ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
2695                 if (pattrib->retry_ctrl) {
2696                         ptxdesc->data_rt_lmt = 6;
2697                 } else {
2698                         ptxdesc->data_rt_lmt = 12;
2699                 }
2700
2701                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2702
2703                 /*  CCX-TXRPT ack for xmit mgmt frames. */
2704                 if (pxmitframe->ack_report) {
2705                         ptxdesc->spe_rpt = 1;
2706                         ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2707                 }
2708         } else {
2709                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2710                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2711                 ptxdesc->qsel = pattrib->qsel;
2712                 ptxdesc->seq = pattrib->seqnum;
2713                 ptxdesc->userate = 1; /*  driver uses rate */
2714                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2715         }
2716
2717         ptxdesc->pktlen = pattrib->last_txcmdsz;
2718         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2719
2720         if (bmcst)
2721                 ptxdesc->bmc = 1;
2722
2723         /* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2724          * (1) The sequence number of each non-Qos frame / broadcast /
2725          * multicast / mgnt frame should be controlled by Hw because Fw
2726          * will also send null data which we cannot control when Fw LPS
2727          * enable.
2728          * --> default enable non-Qos data sequence number. 2010.06.23.
2729          * by tynli.
2730          * (2) Enable HW SEQ control for beacon packet, because we use
2731          * Hw beacon.
2732          * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2733          * packets.
2734          * 2010.06.23. Added by tynli.
2735          */
2736         if (!pattrib->qos_en) /*  Hw set sequence number */
2737                 ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
2738 }
2739
2740 /* Description:
2741  *
2742  * Parameters:
2743  *      pxmitframe      xmitframe
2744  *      pbuf            where to fill tx desc
2745  */
2746 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2747 {
2748         struct tx_desc *pdesc;
2749
2750         rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2751         pdesc = (struct tx_desc *)pbuf;
2752         rtl8723b_cal_txdesc_chksum(pdesc);
2753 }
2754
2755 /*  */
2756 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2757 /*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2758 /*                      Fw can tell Hw to send these packet derectly. */
2759 /*  Added by tynli. 2009.10.15. */
2760 /*  */
2761 /* type1:pspoll, type2:null */
2762 void rtl8723b_fill_fake_txdesc(
2763         struct adapter *padapter,
2764         u8 *pDesc,
2765         u32 BufferLen,
2766         u8 IsPsPoll,
2767         u8 IsBTQosNull,
2768         u8 bDataFrame
2769 )
2770 {
2771         /*  Clear all status */
2772         memset(pDesc, 0, TXDESC_SIZE);
2773
2774         SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2775         SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2776
2777         SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
2778
2779         SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
2780         SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
2781
2782         /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error value by Hw. */
2783         if (IsPsPoll) {
2784                 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2785         } else {
2786                 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
2787                 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2788         }
2789
2790         if (IsBTQosNull) {
2791                 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2792         }
2793
2794         SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
2795         SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2796
2797         SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2798
2799         /*  */
2800         /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2801         /*  */
2802         if (bDataFrame) {
2803                 u32 EncAlg;
2804
2805                 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2806                 switch (EncAlg) {
2807                 case _NO_PRIVACY_:
2808                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2809                         break;
2810                 case _WEP40_:
2811                 case _WEP104_:
2812                 case _TKIP_:
2813                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2814                         break;
2815                 case _SMS4_:
2816                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2817                         break;
2818                 case _AES_:
2819                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2820                         break;
2821                 default:
2822                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2823                         break;
2824                 }
2825         }
2826
2827         /*  USB interface drop packet if the checksum of descriptor isn't correct. */
2828         /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2829         rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2830 }
2831
2832 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2833 {
2834         u8 val8;
2835         u8 mode = *((u8 *)val);
2836
2837         {
2838                 /*  disable Port0 TSF update */
2839                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2840                 val8 |= DIS_TSF_UDT;
2841                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2842
2843                 /*  set net_type */
2844                 Set_MSR(padapter, mode);
2845
2846                 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2847                         {
2848                                 StopTxBeacon(padapter);
2849                         }
2850
2851                         /*  disable atim wnd */
2852                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2853                         /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2854                 } else if (mode == _HW_STATE_ADHOC_) {
2855                         ResumeTxBeacon(padapter);
2856                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2857                 } else if (mode == _HW_STATE_AP_) {
2858
2859                         ResumeTxBeacon(padapter);
2860
2861                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2862
2863                         /* Set RCR */
2864                         rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2865                         /* enable to rx data frame */
2866                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2867                         /* enable to rx ps-poll */
2868                         rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2869
2870                         /* Beacon Control related register for first time */
2871                         rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
2872
2873                         /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2874                         rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
2875                         rtw_write16(padapter, REG_BCNTCFG, 0x00);
2876                         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2877                         rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
2878
2879                         /* reset TSF */
2880                         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2881
2882                         /* enable BCN0 Function for if1 */
2883                         /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2884                         rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2885
2886                         /* SW_BCN_SEL - Port0 */
2887                         /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2888                         rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2889
2890                         /*  select BCN on port 0 */
2891                         rtw_write8(
2892                                 padapter,
2893                                 REG_CCK_CHECK_8723B,
2894                                 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2895                         );
2896
2897                         /*  dis BCN1 ATIM  WND if if2 is station */
2898                         val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2899                         val8 |= DIS_ATIM;
2900                         rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2901                 }
2902         }
2903 }
2904
2905 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2906 {
2907         u8 idx = 0;
2908         u32 reg_macid;
2909
2910         reg_macid = REG_MACID;
2911
2912         for (idx = 0 ; idx < 6; idx++)
2913                 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2914 }
2915
2916 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2917 {
2918         u8 idx = 0;
2919         u32 reg_bssid;
2920
2921         reg_bssid = REG_BSSID;
2922
2923         for (idx = 0 ; idx < 6; idx++)
2924                 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2925 }
2926
2927 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2928 {
2929         u32 bcn_ctrl_reg;
2930
2931         bcn_ctrl_reg = REG_BCN_CTRL;
2932
2933         if (*(u8 *)val)
2934                 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2935         else {
2936                 u8 val8;
2937                 val8 = rtw_read8(padapter, bcn_ctrl_reg);
2938                 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2939
2940                 /*  Always enable port0 beacon function for PSTDMA */
2941                 if (REG_BCN_CTRL == bcn_ctrl_reg)
2942                         val8 |= EN_BCN_FUNCTION;
2943
2944                 rtw_write8(padapter, bcn_ctrl_reg, val8);
2945         }
2946 }
2947
2948 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2949 {
2950         u8 val8;
2951         u64 tsf;
2952         struct mlme_ext_priv *pmlmeext;
2953         struct mlme_ext_info *pmlmeinfo;
2954
2955
2956         pmlmeext = &padapter->mlmeextpriv;
2957         pmlmeinfo = &pmlmeext->mlmext_info;
2958
2959         tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2960
2961         if (
2962                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2963                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2964         )
2965                 StopTxBeacon(padapter);
2966
2967         {
2968                 /*  disable related TSF function */
2969                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2970                 val8 &= ~EN_BCN_FUNCTION;
2971                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2972
2973                 rtw_write32(padapter, REG_TSFTR, tsf);
2974                 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2975
2976                 /*  enable related TSF function */
2977                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2978                 val8 |= EN_BCN_FUNCTION;
2979                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2980         }
2981
2982         if (
2983                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2984                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2985         )
2986                 ResumeTxBeacon(padapter);
2987 }
2988
2989 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
2990 {
2991         u8 val8;
2992
2993         /*  Set RCR to not to receive data frame when NO LINK state */
2994         /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
2995         /*  reject all data frames */
2996         rtw_write16(padapter, REG_RXFLTMAP2, 0);
2997
2998         /*  reset TSF */
2999         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3000
3001         /*  disable update TSF */
3002         val8 = rtw_read8(padapter, REG_BCN_CTRL);
3003         val8 |= DIS_TSF_UDT;
3004         rtw_write8(padapter, REG_BCN_CTRL, val8);
3005 }
3006
3007 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3008 {
3009         u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3010         u16 value_rxfltmap2;
3011         u8 val8;
3012         struct hal_com_data *pHalData;
3013         struct mlme_priv *pmlmepriv;
3014
3015
3016         pHalData = GET_HAL_DATA(padapter);
3017         pmlmepriv = &padapter->mlmepriv;
3018
3019         reg_bcn_ctl = REG_BCN_CTRL;
3020
3021         rcr_clear_bit = RCR_CBSSID_BCN;
3022
3023         /*  config RCR to receive different BSSID & not to receive data frame */
3024         value_rxfltmap2 = 0;
3025
3026         if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3027                 rcr_clear_bit = RCR_CBSSID_BCN;
3028
3029         value_rcr = rtw_read32(padapter, REG_RCR);
3030
3031         if (*((u8 *)val)) {
3032                 /*  under sitesurvey */
3033                 value_rcr &= ~(rcr_clear_bit);
3034                 rtw_write32(padapter, REG_RCR, value_rcr);
3035
3036                 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3037
3038                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3039                         /*  disable update TSF */
3040                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3041                         val8 |= DIS_TSF_UDT;
3042                         rtw_write8(padapter, reg_bcn_ctl, val8);
3043                 }
3044
3045                 /*  Save original RRSR setting. */
3046                 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3047         } else {
3048                 /*  sitesurvey done */
3049                 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3050                         /*  enable to rx data frame */
3051                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3052
3053                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3054                         /*  enable update TSF */
3055                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3056                         val8 &= ~DIS_TSF_UDT;
3057                         rtw_write8(padapter, reg_bcn_ctl, val8);
3058                 }
3059
3060                 value_rcr |= rcr_clear_bit;
3061                 rtw_write32(padapter, REG_RCR, value_rcr);
3062
3063                 /*  Restore original RRSR setting. */
3064                 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3065         }
3066 }
3067
3068 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3069 {
3070         u8 val8;
3071         u16 val16;
3072         u32 val32;
3073         u8 RetryLimit;
3074         u8 type;
3075         struct mlme_priv *pmlmepriv;
3076         struct eeprom_priv *pEEPROM;
3077
3078
3079         RetryLimit = 0x30;
3080         type = *(u8 *)val;
3081         pmlmepriv = &padapter->mlmepriv;
3082         pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3083
3084         if (type == 0) { /*  prepare to join */
3085                 /* enable to rx data frame.Accept all data frame */
3086                 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3087                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3088
3089                 val32 = rtw_read32(padapter, REG_RCR);
3090                 if (padapter->in_cta_test)
3091                         val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3092                 else
3093                         val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3094                 rtw_write32(padapter, REG_RCR, val32);
3095
3096                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3097                         RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3098                 else /*  Ad-hoc Mode */
3099                         RetryLimit = 0x7;
3100         } else if (type == 1) /* joinbss_event call back when join res < 0 */
3101                 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3102         else if (type == 2) { /* sta add event call back */
3103                 /* enable update TSF */
3104                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3105                 val8 &= ~DIS_TSF_UDT;
3106                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3107
3108                 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3109                         RetryLimit = 0x7;
3110         }
3111
3112         val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3113         rtw_write16(padapter, REG_RL, val16);
3114 }
3115
3116 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3117 {
3118
3119 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3120 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3121
3122         if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3123                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3124         }
3125 /*
3126         else if (seq_no != padapter->xmitpriv.seq_no) {
3127                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3128         }
3129 */
3130         else
3131                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3132 }
3133
3134 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3135 {
3136         struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3137         s32 ret = false;
3138         if (c2h_evt->id == C2H_CCX_TX_RPT)
3139                 ret = true;
3140
3141         return ret;
3142 }
3143
3144
3145 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3146 {
3147         struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3148         s32 ret = _SUCCESS;
3149
3150         if (!pC2hEvent) {
3151                 ret = _FAIL;
3152                 goto exit;
3153         }
3154
3155         switch (pC2hEvent->id) {
3156         case C2H_AP_RPT_RSP:
3157                 break;
3158         case C2H_DBG:
3159                 {
3160                 }
3161                 break;
3162
3163         case C2H_CCX_TX_RPT:
3164 /*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3165                 break;
3166
3167         case C2H_EXT_RA_RPT:
3168 /*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3169                 break;
3170
3171         case C2H_HW_INFO_EXCH:
3172                 break;
3173
3174         case C2H_8723B_BT_INFO:
3175                 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3176                 break;
3177
3178         default:
3179                 break;
3180         }
3181
3182         /*  Clear event to notify FW we have read the command. */
3183         /*  Note: */
3184         /*      If this field isn't clear, the FW won't update the next command message. */
3185 /*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3186 exit:
3187         return ret;
3188 }
3189
3190 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
3191 {
3192         if (!c2hBuf)
3193                 return;
3194
3195         switch (pC2hEvent->CmdID) {
3196         case C2H_AP_RPT_RSP:
3197                 break;
3198         case C2H_DBG:
3199                 {
3200                 }
3201                 break;
3202
3203         case C2H_CCX_TX_RPT:
3204 /*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3205                 break;
3206
3207         case C2H_EXT_RA_RPT:
3208 /*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3209                 break;
3210
3211         case C2H_HW_INFO_EXCH:
3212                 break;
3213
3214         case C2H_8723B_BT_INFO:
3215                 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3216                 break;
3217
3218         default:
3219                 break;
3220         }
3221 }
3222
3223 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3224 {
3225         struct c2h_evt_hdr_t    C2hEvent;
3226         u8 *tmpBuf = NULL;
3227         C2hEvent.CmdID = pbuffer[0];
3228         C2hEvent.CmdSeq = pbuffer[1];
3229         C2hEvent.CmdLen = length-2;
3230         tmpBuf = pbuffer+2;
3231
3232         process_c2h_event(padapter, &C2hEvent, tmpBuf);
3233         /* c2h_handler_8723b(padapter,&C2hEvent); */
3234 }
3235
3236 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3237 {
3238         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3239         u8 val8;
3240         u32 val32;
3241
3242         switch (variable) {
3243         case HW_VAR_MEDIA_STATUS:
3244                 val8 = rtw_read8(padapter, MSR) & 0x0c;
3245                 val8 |= *val;
3246                 rtw_write8(padapter, MSR, val8);
3247                 break;
3248
3249         case HW_VAR_MEDIA_STATUS1:
3250                 val8 = rtw_read8(padapter, MSR) & 0x03;
3251                 val8 |= *val << 2;
3252                 rtw_write8(padapter, MSR, val8);
3253                 break;
3254
3255         case HW_VAR_SET_OPMODE:
3256                 hw_var_set_opmode(padapter, variable, val);
3257                 break;
3258
3259         case HW_VAR_MAC_ADDR:
3260                 hw_var_set_macaddr(padapter, variable, val);
3261                 break;
3262
3263         case HW_VAR_BSSID:
3264                 hw_var_set_bssid(padapter, variable, val);
3265                 break;
3266
3267         case HW_VAR_BASIC_RATE:
3268         {
3269                 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3270                 u16 BrateCfg = 0;
3271                 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3272                 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3273
3274                 HalSetBrateCfg(padapter, val, &BrateCfg);
3275
3276                 /* apply force and allow mask */
3277                 BrateCfg |= rrsr_2g_force_mask;
3278                 BrateCfg &= rrsr_2g_allow_mask;
3279
3280                 /* IOT consideration */
3281                 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3282                         /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3283                         if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3284                                 BrateCfg |= RRSR_6M;
3285                 }
3286
3287                 pHalData->BasicRateSet = BrateCfg;
3288
3289                 /*  Set RRSR rate table. */
3290                 rtw_write16(padapter, REG_RRSR, BrateCfg);
3291                 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3292         }
3293                 break;
3294
3295         case HW_VAR_TXPAUSE:
3296                 rtw_write8(padapter, REG_TXPAUSE, *val);
3297                 break;
3298
3299         case HW_VAR_BCN_FUNC:
3300                 hw_var_set_bcn_func(padapter, variable, val);
3301                 break;
3302
3303         case HW_VAR_CORRECT_TSF:
3304                 hw_var_set_correct_tsf(padapter, variable, val);
3305                 break;
3306
3307         case HW_VAR_CHECK_BSSID:
3308                 {
3309                         u32 val32;
3310                         val32 = rtw_read32(padapter, REG_RCR);
3311                         if (*val)
3312                                 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3313                         else
3314                                 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3315                         rtw_write32(padapter, REG_RCR, val32);
3316                 }
3317                 break;
3318
3319         case HW_VAR_MLME_DISCONNECT:
3320                 hw_var_set_mlme_disconnect(padapter, variable, val);
3321                 break;
3322
3323         case HW_VAR_MLME_SITESURVEY:
3324                 hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3325
3326                 hal_btcoex_ScanNotify(padapter, *val?true:false);
3327                 break;
3328
3329         case HW_VAR_MLME_JOIN:
3330                 hw_var_set_mlme_join(padapter, variable, val);
3331
3332                 switch (*val) {
3333                 case 0:
3334                         /*  prepare to join */
3335                         hal_btcoex_ConnectNotify(padapter, true);
3336                         break;
3337                 case 1:
3338                         /*  joinbss_event callback when join res < 0 */
3339                         hal_btcoex_ConnectNotify(padapter, false);
3340                         break;
3341                 case 2:
3342                         /*  sta add event callback */
3343 /*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3344                         break;
3345                 }
3346                 break;
3347
3348         case HW_VAR_ON_RCR_AM:
3349                 val32 = rtw_read32(padapter, REG_RCR);
3350                 val32 |= RCR_AM;
3351                 rtw_write32(padapter, REG_RCR, val32);
3352                 break;
3353
3354         case HW_VAR_OFF_RCR_AM:
3355                 val32 = rtw_read32(padapter, REG_RCR);
3356                 val32 &= ~RCR_AM;
3357                 rtw_write32(padapter, REG_RCR, val32);
3358                 break;
3359
3360         case HW_VAR_BEACON_INTERVAL:
3361                 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3362                 break;
3363
3364         case HW_VAR_SLOT_TIME:
3365                 rtw_write8(padapter, REG_SLOT, *val);
3366                 break;
3367
3368         case HW_VAR_RESP_SIFS:
3369                 /* SIFS_Timer = 0x0a0a0808; */
3370                 /* RESP_SIFS for CCK */
3371                 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3372                 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3373                 /* RESP_SIFS for OFDM */
3374                 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3375                 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3376                 break;
3377
3378         case HW_VAR_ACK_PREAMBLE:
3379                 {
3380                         u8 regTmp;
3381                         u8 bShortPreamble = *val;
3382
3383                         /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3384                         /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3385                         regTmp = 0;
3386                         if (bShortPreamble)
3387                                 regTmp |= 0x80;
3388                         rtw_write8(padapter, REG_RRSR+2, regTmp);
3389                 }
3390                 break;
3391
3392         case HW_VAR_CAM_EMPTY_ENTRY:
3393                 {
3394                         u8 ucIndex = *val;
3395                         u8 i;
3396                         u32 ulCommand = 0;
3397                         u32 ulContent = 0;
3398                         u32 ulEncAlgo = CAM_AES;
3399
3400                         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3401                                 /*  filled id in CAM config 2 byte */
3402                                 if (i == 0) {
3403                                         ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3404                                         /* ulContent |= CAM_VALID; */
3405                                 } else
3406                                         ulContent = 0;
3407
3408                                 /*  polling bit, and No Write enable, and address */
3409                                 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3410                                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3411                                 /*  write content 0 is equal to mark as invalid */
3412                                 rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3413                                 rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3414                         }
3415                 }
3416                 break;
3417
3418         case HW_VAR_CAM_INVALID_ALL:
3419                 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3420                 break;
3421
3422         case HW_VAR_CAM_WRITE:
3423                 {
3424                         u32 cmd;
3425                         u32 *cam_val = (u32 *)val;
3426
3427                         rtw_write32(padapter, WCAMI, cam_val[0]);
3428
3429                         cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3430                         rtw_write32(padapter, RWCAM, cmd);
3431                 }
3432                 break;
3433
3434         case HW_VAR_AC_PARAM_VO:
3435                 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3436                 break;
3437
3438         case HW_VAR_AC_PARAM_VI:
3439                 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3440                 break;
3441
3442         case HW_VAR_AC_PARAM_BE:
3443                 pHalData->AcParam_BE = ((u32 *)(val))[0];
3444                 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
3445                 break;
3446
3447         case HW_VAR_AC_PARAM_BK:
3448                 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
3449                 break;
3450
3451         case HW_VAR_ACM_CTRL:
3452                 {
3453                         u8 ctrl = *((u8 *)val);
3454                         u8 hwctrl = 0;
3455
3456                         if (ctrl != 0) {
3457                                 hwctrl |= AcmHw_HwEn;
3458
3459                                 if (ctrl & BIT(1)) /*  BE */
3460                                         hwctrl |= AcmHw_BeqEn;
3461
3462                                 if (ctrl & BIT(2)) /*  VI */
3463                                         hwctrl |= AcmHw_ViqEn;
3464
3465                                 if (ctrl & BIT(3)) /*  VO */
3466                                         hwctrl |= AcmHw_VoqEn;
3467                         }
3468
3469                         rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
3470                 }
3471                 break;
3472
3473         case HW_VAR_AMPDU_FACTOR:
3474                 {
3475                         u32 AMPDULen =  (*((u8 *)val));
3476
3477                         if (AMPDULen < HT_AGG_SIZE_32K)
3478                                 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
3479                         else
3480                                 AMPDULen = 0x7fff;
3481
3482                         rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
3483                 }
3484                 break;
3485
3486         case HW_VAR_H2C_FW_PWRMODE:
3487                 {
3488                         u8 psmode = *val;
3489
3490                         /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
3491                         /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
3492                         if (psmode != PS_MODE_ACTIVE) {
3493                                 ODM_RF_Saving(&pHalData->odmpriv, true);
3494                         }
3495
3496                         /* if (psmode != PS_MODE_ACTIVE)        { */
3497                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
3498                         /*  else { */
3499                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
3500                         /*  */
3501                         rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
3502                 }
3503                 break;
3504         case HW_VAR_H2C_PS_TUNE_PARAM:
3505                 rtl8723b_set_FwPsTuneParam_cmd(padapter);
3506                 break;
3507
3508         case HW_VAR_H2C_FW_JOINBSSRPT:
3509                 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
3510                 break;
3511
3512         case HW_VAR_INITIAL_GAIN:
3513                 {
3514                         struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
3515                         u32 rx_gain = *(u32 *)val;
3516
3517                         if (rx_gain == 0xff) {/* restore rx gain */
3518                                 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
3519                         } else {
3520                                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
3521                                 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
3522                         }
3523                 }
3524                 break;
3525
3526         case HW_VAR_EFUSE_USAGE:
3527                 pHalData->EfuseUsedPercentage = *val;
3528                 break;
3529
3530         case HW_VAR_EFUSE_BYTES:
3531                 pHalData->EfuseUsedBytes = *((u16 *)val);
3532                 break;
3533
3534         case HW_VAR_EFUSE_BT_USAGE:
3535 #ifdef HAL_EFUSE_MEMORY
3536                 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
3537 #endif
3538                 break;
3539
3540         case HW_VAR_EFUSE_BT_BYTES:
3541 #ifdef HAL_EFUSE_MEMORY
3542                 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
3543 #else
3544                 BTEfuseUsedBytes = *((u16 *)val);
3545 #endif
3546                 break;
3547
3548         case HW_VAR_FIFO_CLEARN_UP:
3549                 {
3550                         #define RW_RELEASE_EN           BIT(18)
3551                         #define RXDMA_IDLE                      BIT(17)
3552
3553                         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3554                         u8 trycnt = 100;
3555
3556                         /*  pause tx */
3557                         rtw_write8(padapter, REG_TXPAUSE, 0xff);
3558
3559                         /*  keep sn */
3560                         padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3561
3562                         if (!pwrpriv->bkeepfwalive) {
3563                                 /* RX DMA stop */
3564                                 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3565                                 val32 |= RW_RELEASE_EN;
3566                                 rtw_write32(padapter, REG_RXPKT_NUM, val32);
3567                                 do {
3568                                         val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3569                                         val32 &= RXDMA_IDLE;
3570                                         if (val32)
3571                                                 break;
3572                                 } while (--trycnt);
3573
3574                                 /*  RQPN Load 0 */
3575                                 rtw_write16(padapter, REG_RQPN_NPQ, 0);
3576                                 rtw_write32(padapter, REG_RQPN, 0x80000000);
3577                                 mdelay(2);
3578                         }
3579                 }
3580                 break;
3581
3582         case HW_VAR_APFM_ON_MAC:
3583                 pHalData->bMacPwrCtrlOn = *val;
3584                 break;
3585
3586         case HW_VAR_NAV_UPPER:
3587                 {
3588                         u32 usNavUpper = *((u32 *)val);
3589
3590                         if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3591                                 break;
3592
3593                         usNavUpper = DIV_ROUND_UP(usNavUpper,
3594                                                   HAL_NAV_UPPER_UNIT_8723B);
3595                         rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3596                 }
3597                 break;
3598
3599         case HW_VAR_H2C_MEDIA_STATUS_RPT:
3600                 {
3601                         u16 mstatus_rpt = (*(u16 *)val);
3602                         u8 mstatus, macId;
3603
3604                         mstatus = (u8) (mstatus_rpt & 0xFF);
3605                         macId = (u8)(mstatus_rpt >> 8);
3606                         rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3607                 }
3608                 break;
3609         case HW_VAR_BCN_VALID:
3610                 {
3611                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3612                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
3613                         val8 |= BIT(0);
3614                         rtw_write8(padapter, REG_TDECTRL+2, val8);
3615                 }
3616                 break;
3617
3618         case HW_VAR_DL_BCN_SEL:
3619                 {
3620                         /*  SW_BCN_SEL - Port0 */
3621                         val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3622                         val8 &= ~BIT(4);
3623                         rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3624                 }
3625                 break;
3626
3627         case HW_VAR_DO_IQK:
3628                 pHalData->bNeedIQK = true;
3629                 break;
3630
3631         case HW_VAR_DL_RSVD_PAGE:
3632                 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3633                         rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3634                 else
3635                         rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3636                 break;
3637
3638         case HW_VAR_MACID_SLEEP:
3639                 /*  Input is MACID */
3640                 val32 = *(u32 *)val;
3641                 if (val32 > 31)
3642                         break;
3643
3644                 val8 = (u8)val32; /*  macid is between 0~31 */
3645
3646                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3647                 if (val32 & BIT(val8))
3648                         break;
3649                 val32 |= BIT(val8);
3650                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3651                 break;
3652
3653         case HW_VAR_MACID_WAKEUP:
3654                 /*  Input is MACID */
3655                 val32 = *(u32 *)val;
3656                 if (val32 > 31)
3657                         break;
3658
3659                 val8 = (u8)val32; /*  macid is between 0~31 */
3660
3661                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3662                 if (!(val32 & BIT(val8)))
3663                         break;
3664                 val32 &= ~BIT(val8);
3665                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3666                 break;
3667
3668         default:
3669                 SetHwReg(padapter, variable, val);
3670                 break;
3671         }
3672 }
3673
3674 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3675 {
3676         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3677         u8 val8;
3678         u16 val16;
3679
3680         switch (variable) {
3681         case HW_VAR_TXPAUSE:
3682                 *val = rtw_read8(padapter, REG_TXPAUSE);
3683                 break;
3684
3685         case HW_VAR_BCN_VALID:
3686                 {
3687                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3688                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
3689                         *val = (BIT(0) & val8) ? true : false;
3690                 }
3691                 break;
3692
3693         case HW_VAR_FWLPS_RF_ON:
3694                 {
3695                         /*  When we halt NIC, we should check if FW LPS is leave. */
3696                         u32 valRCR;
3697
3698                         if (
3699                                 padapter->bSurpriseRemoved  ||
3700                                 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3701                         ) {
3702                                 /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3703                                 /*  because Fw is unload. */
3704                                 *val = true;
3705                         } else {
3706                                 valRCR = rtw_read32(padapter, REG_RCR);
3707                                 valRCR &= 0x00070000;
3708                                 if (valRCR)
3709                                         *val = false;
3710                                 else
3711                                         *val = true;
3712                         }
3713                 }
3714                 break;
3715
3716         case HW_VAR_EFUSE_USAGE:
3717                 *val = pHalData->EfuseUsedPercentage;
3718                 break;
3719
3720         case HW_VAR_EFUSE_BYTES:
3721                 *((u16 *)val) = pHalData->EfuseUsedBytes;
3722                 break;
3723
3724         case HW_VAR_EFUSE_BT_USAGE:
3725 #ifdef HAL_EFUSE_MEMORY
3726                 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3727 #endif
3728                 break;
3729
3730         case HW_VAR_EFUSE_BT_BYTES:
3731 #ifdef HAL_EFUSE_MEMORY
3732                 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3733 #else
3734                 *((u16 *)val) = BTEfuseUsedBytes;
3735 #endif
3736                 break;
3737
3738         case HW_VAR_APFM_ON_MAC:
3739                 *val = pHalData->bMacPwrCtrlOn;
3740                 break;
3741         case HW_VAR_CHK_HI_QUEUE_EMPTY:
3742                 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3743                 *val = (val16 & BIT(10)) ? true:false;
3744                 break;
3745         default:
3746                 GetHwReg(padapter, variable, val);
3747                 break;
3748         }
3749 }
3750
3751 /* Description:
3752  *      Change default setting of specified variable.
3753  */
3754 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3755 {
3756         u8 bResult;
3757
3758         bResult = _SUCCESS;
3759
3760         switch (variable) {
3761         default:
3762                 bResult = SetHalDefVar(padapter, variable, pval);
3763                 break;
3764         }
3765
3766         return bResult;
3767 }
3768
3769 /* Description:
3770  *      Query setting of specified variable.
3771  */
3772 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3773 {
3774         u8 bResult;
3775
3776         bResult = _SUCCESS;
3777
3778         switch (variable) {
3779         case HAL_DEF_MAX_RECVBUF_SZ:
3780                 *((u32 *)pval) = MAX_RECVBUF_SZ;
3781                 break;
3782
3783         case HAL_DEF_RX_PACKET_OFFSET:
3784                 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3785                 break;
3786
3787         case HW_VAR_MAX_RX_AMPDU_FACTOR:
3788                 /*  Stanley@BB.SD3 suggests 16K can get stable performance */
3789                 /*  The experiment was done on SDIO interface */
3790                 /*  coding by Lucas@20130730 */
3791                 *(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3792                 break;
3793         case HAL_DEF_TX_LDPC:
3794         case HAL_DEF_RX_LDPC:
3795                 *((u8 *)pval) = false;
3796                 break;
3797         case HAL_DEF_TX_STBC:
3798                 *((u8 *)pval) = 0;
3799                 break;
3800         case HAL_DEF_RX_STBC:
3801                 *((u8 *)pval) = 1;
3802                 break;
3803         case HAL_DEF_EXPLICIT_BEAMFORMER:
3804         case HAL_DEF_EXPLICIT_BEAMFORMEE:
3805                 *((u8 *)pval) = false;
3806                 break;
3807
3808         case HW_DEF_RA_INFO_DUMP:
3809                 {
3810                         u8 mac_id = *(u8 *)pval;
3811                         u32 cmd;
3812
3813                         cmd = 0x40000100 | mac_id;
3814                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3815                         msleep(10);
3816                         rtw_read32(padapter, 0x2F0);    // info 1
3817
3818                         cmd = 0x40000400 | mac_id;
3819                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3820                         msleep(10);
3821                         rtw_read32(padapter, 0x2F0);    // info 1
3822                         rtw_read32(padapter, 0x2F4);    // info 2
3823                         rtw_read32(padapter, 0x2F8);    // rate mask 1
3824                         rtw_read32(padapter, 0x2FC);    // rate mask 2
3825                 }
3826                 break;
3827
3828         case HAL_DEF_TX_PAGE_BOUNDARY:
3829                 if (!padapter->registrypriv.wifi_spec) {
3830                         *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3831                 } else {
3832                         *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3833                 }
3834                 break;
3835
3836         case HAL_DEF_MACID_SLEEP:
3837                 *(u8 *)pval = true; /*  support macid sleep */
3838                 break;
3839
3840         default:
3841                 bResult = GetHalDefVar(padapter, variable, pval);
3842                 break;
3843         }
3844
3845         return bResult;
3846 }
3847
3848 void rtl8723b_start_thread(struct adapter *padapter)
3849 {
3850         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3851
3852         xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3853 }
3854
3855 void rtl8723b_stop_thread(struct adapter *padapter)
3856 {
3857         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3858
3859         /*  stop xmit_buf_thread */
3860         if (xmitpriv->SdioXmitThread) {
3861                 complete(&xmitpriv->SdioXmitStart);
3862                 wait_for_completion(&xmitpriv->SdioXmitTerminate);
3863                 xmitpriv->SdioXmitThread = NULL;
3864         }
3865 }