firewire: core: add memo about the caller of show functions for device attributes
[sfrench/cifs-2.6.git] / fs / bcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24
25 #include <linux/random.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28                                   btree_path_idx_t, struct btree *, struct keylist *);
29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
30
31 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
32                                               enum btree_id btree_id,
33                                               unsigned level,
34                                               struct bpos pos)
35 {
36         btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
37                              BTREE_ITER_NOPRESERVE|
38                              BTREE_ITER_INTENT, _RET_IP_);
39         path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_);
40
41         struct btree_path *path = trans->paths + path_idx;
42         bch2_btree_path_downgrade(trans, path);
43         __bch2_btree_path_unlock(trans, path);
44         return path_idx;
45 }
46
47 /* Debug code: */
48
49 /*
50  * Verify that child nodes correctly span parent node's range:
51  */
52 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
53 {
54 #ifdef CONFIG_BCACHEFS_DEBUG
55         struct bpos next_node = b->data->min_key;
56         struct btree_node_iter iter;
57         struct bkey_s_c k;
58         struct bkey_s_c_btree_ptr_v2 bp;
59         struct bkey unpacked;
60         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
61
62         BUG_ON(!b->c.level);
63
64         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
65                 return;
66
67         bch2_btree_node_iter_init_from_start(&iter, b);
68
69         while (1) {
70                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
71                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
72                         break;
73                 bp = bkey_s_c_to_btree_ptr_v2(k);
74
75                 if (!bpos_eq(next_node, bp.v->min_key)) {
76                         bch2_dump_btree_node(c, b);
77                         bch2_bpos_to_text(&buf1, next_node);
78                         bch2_bpos_to_text(&buf2, bp.v->min_key);
79                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
80                 }
81
82                 bch2_btree_node_iter_advance(&iter, b);
83
84                 if (bch2_btree_node_iter_end(&iter)) {
85                         if (!bpos_eq(k.k->p, b->key.k.p)) {
86                                 bch2_dump_btree_node(c, b);
87                                 bch2_bpos_to_text(&buf1, b->key.k.p);
88                                 bch2_bpos_to_text(&buf2, k.k->p);
89                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
90                         }
91                         break;
92                 }
93
94                 next_node = bpos_successor(k.k->p);
95         }
96 #endif
97 }
98
99 /* Calculate ideal packed bkey format for new btree nodes: */
100
101 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
102 {
103         struct bkey_packed *k;
104         struct bset_tree *t;
105         struct bkey uk;
106
107         for_each_bset(b, t)
108                 bset_tree_for_each_key(b, t, k)
109                         if (!bkey_deleted(k)) {
110                                 uk = bkey_unpack_key(b, k);
111                                 bch2_bkey_format_add_key(s, &uk);
112                         }
113 }
114
115 static struct bkey_format bch2_btree_calc_format(struct btree *b)
116 {
117         struct bkey_format_state s;
118
119         bch2_bkey_format_init(&s);
120         bch2_bkey_format_add_pos(&s, b->data->min_key);
121         bch2_bkey_format_add_pos(&s, b->data->max_key);
122         __bch2_btree_calc_format(&s, b);
123
124         return bch2_bkey_format_done(&s);
125 }
126
127 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
128                                           struct bkey_format *old_f,
129                                           struct bkey_format *new_f)
130 {
131         /* stupid integer promotion rules */
132         ssize_t delta =
133             (((int) new_f->key_u64s - old_f->key_u64s) *
134              (int) nr.packed_keys) +
135             (((int) new_f->key_u64s - BKEY_U64s) *
136              (int) nr.unpacked_keys);
137
138         BUG_ON(delta + nr.live_u64s < 0);
139
140         return nr.live_u64s + delta;
141 }
142
143 /**
144  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
145  *
146  * @c:          filesystem handle
147  * @b:          btree node to rewrite
148  * @nr:         number of keys for new node (i.e. b->nr)
149  * @new_f:      bkey format to translate keys to
150  *
151  * Returns: true if all re-packed keys will be able to fit in a new node.
152  *
153  * Assumes all keys will successfully pack with the new format.
154  */
155 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
156                                  struct btree_nr_keys nr,
157                                  struct bkey_format *new_f)
158 {
159         size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
160
161         return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
162 }
163
164 /* Btree node freeing/allocation: */
165
166 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
167 {
168         struct bch_fs *c = trans->c;
169
170         trace_and_count(c, btree_node_free, trans, b);
171
172         BUG_ON(btree_node_write_blocked(b));
173         BUG_ON(btree_node_dirty(b));
174         BUG_ON(btree_node_need_write(b));
175         BUG_ON(b == btree_node_root(c, b));
176         BUG_ON(b->ob.nr);
177         BUG_ON(!list_empty(&b->write_blocked));
178         BUG_ON(b->will_make_reachable);
179
180         clear_btree_node_noevict(b);
181
182         mutex_lock(&c->btree_cache.lock);
183         list_move(&b->list, &c->btree_cache.freeable);
184         mutex_unlock(&c->btree_cache.lock);
185 }
186
187 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
188                                        struct btree_path *path,
189                                        struct btree *b)
190 {
191         struct bch_fs *c = trans->c;
192         unsigned i, level = b->c.level;
193
194         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
195         bch2_btree_node_hash_remove(&c->btree_cache, b);
196         __btree_node_free(trans, b);
197         six_unlock_write(&b->c.lock);
198         mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
199
200         trans_for_each_path(trans, path, i)
201                 if (path->l[level].b == b) {
202                         btree_node_unlock(trans, path, level);
203                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
204                 }
205 }
206
207 static void bch2_btree_node_free_never_used(struct btree_update *as,
208                                             struct btree_trans *trans,
209                                             struct btree *b)
210 {
211         struct bch_fs *c = as->c;
212         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
213         struct btree_path *path;
214         unsigned i, level = b->c.level;
215
216         BUG_ON(!list_empty(&b->write_blocked));
217         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
218
219         b->will_make_reachable = 0;
220         closure_put(&as->cl);
221
222         clear_btree_node_will_make_reachable(b);
223         clear_btree_node_accessed(b);
224         clear_btree_node_dirty_acct(c, b);
225         clear_btree_node_need_write(b);
226
227         mutex_lock(&c->btree_cache.lock);
228         list_del_init(&b->list);
229         bch2_btree_node_hash_remove(&c->btree_cache, b);
230         mutex_unlock(&c->btree_cache.lock);
231
232         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
233         p->b[p->nr++] = b;
234
235         six_unlock_intent(&b->c.lock);
236
237         trans_for_each_path(trans, path, i)
238                 if (path->l[level].b == b) {
239                         btree_node_unlock(trans, path, level);
240                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
241                 }
242 }
243
244 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
245                                              struct disk_reservation *res,
246                                              struct closure *cl,
247                                              bool interior_node,
248                                              unsigned flags)
249 {
250         struct bch_fs *c = trans->c;
251         struct write_point *wp;
252         struct btree *b;
253         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
254         struct open_buckets obs = { .nr = 0 };
255         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
256         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
257         unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
258                 ? BTREE_NODE_RESERVE
259                 : 0;
260         int ret;
261
262         mutex_lock(&c->btree_reserve_cache_lock);
263         if (c->btree_reserve_cache_nr > nr_reserve) {
264                 struct btree_alloc *a =
265                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
266
267                 obs = a->ob;
268                 bkey_copy(&tmp.k, &a->k);
269                 mutex_unlock(&c->btree_reserve_cache_lock);
270                 goto mem_alloc;
271         }
272         mutex_unlock(&c->btree_reserve_cache_lock);
273
274 retry:
275         ret = bch2_alloc_sectors_start_trans(trans,
276                                       c->opts.metadata_target ?:
277                                       c->opts.foreground_target,
278                                       0,
279                                       writepoint_ptr(&c->btree_write_point),
280                                       &devs_have,
281                                       res->nr_replicas,
282                                       min(res->nr_replicas,
283                                           c->opts.metadata_replicas_required),
284                                       watermark, 0, cl, &wp);
285         if (unlikely(ret))
286                 return ERR_PTR(ret);
287
288         if (wp->sectors_free < btree_sectors(c)) {
289                 struct open_bucket *ob;
290                 unsigned i;
291
292                 open_bucket_for_each(c, &wp->ptrs, ob, i)
293                         if (ob->sectors_free < btree_sectors(c))
294                                 ob->sectors_free = 0;
295
296                 bch2_alloc_sectors_done(c, wp);
297                 goto retry;
298         }
299
300         bkey_btree_ptr_v2_init(&tmp.k);
301         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
302
303         bch2_open_bucket_get(c, wp, &obs);
304         bch2_alloc_sectors_done(c, wp);
305 mem_alloc:
306         b = bch2_btree_node_mem_alloc(trans, interior_node);
307         six_unlock_write(&b->c.lock);
308         six_unlock_intent(&b->c.lock);
309
310         /* we hold cannibalize_lock: */
311         BUG_ON(IS_ERR(b));
312         BUG_ON(b->ob.nr);
313
314         bkey_copy(&b->key, &tmp.k);
315         b->ob = obs;
316
317         return b;
318 }
319
320 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
321                                            struct btree_trans *trans,
322                                            unsigned level)
323 {
324         struct bch_fs *c = as->c;
325         struct btree *b;
326         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
327         int ret;
328
329         BUG_ON(level >= BTREE_MAX_DEPTH);
330         BUG_ON(!p->nr);
331
332         b = p->b[--p->nr];
333
334         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
335         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
336
337         set_btree_node_accessed(b);
338         set_btree_node_dirty_acct(c, b);
339         set_btree_node_need_write(b);
340
341         bch2_bset_init_first(b, &b->data->keys);
342         b->c.level      = level;
343         b->c.btree_id   = as->btree_id;
344         b->version_ondisk = c->sb.version;
345
346         memset(&b->nr, 0, sizeof(b->nr));
347         b->data->magic = cpu_to_le64(bset_magic(c));
348         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
349         b->data->flags = 0;
350         SET_BTREE_NODE_ID(b->data, as->btree_id);
351         SET_BTREE_NODE_LEVEL(b->data, level);
352
353         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
354                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
355
356                 bp->v.mem_ptr           = 0;
357                 bp->v.seq               = b->data->keys.seq;
358                 bp->v.sectors_written   = 0;
359         }
360
361         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
362
363         bch2_btree_build_aux_trees(b);
364
365         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
366         BUG_ON(ret);
367
368         trace_and_count(c, btree_node_alloc, trans, b);
369         bch2_increment_clock(c, btree_sectors(c), WRITE);
370         return b;
371 }
372
373 static void btree_set_min(struct btree *b, struct bpos pos)
374 {
375         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
376                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
377         b->data->min_key = pos;
378 }
379
380 static void btree_set_max(struct btree *b, struct bpos pos)
381 {
382         b->key.k.p = pos;
383         b->data->max_key = pos;
384 }
385
386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
387                                                        struct btree_trans *trans,
388                                                        struct btree *b)
389 {
390         struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
391         struct bkey_format format = bch2_btree_calc_format(b);
392
393         /*
394          * The keys might expand with the new format - if they wouldn't fit in
395          * the btree node anymore, use the old format for now:
396          */
397         if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
398                 format = b->format;
399
400         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
401
402         btree_set_min(n, b->data->min_key);
403         btree_set_max(n, b->data->max_key);
404
405         n->data->format         = format;
406         btree_node_set_format(n, format);
407
408         bch2_btree_sort_into(as->c, n, b);
409
410         btree_node_reset_sib_u64s(n);
411         return n;
412 }
413
414 static struct btree *__btree_root_alloc(struct btree_update *as,
415                                 struct btree_trans *trans, unsigned level)
416 {
417         struct btree *b = bch2_btree_node_alloc(as, trans, level);
418
419         btree_set_min(b, POS_MIN);
420         btree_set_max(b, SPOS_MAX);
421         b->data->format = bch2_btree_calc_format(b);
422
423         btree_node_set_format(b, b->data->format);
424         bch2_btree_build_aux_trees(b);
425
426         return b;
427 }
428
429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
430 {
431         struct bch_fs *c = as->c;
432         struct prealloc_nodes *p;
433
434         for (p = as->prealloc_nodes;
435              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
436              p++) {
437                 while (p->nr) {
438                         struct btree *b = p->b[--p->nr];
439
440                         mutex_lock(&c->btree_reserve_cache_lock);
441
442                         if (c->btree_reserve_cache_nr <
443                             ARRAY_SIZE(c->btree_reserve_cache)) {
444                                 struct btree_alloc *a =
445                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
446
447                                 a->ob = b->ob;
448                                 b->ob.nr = 0;
449                                 bkey_copy(&a->k, &b->key);
450                         } else {
451                                 bch2_open_buckets_put(c, &b->ob);
452                         }
453
454                         mutex_unlock(&c->btree_reserve_cache_lock);
455
456                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
457                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
458                         __btree_node_free(trans, b);
459                         six_unlock_write(&b->c.lock);
460                         six_unlock_intent(&b->c.lock);
461                 }
462         }
463 }
464
465 static int bch2_btree_reserve_get(struct btree_trans *trans,
466                                   struct btree_update *as,
467                                   unsigned nr_nodes[2],
468                                   unsigned flags,
469                                   struct closure *cl)
470 {
471         struct btree *b;
472         unsigned interior;
473         int ret = 0;
474
475         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
476
477         /*
478          * Protects reaping from the btree node cache and using the btree node
479          * open bucket reserve:
480          */
481         ret = bch2_btree_cache_cannibalize_lock(trans, cl);
482         if (ret)
483                 return ret;
484
485         for (interior = 0; interior < 2; interior++) {
486                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
487
488                 while (p->nr < nr_nodes[interior]) {
489                         b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
490                                                     interior, flags);
491                         if (IS_ERR(b)) {
492                                 ret = PTR_ERR(b);
493                                 goto err;
494                         }
495
496                         p->b[p->nr++] = b;
497                 }
498         }
499 err:
500         bch2_btree_cache_cannibalize_unlock(trans);
501         return ret;
502 }
503
504 /* Asynchronous interior node update machinery */
505
506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
507 {
508         struct bch_fs *c = as->c;
509
510         if (as->took_gc_lock)
511                 up_read(&c->gc_lock);
512         as->took_gc_lock = false;
513
514         bch2_journal_pin_drop(&c->journal, &as->journal);
515         bch2_journal_pin_flush(&c->journal, &as->journal);
516         bch2_disk_reservation_put(c, &as->disk_res);
517         bch2_btree_reserve_put(as, trans);
518
519         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
520                                as->start_time);
521
522         mutex_lock(&c->btree_interior_update_lock);
523         list_del(&as->unwritten_list);
524         list_del(&as->list);
525
526         closure_debug_destroy(&as->cl);
527         mempool_free(as, &c->btree_interior_update_pool);
528
529         /*
530          * Have to do the wakeup with btree_interior_update_lock still held,
531          * since being on btree_interior_update_list is our ref on @c:
532          */
533         closure_wake_up(&c->btree_interior_update_wait);
534
535         mutex_unlock(&c->btree_interior_update_lock);
536 }
537
538 static void btree_update_add_key(struct btree_update *as,
539                                  struct keylist *keys, struct btree *b)
540 {
541         struct bkey_i *k = &b->key;
542
543         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
544                ARRAY_SIZE(as->_old_keys));
545
546         bkey_copy(keys->top, k);
547         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
548
549         bch2_keylist_push(keys);
550 }
551
552 /*
553  * The transactional part of an interior btree node update, where we journal the
554  * update we did to the interior node and update alloc info:
555  */
556 static int btree_update_nodes_written_trans(struct btree_trans *trans,
557                                             struct btree_update *as)
558 {
559         struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
560         int ret = PTR_ERR_OR_ZERO(e);
561         if (ret)
562                 return ret;
563
564         memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
565
566         trans->journal_pin = &as->journal;
567
568         for_each_keylist_key(&as->old_keys, k) {
569                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
570
571                 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
572                                            BTREE_TRIGGER_TRANSACTIONAL);
573                 if (ret)
574                         return ret;
575         }
576
577         for_each_keylist_key(&as->new_keys, k) {
578                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
579
580                 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
581                                            BTREE_TRIGGER_TRANSACTIONAL);
582                 if (ret)
583                         return ret;
584         }
585
586         return 0;
587 }
588
589 static void btree_update_nodes_written(struct btree_update *as)
590 {
591         struct bch_fs *c = as->c;
592         struct btree *b;
593         struct btree_trans *trans = bch2_trans_get(c);
594         u64 journal_seq = 0;
595         unsigned i;
596         int ret;
597
598         /*
599          * If we're already in an error state, it might be because a btree node
600          * was never written, and we might be trying to free that same btree
601          * node here, but it won't have been marked as allocated and we'll see
602          * spurious disk usage inconsistencies in the transactional part below
603          * if we don't skip it:
604          */
605         ret = bch2_journal_error(&c->journal);
606         if (ret)
607                 goto err;
608
609         /*
610          * Wait for any in flight writes to finish before we free the old nodes
611          * on disk:
612          */
613         for (i = 0; i < as->nr_old_nodes; i++) {
614                 __le64 seq;
615
616                 b = as->old_nodes[i];
617
618                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
619                 seq = b->data ? b->data->keys.seq : 0;
620                 six_unlock_read(&b->c.lock);
621
622                 if (seq == as->old_nodes_seq[i])
623                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
624                                        TASK_UNINTERRUPTIBLE);
625         }
626
627         /*
628          * We did an update to a parent node where the pointers we added pointed
629          * to child nodes that weren't written yet: now, the child nodes have
630          * been written so we can write out the update to the interior node.
631          */
632
633         /*
634          * We can't call into journal reclaim here: we'd block on the journal
635          * reclaim lock, but we may need to release the open buckets we have
636          * pinned in order for other btree updates to make forward progress, and
637          * journal reclaim does btree updates when flushing bkey_cached entries,
638          * which may require allocations as well.
639          */
640         ret = commit_do(trans, &as->disk_res, &journal_seq,
641                         BCH_WATERMARK_reclaim|
642                         BCH_TRANS_COMMIT_no_enospc|
643                         BCH_TRANS_COMMIT_no_check_rw|
644                         BCH_TRANS_COMMIT_journal_reclaim,
645                         btree_update_nodes_written_trans(trans, as));
646         bch2_trans_unlock(trans);
647
648         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
649                              "%s(): error %s", __func__, bch2_err_str(ret));
650 err:
651         if (as->b) {
652
653                 b = as->b;
654                 btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
655                                                 as->btree_id, b->c.level, b->key.k.p);
656                 struct btree_path *path = trans->paths + path_idx;
657                 /*
658                  * @b is the node we did the final insert into:
659                  *
660                  * On failure to get a journal reservation, we still have to
661                  * unblock the write and allow most of the write path to happen
662                  * so that shutdown works, but the i->journal_seq mechanism
663                  * won't work to prevent the btree write from being visible (we
664                  * didn't get a journal sequence number) - instead
665                  * __bch2_btree_node_write() doesn't do the actual write if
666                  * we're in journal error state:
667                  */
668
669                 /*
670                  * Ensure transaction is unlocked before using
671                  * btree_node_lock_nopath() (the use of which is always suspect,
672                  * we need to work on removing this in the future)
673                  *
674                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
675                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
676                  * we may rarely end up with a locked path besides the one we
677                  * have here:
678                  */
679                 bch2_trans_unlock(trans);
680                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
681                 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
682                 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
683                 path->l[b->c.level].b = b;
684
685                 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
686
687                 mutex_lock(&c->btree_interior_update_lock);
688
689                 list_del(&as->write_blocked_list);
690                 if (list_empty(&b->write_blocked))
691                         clear_btree_node_write_blocked(b);
692
693                 /*
694                  * Node might have been freed, recheck under
695                  * btree_interior_update_lock:
696                  */
697                 if (as->b == b) {
698                         BUG_ON(!b->c.level);
699                         BUG_ON(!btree_node_dirty(b));
700
701                         if (!ret) {
702                                 struct bset *last = btree_bset_last(b);
703
704                                 last->journal_seq = cpu_to_le64(
705                                                              max(journal_seq,
706                                                                  le64_to_cpu(last->journal_seq)));
707
708                                 bch2_btree_add_journal_pin(c, b, journal_seq);
709                         } else {
710                                 /*
711                                  * If we didn't get a journal sequence number we
712                                  * can't write this btree node, because recovery
713                                  * won't know to ignore this write:
714                                  */
715                                 set_btree_node_never_write(b);
716                         }
717                 }
718
719                 mutex_unlock(&c->btree_interior_update_lock);
720
721                 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
722                 six_unlock_write(&b->c.lock);
723
724                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
725                 btree_node_unlock(trans, path, b->c.level);
726                 bch2_path_put(trans, path_idx, true);
727         }
728
729         bch2_journal_pin_drop(&c->journal, &as->journal);
730
731         mutex_lock(&c->btree_interior_update_lock);
732         for (i = 0; i < as->nr_new_nodes; i++) {
733                 b = as->new_nodes[i];
734
735                 BUG_ON(b->will_make_reachable != (unsigned long) as);
736                 b->will_make_reachable = 0;
737                 clear_btree_node_will_make_reachable(b);
738         }
739         mutex_unlock(&c->btree_interior_update_lock);
740
741         for (i = 0; i < as->nr_new_nodes; i++) {
742                 b = as->new_nodes[i];
743
744                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
745                 btree_node_write_if_need(c, b, SIX_LOCK_read);
746                 six_unlock_read(&b->c.lock);
747         }
748
749         for (i = 0; i < as->nr_open_buckets; i++)
750                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
751
752         bch2_btree_update_free(as, trans);
753         bch2_trans_put(trans);
754 }
755
756 static void btree_interior_update_work(struct work_struct *work)
757 {
758         struct bch_fs *c =
759                 container_of(work, struct bch_fs, btree_interior_update_work);
760         struct btree_update *as;
761
762         while (1) {
763                 mutex_lock(&c->btree_interior_update_lock);
764                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
765                                               struct btree_update, unwritten_list);
766                 if (as && !as->nodes_written)
767                         as = NULL;
768                 mutex_unlock(&c->btree_interior_update_lock);
769
770                 if (!as)
771                         break;
772
773                 btree_update_nodes_written(as);
774         }
775 }
776
777 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
778 {
779         closure_type(as, struct btree_update, cl);
780         struct bch_fs *c = as->c;
781
782         mutex_lock(&c->btree_interior_update_lock);
783         as->nodes_written = true;
784         mutex_unlock(&c->btree_interior_update_lock);
785
786         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
787 }
788
789 /*
790  * We're updating @b with pointers to nodes that haven't finished writing yet:
791  * block @b from being written until @as completes
792  */
793 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
794 {
795         struct bch_fs *c = as->c;
796
797         mutex_lock(&c->btree_interior_update_lock);
798         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
799
800         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
801         BUG_ON(!btree_node_dirty(b));
802         BUG_ON(!b->c.level);
803
804         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
805         as->b           = b;
806
807         set_btree_node_write_blocked(b);
808         list_add(&as->write_blocked_list, &b->write_blocked);
809
810         mutex_unlock(&c->btree_interior_update_lock);
811 }
812
813 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
814                                 struct journal_entry_pin *_pin, u64 seq)
815 {
816         return 0;
817 }
818
819 static void btree_update_reparent(struct btree_update *as,
820                                   struct btree_update *child)
821 {
822         struct bch_fs *c = as->c;
823
824         lockdep_assert_held(&c->btree_interior_update_lock);
825
826         child->b = NULL;
827         child->mode = BTREE_INTERIOR_UPDATING_AS;
828
829         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
830                               bch2_update_reparent_journal_pin_flush);
831 }
832
833 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
834 {
835         struct bkey_i *insert = &b->key;
836         struct bch_fs *c = as->c;
837
838         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
839
840         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
841                ARRAY_SIZE(as->journal_entries));
842
843         as->journal_u64s +=
844                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
845                                   BCH_JSET_ENTRY_btree_root,
846                                   b->c.btree_id, b->c.level,
847                                   insert, insert->k.u64s);
848
849         mutex_lock(&c->btree_interior_update_lock);
850         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
851
852         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
853         mutex_unlock(&c->btree_interior_update_lock);
854 }
855
856 /*
857  * bch2_btree_update_add_new_node:
858  *
859  * This causes @as to wait on @b to be written, before it gets to
860  * bch2_btree_update_nodes_written
861  *
862  * Additionally, it sets b->will_make_reachable to prevent any additional writes
863  * to @b from happening besides the first until @b is reachable on disk
864  *
865  * And it adds @b to the list of @as's new nodes, so that we can update sector
866  * counts in bch2_btree_update_nodes_written:
867  */
868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
869 {
870         struct bch_fs *c = as->c;
871
872         closure_get(&as->cl);
873
874         mutex_lock(&c->btree_interior_update_lock);
875         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
876         BUG_ON(b->will_make_reachable);
877
878         as->new_nodes[as->nr_new_nodes++] = b;
879         b->will_make_reachable = 1UL|(unsigned long) as;
880         set_btree_node_will_make_reachable(b);
881
882         mutex_unlock(&c->btree_interior_update_lock);
883
884         btree_update_add_key(as, &as->new_keys, b);
885
886         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
887                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
888                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
889
890                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
891                         cpu_to_le16(sectors);
892         }
893 }
894
895 /*
896  * returns true if @b was a new node
897  */
898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
899 {
900         struct btree_update *as;
901         unsigned long v;
902         unsigned i;
903
904         mutex_lock(&c->btree_interior_update_lock);
905         /*
906          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
907          * dropped when it gets written by bch2_btree_complete_write - the
908          * xchg() is for synchronization with bch2_btree_complete_write:
909          */
910         v = xchg(&b->will_make_reachable, 0);
911         clear_btree_node_will_make_reachable(b);
912         as = (struct btree_update *) (v & ~1UL);
913
914         if (!as) {
915                 mutex_unlock(&c->btree_interior_update_lock);
916                 return;
917         }
918
919         for (i = 0; i < as->nr_new_nodes; i++)
920                 if (as->new_nodes[i] == b)
921                         goto found;
922
923         BUG();
924 found:
925         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
926         mutex_unlock(&c->btree_interior_update_lock);
927
928         if (v & 1)
929                 closure_put(&as->cl);
930 }
931
932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
933 {
934         while (b->ob.nr)
935                 as->open_buckets[as->nr_open_buckets++] =
936                         b->ob.v[--b->ob.nr];
937 }
938
939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
940                                 struct journal_entry_pin *_pin, u64 seq)
941 {
942         return 0;
943 }
944
945 /*
946  * @b is being split/rewritten: it may have pointers to not-yet-written btree
947  * nodes and thus outstanding btree_updates - redirect @b's
948  * btree_updates to point to this btree_update:
949  */
950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
951                                                       struct btree *b)
952 {
953         struct bch_fs *c = as->c;
954         struct btree_update *p, *n;
955         struct btree_write *w;
956
957         set_btree_node_dying(b);
958
959         if (btree_node_fake(b))
960                 return;
961
962         mutex_lock(&c->btree_interior_update_lock);
963
964         /*
965          * Does this node have any btree_update operations preventing
966          * it from being written?
967          *
968          * If so, redirect them to point to this btree_update: we can
969          * write out our new nodes, but we won't make them visible until those
970          * operations complete
971          */
972         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
973                 list_del_init(&p->write_blocked_list);
974                 btree_update_reparent(as, p);
975
976                 /*
977                  * for flush_held_btree_writes() waiting on updates to flush or
978                  * nodes to be writeable:
979                  */
980                 closure_wake_up(&c->btree_interior_update_wait);
981         }
982
983         clear_btree_node_dirty_acct(c, b);
984         clear_btree_node_need_write(b);
985         clear_btree_node_write_blocked(b);
986
987         /*
988          * Does this node have unwritten data that has a pin on the journal?
989          *
990          * If so, transfer that pin to the btree_update operation -
991          * note that if we're freeing multiple nodes, we only need to keep the
992          * oldest pin of any of the nodes we're freeing. We'll release the pin
993          * when the new nodes are persistent and reachable on disk:
994          */
995         w = btree_current_write(b);
996         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
997                               bch2_btree_update_will_free_node_journal_pin_flush);
998         bch2_journal_pin_drop(&c->journal, &w->journal);
999
1000         w = btree_prev_write(b);
1001         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1002                               bch2_btree_update_will_free_node_journal_pin_flush);
1003         bch2_journal_pin_drop(&c->journal, &w->journal);
1004
1005         mutex_unlock(&c->btree_interior_update_lock);
1006
1007         /*
1008          * Is this a node that isn't reachable on disk yet?
1009          *
1010          * Nodes that aren't reachable yet have writes blocked until they're
1011          * reachable - now that we've cancelled any pending writes and moved
1012          * things waiting on that write to wait on this update, we can drop this
1013          * node from the list of nodes that the other update is making
1014          * reachable, prior to freeing it:
1015          */
1016         btree_update_drop_new_node(c, b);
1017
1018         btree_update_add_key(as, &as->old_keys, b);
1019
1020         as->old_nodes[as->nr_old_nodes] = b;
1021         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1022         as->nr_old_nodes++;
1023 }
1024
1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1026 {
1027         struct bch_fs *c = as->c;
1028         u64 start_time = as->start_time;
1029
1030         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1031
1032         if (as->took_gc_lock)
1033                 up_read(&as->c->gc_lock);
1034         as->took_gc_lock = false;
1035
1036         bch2_btree_reserve_put(as, trans);
1037
1038         continue_at(&as->cl, btree_update_set_nodes_written,
1039                     as->c->btree_interior_update_worker);
1040
1041         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1042                                start_time);
1043 }
1044
1045 static struct btree_update *
1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1047                         unsigned level, bool split, unsigned flags)
1048 {
1049         struct bch_fs *c = trans->c;
1050         struct btree_update *as;
1051         u64 start_time = local_clock();
1052         int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1053                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1054         unsigned nr_nodes[2] = { 0, 0 };
1055         unsigned update_level = level;
1056         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1057         int ret = 0;
1058         u32 restart_count = trans->restart_count;
1059
1060         BUG_ON(!path->should_be_locked);
1061
1062         if (watermark == BCH_WATERMARK_copygc)
1063                 watermark = BCH_WATERMARK_btree_copygc;
1064         if (watermark < BCH_WATERMARK_btree)
1065                 watermark = BCH_WATERMARK_btree;
1066
1067         flags &= ~BCH_WATERMARK_MASK;
1068         flags |= watermark;
1069
1070         if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1071             watermark < c->journal.watermark) {
1072                 struct journal_res res = { 0 };
1073
1074                 ret = drop_locks_do(trans,
1075                         bch2_journal_res_get(&c->journal, &res, 1,
1076                                              watermark|JOURNAL_RES_GET_CHECK));
1077                 if (ret)
1078                         return ERR_PTR(ret);
1079         }
1080
1081         while (1) {
1082                 nr_nodes[!!update_level] += 1 + split;
1083                 update_level++;
1084
1085                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1086                 if (ret)
1087                         return ERR_PTR(ret);
1088
1089                 if (!btree_path_node(path, update_level)) {
1090                         /* Allocating new root? */
1091                         nr_nodes[1] += split;
1092                         update_level = BTREE_MAX_DEPTH;
1093                         break;
1094                 }
1095
1096                 /*
1097                  * Always check for space for two keys, even if we won't have to
1098                  * split at prior level - it might have been a merge instead:
1099                  */
1100                 if (bch2_btree_node_insert_fits(path->l[update_level].b,
1101                                                 BKEY_BTREE_PTR_U64s_MAX * 2))
1102                         break;
1103
1104                 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1105         }
1106
1107         if (!down_read_trylock(&c->gc_lock)) {
1108                 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1109                 if (ret) {
1110                         up_read(&c->gc_lock);
1111                         return ERR_PTR(ret);
1112                 }
1113         }
1114
1115         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1116         memset(as, 0, sizeof(*as));
1117         closure_init(&as->cl, NULL);
1118         as->c           = c;
1119         as->start_time  = start_time;
1120         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1121         as->took_gc_lock = true;
1122         as->btree_id    = path->btree_id;
1123         as->update_level = update_level;
1124         INIT_LIST_HEAD(&as->list);
1125         INIT_LIST_HEAD(&as->unwritten_list);
1126         INIT_LIST_HEAD(&as->write_blocked_list);
1127         bch2_keylist_init(&as->old_keys, as->_old_keys);
1128         bch2_keylist_init(&as->new_keys, as->_new_keys);
1129         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1130
1131         mutex_lock(&c->btree_interior_update_lock);
1132         list_add_tail(&as->list, &c->btree_interior_update_list);
1133         mutex_unlock(&c->btree_interior_update_lock);
1134
1135         /*
1136          * We don't want to allocate if we're in an error state, that can cause
1137          * deadlock on emergency shutdown due to open buckets getting stuck in
1138          * the btree_reserve_cache after allocator shutdown has cleared it out.
1139          * This check needs to come after adding us to the btree_interior_update
1140          * list but before calling bch2_btree_reserve_get, to synchronize with
1141          * __bch2_fs_read_only().
1142          */
1143         ret = bch2_journal_error(&c->journal);
1144         if (ret)
1145                 goto err;
1146
1147         ret = bch2_disk_reservation_get(c, &as->disk_res,
1148                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1149                         c->opts.metadata_replicas,
1150                         disk_res_flags);
1151         if (ret)
1152                 goto err;
1153
1154         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1155         if (bch2_err_matches(ret, ENOSPC) ||
1156             bch2_err_matches(ret, ENOMEM)) {
1157                 struct closure cl;
1158
1159                 /*
1160                  * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1161                  * flag
1162                  */
1163                 if (bch2_err_matches(ret, ENOSPC) &&
1164                     (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1165                     watermark != BCH_WATERMARK_reclaim) {
1166                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1167                         goto err;
1168                 }
1169
1170                 closure_init_stack(&cl);
1171
1172                 do {
1173                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1174
1175                         bch2_trans_unlock(trans);
1176                         closure_sync(&cl);
1177                 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1178         }
1179
1180         if (ret) {
1181                 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1182                                 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1183                 goto err;
1184         }
1185
1186         ret = bch2_trans_relock(trans);
1187         if (ret)
1188                 goto err;
1189
1190         bch2_trans_verify_not_restarted(trans, restart_count);
1191         return as;
1192 err:
1193         bch2_btree_update_free(as, trans);
1194         if (!bch2_err_matches(ret, ENOSPC) &&
1195             !bch2_err_matches(ret, EROFS))
1196                 bch_err_fn_ratelimited(c, ret);
1197         return ERR_PTR(ret);
1198 }
1199
1200 /* Btree root updates: */
1201
1202 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1203 {
1204         /* Root nodes cannot be reaped */
1205         mutex_lock(&c->btree_cache.lock);
1206         list_del_init(&b->list);
1207         mutex_unlock(&c->btree_cache.lock);
1208
1209         mutex_lock(&c->btree_root_lock);
1210         bch2_btree_id_root(c, b->c.btree_id)->b = b;
1211         mutex_unlock(&c->btree_root_lock);
1212
1213         bch2_recalc_btree_reserve(c);
1214 }
1215
1216 static void bch2_btree_set_root(struct btree_update *as,
1217                                 struct btree_trans *trans,
1218                                 struct btree_path *path,
1219                                 struct btree *b)
1220 {
1221         struct bch_fs *c = as->c;
1222         struct btree *old;
1223
1224         trace_and_count(c, btree_node_set_root, trans, b);
1225
1226         old = btree_node_root(c, b);
1227
1228         /*
1229          * Ensure no one is using the old root while we switch to the
1230          * new root:
1231          */
1232         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1233
1234         bch2_btree_set_root_inmem(c, b);
1235
1236         btree_update_updated_root(as, b);
1237
1238         /*
1239          * Unlock old root after new root is visible:
1240          *
1241          * The new root isn't persistent, but that's ok: we still have
1242          * an intent lock on the new root, and any updates that would
1243          * depend on the new root would have to update the new root.
1244          */
1245         bch2_btree_node_unlock_write(trans, path, old);
1246 }
1247
1248 /* Interior node updates: */
1249
1250 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1251                                         struct btree_trans *trans,
1252                                         struct btree_path *path,
1253                                         struct btree *b,
1254                                         struct btree_node_iter *node_iter,
1255                                         struct bkey_i *insert)
1256 {
1257         struct bch_fs *c = as->c;
1258         struct bkey_packed *k;
1259         struct printbuf buf = PRINTBUF;
1260         unsigned long old, new, v;
1261
1262         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1263                !btree_ptr_sectors_written(insert));
1264
1265         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1266                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1267
1268         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1269                               btree_node_type(b), WRITE, &buf) ?:
1270             bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1271                 printbuf_reset(&buf);
1272                 prt_printf(&buf, "inserting invalid bkey\n  ");
1273                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1274                 prt_printf(&buf, "\n  ");
1275                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1276                                   btree_node_type(b), WRITE, &buf);
1277                 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1278
1279                 bch2_fs_inconsistent(c, "%s", buf.buf);
1280                 dump_stack();
1281         }
1282
1283         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1284                ARRAY_SIZE(as->journal_entries));
1285
1286         as->journal_u64s +=
1287                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1288                                   BCH_JSET_ENTRY_btree_keys,
1289                                   b->c.btree_id, b->c.level,
1290                                   insert, insert->k.u64s);
1291
1292         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1293                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1294                 bch2_btree_node_iter_advance(node_iter, b);
1295
1296         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1297         set_btree_node_dirty_acct(c, b);
1298
1299         v = READ_ONCE(b->flags);
1300         do {
1301                 old = new = v;
1302
1303                 new &= ~BTREE_WRITE_TYPE_MASK;
1304                 new |= BTREE_WRITE_interior;
1305                 new |= 1 << BTREE_NODE_need_write;
1306         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1307
1308         printbuf_exit(&buf);
1309 }
1310
1311 static void
1312 __bch2_btree_insert_keys_interior(struct btree_update *as,
1313                                   struct btree_trans *trans,
1314                                   struct btree_path *path,
1315                                   struct btree *b,
1316                                   struct btree_node_iter node_iter,
1317                                   struct keylist *keys)
1318 {
1319         struct bkey_i *insert = bch2_keylist_front(keys);
1320         struct bkey_packed *k;
1321
1322         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1323
1324         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1325                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1326                 ;
1327
1328         while (!bch2_keylist_empty(keys)) {
1329                 insert = bch2_keylist_front(keys);
1330
1331                 if (bpos_gt(insert->k.p, b->key.k.p))
1332                         break;
1333
1334                 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1335                 bch2_keylist_pop_front(keys);
1336         }
1337 }
1338
1339 /*
1340  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1341  * node)
1342  */
1343 static void __btree_split_node(struct btree_update *as,
1344                                struct btree_trans *trans,
1345                                struct btree *b,
1346                                struct btree *n[2])
1347 {
1348         struct bkey_packed *k;
1349         struct bpos n1_pos = POS_MIN;
1350         struct btree_node_iter iter;
1351         struct bset *bsets[2];
1352         struct bkey_format_state format[2];
1353         struct bkey_packed *out[2];
1354         struct bkey uk;
1355         unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1356         struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1357         int i;
1358
1359         memset(&nr_keys, 0, sizeof(nr_keys));
1360
1361         for (i = 0; i < 2; i++) {
1362                 BUG_ON(n[i]->nsets != 1);
1363
1364                 bsets[i] = btree_bset_first(n[i]);
1365                 out[i] = bsets[i]->start;
1366
1367                 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1368                 bch2_bkey_format_init(&format[i]);
1369         }
1370
1371         u64s = 0;
1372         for_each_btree_node_key(b, k, &iter) {
1373                 if (bkey_deleted(k))
1374                         continue;
1375
1376                 i = u64s >= n1_u64s;
1377                 u64s += k->u64s;
1378                 uk = bkey_unpack_key(b, k);
1379                 if (!i)
1380                         n1_pos = uk.p;
1381                 bch2_bkey_format_add_key(&format[i], &uk);
1382
1383                 nr_keys[i].nr_keys++;
1384                 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1385         }
1386
1387         btree_set_min(n[0], b->data->min_key);
1388         btree_set_max(n[0], n1_pos);
1389         btree_set_min(n[1], bpos_successor(n1_pos));
1390         btree_set_max(n[1], b->data->max_key);
1391
1392         for (i = 0; i < 2; i++) {
1393                 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1394                 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1395
1396                 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1397
1398                 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1399                         nr_keys[i].val_u64s;
1400                 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1401                         n[i]->data->format = b->format;
1402
1403                 btree_node_set_format(n[i], n[i]->data->format);
1404         }
1405
1406         u64s = 0;
1407         for_each_btree_node_key(b, k, &iter) {
1408                 if (bkey_deleted(k))
1409                         continue;
1410
1411                 i = u64s >= n1_u64s;
1412                 u64s += k->u64s;
1413
1414                 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1415                                         ? &b->format: &bch2_bkey_format_current, k))
1416                         out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1417                 else
1418                         bch2_bkey_unpack(b, (void *) out[i], k);
1419
1420                 out[i]->needs_whiteout = false;
1421
1422                 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1423                 out[i] = bkey_p_next(out[i]);
1424         }
1425
1426         for (i = 0; i < 2; i++) {
1427                 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1428
1429                 BUG_ON(!bsets[i]->u64s);
1430
1431                 set_btree_bset_end(n[i], n[i]->set);
1432
1433                 btree_node_reset_sib_u64s(n[i]);
1434
1435                 bch2_verify_btree_nr_keys(n[i]);
1436
1437                 if (b->c.level)
1438                         btree_node_interior_verify(as->c, n[i]);
1439         }
1440 }
1441
1442 /*
1443  * For updates to interior nodes, we've got to do the insert before we split
1444  * because the stuff we're inserting has to be inserted atomically. Post split,
1445  * the keys might have to go in different nodes and the split would no longer be
1446  * atomic.
1447  *
1448  * Worse, if the insert is from btree node coalescing, if we do the insert after
1449  * we do the split (and pick the pivot) - the pivot we pick might be between
1450  * nodes that were coalesced, and thus in the middle of a child node post
1451  * coalescing:
1452  */
1453 static void btree_split_insert_keys(struct btree_update *as,
1454                                     struct btree_trans *trans,
1455                                     btree_path_idx_t path_idx,
1456                                     struct btree *b,
1457                                     struct keylist *keys)
1458 {
1459         struct btree_path *path = trans->paths + path_idx;
1460
1461         if (!bch2_keylist_empty(keys) &&
1462             bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1463                 struct btree_node_iter node_iter;
1464
1465                 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1466
1467                 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1468
1469                 btree_node_interior_verify(as->c, b);
1470         }
1471 }
1472
1473 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1474                        btree_path_idx_t path, struct btree *b,
1475                        struct keylist *keys)
1476 {
1477         struct bch_fs *c = as->c;
1478         struct btree *parent = btree_node_parent(trans->paths + path, b);
1479         struct btree *n1, *n2 = NULL, *n3 = NULL;
1480         btree_path_idx_t path1 = 0, path2 = 0;
1481         u64 start_time = local_clock();
1482         int ret = 0;
1483
1484         BUG_ON(!parent && (b != btree_node_root(c, b)));
1485         BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1486
1487         bch2_btree_interior_update_will_free_node(as, b);
1488
1489         if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1490                 struct btree *n[2];
1491
1492                 trace_and_count(c, btree_node_split, trans, b);
1493
1494                 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1495                 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1496
1497                 __btree_split_node(as, trans, b, n);
1498
1499                 if (keys) {
1500                         btree_split_insert_keys(as, trans, path, n1, keys);
1501                         btree_split_insert_keys(as, trans, path, n2, keys);
1502                         BUG_ON(!bch2_keylist_empty(keys));
1503                 }
1504
1505                 bch2_btree_build_aux_trees(n2);
1506                 bch2_btree_build_aux_trees(n1);
1507
1508                 bch2_btree_update_add_new_node(as, n1);
1509                 bch2_btree_update_add_new_node(as, n2);
1510                 six_unlock_write(&n2->c.lock);
1511                 six_unlock_write(&n1->c.lock);
1512
1513                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1514                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1515                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1516                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1517
1518                 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p);
1519                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1520                 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1521                 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1522
1523                 /*
1524                  * Note that on recursive parent_keys == keys, so we
1525                  * can't start adding new keys to parent_keys before emptying it
1526                  * out (which we did with btree_split_insert_keys() above)
1527                  */
1528                 bch2_keylist_add(&as->parent_keys, &n1->key);
1529                 bch2_keylist_add(&as->parent_keys, &n2->key);
1530
1531                 if (!parent) {
1532                         /* Depth increases, make a new root */
1533                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1534
1535                         bch2_btree_update_add_new_node(as, n3);
1536                         six_unlock_write(&n3->c.lock);
1537
1538                         trans->paths[path2].locks_want++;
1539                         BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1540                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1541                         mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1542                         bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1543
1544                         n3->sib_u64s[0] = U16_MAX;
1545                         n3->sib_u64s[1] = U16_MAX;
1546
1547                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1548                 }
1549         } else {
1550                 trace_and_count(c, btree_node_compact, trans, b);
1551
1552                 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1553
1554                 if (keys) {
1555                         btree_split_insert_keys(as, trans, path, n1, keys);
1556                         BUG_ON(!bch2_keylist_empty(keys));
1557                 }
1558
1559                 bch2_btree_build_aux_trees(n1);
1560                 bch2_btree_update_add_new_node(as, n1);
1561                 six_unlock_write(&n1->c.lock);
1562
1563                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1564                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1565                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1566                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1567
1568                 if (parent)
1569                         bch2_keylist_add(&as->parent_keys, &n1->key);
1570         }
1571
1572         /* New nodes all written, now make them visible: */
1573
1574         if (parent) {
1575                 /* Split a non root node */
1576                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1577                 if (ret)
1578                         goto err;
1579         } else if (n3) {
1580                 bch2_btree_set_root(as, trans, trans->paths + path, n3);
1581         } else {
1582                 /* Root filled up but didn't need to be split */
1583                 bch2_btree_set_root(as, trans, trans->paths + path, n1);
1584         }
1585
1586         if (n3) {
1587                 bch2_btree_update_get_open_buckets(as, n3);
1588                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1589         }
1590         if (n2) {
1591                 bch2_btree_update_get_open_buckets(as, n2);
1592                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1593         }
1594         bch2_btree_update_get_open_buckets(as, n1);
1595         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1596
1597         /*
1598          * The old node must be freed (in memory) _before_ unlocking the new
1599          * nodes - else another thread could re-acquire a read lock on the old
1600          * node after another thread has locked and updated the new node, thus
1601          * seeing stale data:
1602          */
1603         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1604
1605         if (n3)
1606                 bch2_trans_node_add(trans, trans->paths + path, n3);
1607         if (n2)
1608                 bch2_trans_node_add(trans, trans->paths + path2, n2);
1609         bch2_trans_node_add(trans, trans->paths + path1, n1);
1610
1611         if (n3)
1612                 six_unlock_intent(&n3->c.lock);
1613         if (n2)
1614                 six_unlock_intent(&n2->c.lock);
1615         six_unlock_intent(&n1->c.lock);
1616 out:
1617         if (path2) {
1618                 __bch2_btree_path_unlock(trans, trans->paths + path2);
1619                 bch2_path_put(trans, path2, true);
1620         }
1621         if (path1) {
1622                 __bch2_btree_path_unlock(trans, trans->paths + path1);
1623                 bch2_path_put(trans, path1, true);
1624         }
1625
1626         bch2_trans_verify_locks(trans);
1627
1628         bch2_time_stats_update(&c->times[n2
1629                                ? BCH_TIME_btree_node_split
1630                                : BCH_TIME_btree_node_compact],
1631                                start_time);
1632         return ret;
1633 err:
1634         if (n3)
1635                 bch2_btree_node_free_never_used(as, trans, n3);
1636         if (n2)
1637                 bch2_btree_node_free_never_used(as, trans, n2);
1638         bch2_btree_node_free_never_used(as, trans, n1);
1639         goto out;
1640 }
1641
1642 static void
1643 bch2_btree_insert_keys_interior(struct btree_update *as,
1644                                 struct btree_trans *trans,
1645                                 struct btree_path *path,
1646                                 struct btree *b,
1647                                 struct keylist *keys)
1648 {
1649         struct btree_path *linked;
1650         unsigned i;
1651
1652         __bch2_btree_insert_keys_interior(as, trans, path, b,
1653                                           path->l[b->c.level].iter, keys);
1654
1655         btree_update_updated_node(as, b);
1656
1657         trans_for_each_path_with_node(trans, b, linked, i)
1658                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1659
1660         bch2_trans_verify_paths(trans);
1661 }
1662
1663 /**
1664  * bch2_btree_insert_node - insert bkeys into a given btree node
1665  *
1666  * @as:                 btree_update object
1667  * @trans:              btree_trans object
1668  * @path_idx:           path that points to current node
1669  * @b:                  node to insert keys into
1670  * @keys:               list of keys to insert
1671  *
1672  * Returns: 0 on success, typically transaction restart error on failure
1673  *
1674  * Inserts as many keys as it can into a given btree node, splitting it if full.
1675  * If a split occurred, this function will return early. This can only happen
1676  * for leaf nodes -- inserts into interior nodes have to be atomic.
1677  */
1678 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1679                                   btree_path_idx_t path_idx, struct btree *b,
1680                                   struct keylist *keys)
1681 {
1682         struct bch_fs *c = as->c;
1683         struct btree_path *path = trans->paths + path_idx;
1684         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1685         int old_live_u64s = b->nr.live_u64s;
1686         int live_u64s_added, u64s_added;
1687         int ret;
1688
1689         lockdep_assert_held(&c->gc_lock);
1690         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1691         BUG_ON(!b->c.level);
1692         BUG_ON(!as || as->b);
1693         bch2_verify_keylist_sorted(keys);
1694
1695         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1696         if (ret)
1697                 return ret;
1698
1699         bch2_btree_node_prep_for_write(trans, path, b);
1700
1701         if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1702                 bch2_btree_node_unlock_write(trans, path, b);
1703                 goto split;
1704         }
1705
1706         btree_node_interior_verify(c, b);
1707
1708         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1709
1710         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1711         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1712
1713         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1714                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1715         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1716                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1717
1718         if (u64s_added > live_u64s_added &&
1719             bch2_maybe_compact_whiteouts(c, b))
1720                 bch2_trans_node_reinit_iter(trans, b);
1721
1722         bch2_btree_node_unlock_write(trans, path, b);
1723
1724         btree_node_interior_verify(c, b);
1725         return 0;
1726 split:
1727         /*
1728          * We could attempt to avoid the transaction restart, by calling
1729          * bch2_btree_path_upgrade() and allocating more nodes:
1730          */
1731         if (b->c.level >= as->update_level) {
1732                 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1733                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1734         }
1735
1736         return btree_split(as, trans, path_idx, b, keys);
1737 }
1738
1739 int bch2_btree_split_leaf(struct btree_trans *trans,
1740                           btree_path_idx_t path,
1741                           unsigned flags)
1742 {
1743         /* btree_split & merge may both cause paths array to be reallocated */
1744         struct btree *b = path_l(trans->paths + path)->b;
1745         struct btree_update *as;
1746         unsigned l;
1747         int ret = 0;
1748
1749         as = bch2_btree_update_start(trans, trans->paths + path,
1750                                      trans->paths[path].level,
1751                                      true, flags);
1752         if (IS_ERR(as))
1753                 return PTR_ERR(as);
1754
1755         ret = btree_split(as, trans, path, b, NULL);
1756         if (ret) {
1757                 bch2_btree_update_free(as, trans);
1758                 return ret;
1759         }
1760
1761         bch2_btree_update_done(as, trans);
1762
1763         for (l = trans->paths[path].level + 1;
1764              btree_node_intent_locked(&trans->paths[path], l) && !ret;
1765              l++)
1766                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1767
1768         return ret;
1769 }
1770
1771 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1772                                    btree_path_idx_t path_idx)
1773 {
1774         struct bch_fs *c = as->c;
1775         struct btree_path *path = trans->paths + path_idx;
1776         struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1777
1778         BUG_ON(!btree_node_locked(path, b->c.level));
1779
1780         n = __btree_root_alloc(as, trans, b->c.level + 1);
1781
1782         bch2_btree_update_add_new_node(as, n);
1783         six_unlock_write(&n->c.lock);
1784
1785         path->locks_want++;
1786         BUG_ON(btree_node_locked(path, n->c.level));
1787         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1788         mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1789         bch2_btree_path_level_init(trans, path, n);
1790
1791         n->sib_u64s[0] = U16_MAX;
1792         n->sib_u64s[1] = U16_MAX;
1793
1794         bch2_keylist_add(&as->parent_keys, &b->key);
1795         btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1796
1797         bch2_btree_set_root(as, trans, path, n);
1798         bch2_btree_update_get_open_buckets(as, n);
1799         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1800         bch2_trans_node_add(trans, path, n);
1801         six_unlock_intent(&n->c.lock);
1802
1803         mutex_lock(&c->btree_cache.lock);
1804         list_add_tail(&b->list, &c->btree_cache.live);
1805         mutex_unlock(&c->btree_cache.lock);
1806
1807         bch2_trans_verify_locks(trans);
1808 }
1809
1810 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1811 {
1812         struct bch_fs *c = trans->c;
1813         struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1814         struct btree_update *as =
1815                 bch2_btree_update_start(trans, trans->paths + path,
1816                                         b->c.level, true, flags);
1817         if (IS_ERR(as))
1818                 return PTR_ERR(as);
1819
1820         __btree_increase_depth(as, trans, path);
1821         bch2_btree_update_done(as, trans);
1822         return 0;
1823 }
1824
1825 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1826                                   btree_path_idx_t path,
1827                                   unsigned level,
1828                                   unsigned flags,
1829                                   enum btree_node_sibling sib)
1830 {
1831         struct bch_fs *c = trans->c;
1832         struct btree_update *as;
1833         struct bkey_format_state new_s;
1834         struct bkey_format new_f;
1835         struct bkey_i delete;
1836         struct btree *b, *m, *n, *prev, *next, *parent;
1837         struct bpos sib_pos;
1838         size_t sib_u64s;
1839         enum btree_id btree = trans->paths[path].btree_id;
1840         btree_path_idx_t sib_path = 0, new_path = 0;
1841         u64 start_time = local_clock();
1842         int ret = 0;
1843
1844         BUG_ON(!trans->paths[path].should_be_locked);
1845         BUG_ON(!btree_node_locked(&trans->paths[path], level));
1846
1847         b = trans->paths[path].l[level].b;
1848
1849         if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1850             (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1851                 b->sib_u64s[sib] = U16_MAX;
1852                 return 0;
1853         }
1854
1855         sib_pos = sib == btree_prev_sib
1856                 ? bpos_predecessor(b->data->min_key)
1857                 : bpos_successor(b->data->max_key);
1858
1859         sib_path = bch2_path_get(trans, btree, sib_pos,
1860                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1861         ret = bch2_btree_path_traverse(trans, sib_path, false);
1862         if (ret)
1863                 goto err;
1864
1865         btree_path_set_should_be_locked(trans->paths + sib_path);
1866
1867         m = trans->paths[sib_path].l[level].b;
1868
1869         if (btree_node_parent(trans->paths + path, b) !=
1870             btree_node_parent(trans->paths + sib_path, m)) {
1871                 b->sib_u64s[sib] = U16_MAX;
1872                 goto out;
1873         }
1874
1875         if (sib == btree_prev_sib) {
1876                 prev = m;
1877                 next = b;
1878         } else {
1879                 prev = b;
1880                 next = m;
1881         }
1882
1883         if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1884                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1885
1886                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1887                 bch2_bpos_to_text(&buf2, next->data->min_key);
1888                 bch_err(c,
1889                         "%s(): btree topology error:\n"
1890                         "  prev ends at   %s\n"
1891                         "  next starts at %s",
1892                         __func__, buf1.buf, buf2.buf);
1893                 printbuf_exit(&buf1);
1894                 printbuf_exit(&buf2);
1895                 ret = bch2_topology_error(c);
1896                 goto err;
1897         }
1898
1899         bch2_bkey_format_init(&new_s);
1900         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1901         __bch2_btree_calc_format(&new_s, prev);
1902         __bch2_btree_calc_format(&new_s, next);
1903         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1904         new_f = bch2_bkey_format_done(&new_s);
1905
1906         sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
1907                 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
1908
1909         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1910                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1911                 sib_u64s /= 2;
1912                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1913         }
1914
1915         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1916         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1917         b->sib_u64s[sib] = sib_u64s;
1918
1919         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1920                 goto out;
1921
1922         parent = btree_node_parent(trans->paths + path, b);
1923         as = bch2_btree_update_start(trans, trans->paths + path, level, false,
1924                                      BCH_TRANS_COMMIT_no_enospc|flags);
1925         ret = PTR_ERR_OR_ZERO(as);
1926         if (ret)
1927                 goto err;
1928
1929         trace_and_count(c, btree_node_merge, trans, b);
1930
1931         bch2_btree_interior_update_will_free_node(as, b);
1932         bch2_btree_interior_update_will_free_node(as, m);
1933
1934         n = bch2_btree_node_alloc(as, trans, b->c.level);
1935
1936         SET_BTREE_NODE_SEQ(n->data,
1937                            max(BTREE_NODE_SEQ(b->data),
1938                                BTREE_NODE_SEQ(m->data)) + 1);
1939
1940         btree_set_min(n, prev->data->min_key);
1941         btree_set_max(n, next->data->max_key);
1942
1943         n->data->format  = new_f;
1944         btree_node_set_format(n, new_f);
1945
1946         bch2_btree_sort_into(c, n, prev);
1947         bch2_btree_sort_into(c, n, next);
1948
1949         bch2_btree_build_aux_trees(n);
1950         bch2_btree_update_add_new_node(as, n);
1951         six_unlock_write(&n->c.lock);
1952
1953         new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p);
1954         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1955         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1956         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1957
1958         bkey_init(&delete.k);
1959         delete.k.p = prev->key.k.p;
1960         bch2_keylist_add(&as->parent_keys, &delete);
1961         bch2_keylist_add(&as->parent_keys, &n->key);
1962
1963         bch2_trans_verify_paths(trans);
1964
1965         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1966         if (ret)
1967                 goto err_free_update;
1968
1969         bch2_trans_verify_paths(trans);
1970
1971         bch2_btree_update_get_open_buckets(as, n);
1972         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1973
1974         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1975         bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
1976
1977         bch2_trans_node_add(trans, trans->paths + path, n);
1978
1979         bch2_trans_verify_paths(trans);
1980
1981         six_unlock_intent(&n->c.lock);
1982
1983         bch2_btree_update_done(as, trans);
1984
1985         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1986 out:
1987 err:
1988         if (new_path)
1989                 bch2_path_put(trans, new_path, true);
1990         bch2_path_put(trans, sib_path, true);
1991         bch2_trans_verify_locks(trans);
1992         return ret;
1993 err_free_update:
1994         bch2_btree_node_free_never_used(as, trans, n);
1995         bch2_btree_update_free(as, trans);
1996         goto out;
1997 }
1998
1999 int bch2_btree_node_rewrite(struct btree_trans *trans,
2000                             struct btree_iter *iter,
2001                             struct btree *b,
2002                             unsigned flags)
2003 {
2004         struct bch_fs *c = trans->c;
2005         struct btree *n, *parent;
2006         struct btree_update *as;
2007         btree_path_idx_t new_path = 0;
2008         int ret;
2009
2010         flags |= BCH_TRANS_COMMIT_no_enospc;
2011
2012         struct btree_path *path = btree_iter_path(trans, iter);
2013         parent = btree_node_parent(path, b);
2014         as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2015         ret = PTR_ERR_OR_ZERO(as);
2016         if (ret)
2017                 goto out;
2018
2019         bch2_btree_interior_update_will_free_node(as, b);
2020
2021         n = bch2_btree_node_alloc_replacement(as, trans, b);
2022
2023         bch2_btree_build_aux_trees(n);
2024         bch2_btree_update_add_new_node(as, n);
2025         six_unlock_write(&n->c.lock);
2026
2027         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
2028         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2029         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2030         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2031
2032         trace_and_count(c, btree_node_rewrite, trans, b);
2033
2034         if (parent) {
2035                 bch2_keylist_add(&as->parent_keys, &n->key);
2036                 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2037                 if (ret)
2038                         goto err;
2039         } else {
2040                 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n);
2041         }
2042
2043         bch2_btree_update_get_open_buckets(as, n);
2044         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2045
2046         bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2047
2048         bch2_trans_node_add(trans, trans->paths + iter->path, n);
2049         six_unlock_intent(&n->c.lock);
2050
2051         bch2_btree_update_done(as, trans);
2052 out:
2053         if (new_path)
2054                 bch2_path_put(trans, new_path, true);
2055         bch2_trans_downgrade(trans);
2056         return ret;
2057 err:
2058         bch2_btree_node_free_never_used(as, trans, n);
2059         bch2_btree_update_free(as, trans);
2060         goto out;
2061 }
2062
2063 struct async_btree_rewrite {
2064         struct bch_fs           *c;
2065         struct work_struct      work;
2066         struct list_head        list;
2067         enum btree_id           btree_id;
2068         unsigned                level;
2069         struct bpos             pos;
2070         __le64                  seq;
2071 };
2072
2073 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2074                                           struct async_btree_rewrite *a)
2075 {
2076         struct bch_fs *c = trans->c;
2077         struct btree_iter iter;
2078         struct btree *b;
2079         int ret;
2080
2081         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2082                                   BTREE_MAX_DEPTH, a->level, 0);
2083         b = bch2_btree_iter_peek_node(&iter);
2084         ret = PTR_ERR_OR_ZERO(b);
2085         if (ret)
2086                 goto out;
2087
2088         if (!b || b->data->keys.seq != a->seq) {
2089                 struct printbuf buf = PRINTBUF;
2090
2091                 if (b)
2092                         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2093                 else
2094                         prt_str(&buf, "(null");
2095                 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2096                          __func__, a->seq, buf.buf);
2097                 printbuf_exit(&buf);
2098                 goto out;
2099         }
2100
2101         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2102 out:
2103         bch2_trans_iter_exit(trans, &iter);
2104
2105         return ret;
2106 }
2107
2108 static void async_btree_node_rewrite_work(struct work_struct *work)
2109 {
2110         struct async_btree_rewrite *a =
2111                 container_of(work, struct async_btree_rewrite, work);
2112         struct bch_fs *c = a->c;
2113         int ret;
2114
2115         ret = bch2_trans_do(c, NULL, NULL, 0,
2116                       async_btree_node_rewrite_trans(trans, a));
2117         bch_err_fn(c, ret);
2118         bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2119         kfree(a);
2120 }
2121
2122 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2123 {
2124         struct async_btree_rewrite *a;
2125         int ret;
2126
2127         a = kmalloc(sizeof(*a), GFP_NOFS);
2128         if (!a) {
2129                 bch_err(c, "%s: error allocating memory", __func__);
2130                 return;
2131         }
2132
2133         a->c            = c;
2134         a->btree_id     = b->c.btree_id;
2135         a->level        = b->c.level;
2136         a->pos          = b->key.k.p;
2137         a->seq          = b->data->keys.seq;
2138         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2139
2140         if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2141                 mutex_lock(&c->pending_node_rewrites_lock);
2142                 list_add(&a->list, &c->pending_node_rewrites);
2143                 mutex_unlock(&c->pending_node_rewrites_lock);
2144                 return;
2145         }
2146
2147         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2148                 if (test_bit(BCH_FS_started, &c->flags)) {
2149                         bch_err(c, "%s: error getting c->writes ref", __func__);
2150                         kfree(a);
2151                         return;
2152                 }
2153
2154                 ret = bch2_fs_read_write_early(c);
2155                 bch_err_msg(c, ret, "going read-write");
2156                 if (ret) {
2157                         kfree(a);
2158                         return;
2159                 }
2160
2161                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2162         }
2163
2164         queue_work(c->btree_interior_update_worker, &a->work);
2165 }
2166
2167 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2168 {
2169         struct async_btree_rewrite *a, *n;
2170
2171         mutex_lock(&c->pending_node_rewrites_lock);
2172         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2173                 list_del(&a->list);
2174
2175                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2176                 queue_work(c->btree_interior_update_worker, &a->work);
2177         }
2178         mutex_unlock(&c->pending_node_rewrites_lock);
2179 }
2180
2181 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2182 {
2183         struct async_btree_rewrite *a, *n;
2184
2185         mutex_lock(&c->pending_node_rewrites_lock);
2186         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2187                 list_del(&a->list);
2188
2189                 kfree(a);
2190         }
2191         mutex_unlock(&c->pending_node_rewrites_lock);
2192 }
2193
2194 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2195                                         struct btree_iter *iter,
2196                                         struct btree *b, struct btree *new_hash,
2197                                         struct bkey_i *new_key,
2198                                         unsigned commit_flags,
2199                                         bool skip_triggers)
2200 {
2201         struct bch_fs *c = trans->c;
2202         struct btree_iter iter2 = { NULL };
2203         struct btree *parent;
2204         int ret;
2205
2206         if (!skip_triggers) {
2207                 ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2208                                              bkey_i_to_s_c(&b->key),
2209                                              BTREE_TRIGGER_TRANSACTIONAL) ?:
2210                         bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2211                                              bkey_i_to_s(new_key),
2212                                              BTREE_TRIGGER_TRANSACTIONAL);
2213                 if (ret)
2214                         return ret;
2215         }
2216
2217         if (new_hash) {
2218                 bkey_copy(&new_hash->key, new_key);
2219                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2220                                 new_hash, b->c.level, b->c.btree_id);
2221                 BUG_ON(ret);
2222         }
2223
2224         parent = btree_node_parent(btree_iter_path(trans, iter), b);
2225         if (parent) {
2226                 bch2_trans_copy_iter(&iter2, iter);
2227
2228                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2229                                 iter2.flags & BTREE_ITER_INTENT,
2230                                 _THIS_IP_);
2231
2232                 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2233                 BUG_ON(path2->level != b->c.level);
2234                 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2235
2236                 btree_path_set_level_up(trans, path2);
2237
2238                 trans->paths_sorted = false;
2239
2240                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2241                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2242                 if (ret)
2243                         goto err;
2244         } else {
2245                 BUG_ON(btree_node_root(c, b) != b);
2246
2247                 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2248                                        jset_u64s(new_key->k.u64s));
2249                 ret = PTR_ERR_OR_ZERO(e);
2250                 if (ret)
2251                         return ret;
2252
2253                 journal_entry_set(e,
2254                                   BCH_JSET_ENTRY_btree_root,
2255                                   b->c.btree_id, b->c.level,
2256                                   new_key, new_key->k.u64s);
2257         }
2258
2259         ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2260         if (ret)
2261                 goto err;
2262
2263         bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2264
2265         if (new_hash) {
2266                 mutex_lock(&c->btree_cache.lock);
2267                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2268                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2269
2270                 bkey_copy(&b->key, new_key);
2271                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2272                 BUG_ON(ret);
2273                 mutex_unlock(&c->btree_cache.lock);
2274         } else {
2275                 bkey_copy(&b->key, new_key);
2276         }
2277
2278         bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2279 out:
2280         bch2_trans_iter_exit(trans, &iter2);
2281         return ret;
2282 err:
2283         if (new_hash) {
2284                 mutex_lock(&c->btree_cache.lock);
2285                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2286                 mutex_unlock(&c->btree_cache.lock);
2287         }
2288         goto out;
2289 }
2290
2291 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2292                                struct btree *b, struct bkey_i *new_key,
2293                                unsigned commit_flags, bool skip_triggers)
2294 {
2295         struct bch_fs *c = trans->c;
2296         struct btree *new_hash = NULL;
2297         struct btree_path *path = btree_iter_path(trans, iter);
2298         struct closure cl;
2299         int ret = 0;
2300
2301         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2302         if (ret)
2303                 return ret;
2304
2305         closure_init_stack(&cl);
2306
2307         /*
2308          * check btree_ptr_hash_val() after @b is locked by
2309          * btree_iter_traverse():
2310          */
2311         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2312                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2313                 if (ret) {
2314                         ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2315                         if (ret)
2316                                 return ret;
2317                 }
2318
2319                 new_hash = bch2_btree_node_mem_alloc(trans, false);
2320         }
2321
2322         path->intent_ref++;
2323         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2324                                            commit_flags, skip_triggers);
2325         --path->intent_ref;
2326
2327         if (new_hash) {
2328                 mutex_lock(&c->btree_cache.lock);
2329                 list_move(&new_hash->list, &c->btree_cache.freeable);
2330                 mutex_unlock(&c->btree_cache.lock);
2331
2332                 six_unlock_write(&new_hash->c.lock);
2333                 six_unlock_intent(&new_hash->c.lock);
2334         }
2335         closure_sync(&cl);
2336         bch2_btree_cache_cannibalize_unlock(trans);
2337         return ret;
2338 }
2339
2340 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2341                                         struct btree *b, struct bkey_i *new_key,
2342                                         unsigned commit_flags, bool skip_triggers)
2343 {
2344         struct btree_iter iter;
2345         int ret;
2346
2347         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2348                                   BTREE_MAX_DEPTH, b->c.level,
2349                                   BTREE_ITER_INTENT);
2350         ret = bch2_btree_iter_traverse(&iter);
2351         if (ret)
2352                 goto out;
2353
2354         /* has node been freed? */
2355         if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2356                 /* node has been freed: */
2357                 BUG_ON(!btree_node_dying(b));
2358                 goto out;
2359         }
2360
2361         BUG_ON(!btree_node_hashed(b));
2362
2363         struct bch_extent_ptr *ptr;
2364         bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2365                             !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2366
2367         ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2368                                          commit_flags, skip_triggers);
2369 out:
2370         bch2_trans_iter_exit(trans, &iter);
2371         return ret;
2372 }
2373
2374 /* Init code: */
2375
2376 /*
2377  * Only for filesystem bringup, when first reading the btree roots or allocating
2378  * btree roots when initializing a new filesystem:
2379  */
2380 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2381 {
2382         BUG_ON(btree_node_root(c, b));
2383
2384         bch2_btree_set_root_inmem(c, b);
2385 }
2386
2387 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2388 {
2389         struct bch_fs *c = trans->c;
2390         struct closure cl;
2391         struct btree *b;
2392         int ret;
2393
2394         closure_init_stack(&cl);
2395
2396         do {
2397                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2398                 closure_sync(&cl);
2399         } while (ret);
2400
2401         b = bch2_btree_node_mem_alloc(trans, false);
2402         bch2_btree_cache_cannibalize_unlock(trans);
2403
2404         set_btree_node_fake(b);
2405         set_btree_node_need_rewrite(b);
2406         b->c.level      = 0;
2407         b->c.btree_id   = id;
2408
2409         bkey_btree_ptr_init(&b->key);
2410         b->key.k.p = SPOS_MAX;
2411         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2412
2413         bch2_bset_init_first(b, &b->data->keys);
2414         bch2_btree_build_aux_trees(b);
2415
2416         b->data->flags = 0;
2417         btree_set_min(b, POS_MIN);
2418         btree_set_max(b, SPOS_MAX);
2419         b->data->format = bch2_btree_calc_format(b);
2420         btree_node_set_format(b, b->data->format);
2421
2422         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2423                                           b->c.level, b->c.btree_id);
2424         BUG_ON(ret);
2425
2426         bch2_btree_set_root_inmem(c, b);
2427
2428         six_unlock_write(&b->c.lock);
2429         six_unlock_intent(&b->c.lock);
2430         return 0;
2431 }
2432
2433 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2434 {
2435         bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2436 }
2437
2438 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2439 {
2440         struct btree_update *as;
2441
2442         mutex_lock(&c->btree_interior_update_lock);
2443         list_for_each_entry(as, &c->btree_interior_update_list, list)
2444                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2445                        as,
2446                        as->mode,
2447                        as->nodes_written,
2448                        closure_nr_remaining(&as->cl),
2449                        as->journal.seq);
2450         mutex_unlock(&c->btree_interior_update_lock);
2451 }
2452
2453 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2454 {
2455         bool ret;
2456
2457         mutex_lock(&c->btree_interior_update_lock);
2458         ret = !list_empty(&c->btree_interior_update_list);
2459         mutex_unlock(&c->btree_interior_update_lock);
2460
2461         return ret;
2462 }
2463
2464 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2465 {
2466         bool ret = bch2_btree_interior_updates_pending(c);
2467
2468         if (ret)
2469                 closure_wait_event(&c->btree_interior_update_wait,
2470                                    !bch2_btree_interior_updates_pending(c));
2471         return ret;
2472 }
2473
2474 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2475 {
2476         struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2477
2478         mutex_lock(&c->btree_root_lock);
2479
2480         r->level = entry->level;
2481         r->alive = true;
2482         bkey_copy(&r->key, (struct bkey_i *) entry->start);
2483
2484         mutex_unlock(&c->btree_root_lock);
2485 }
2486
2487 struct jset_entry *
2488 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2489                                     struct jset_entry *end,
2490                                     unsigned long skip)
2491 {
2492         unsigned i;
2493
2494         mutex_lock(&c->btree_root_lock);
2495
2496         for (i = 0; i < btree_id_nr_alive(c); i++) {
2497                 struct btree_root *r = bch2_btree_id_root(c, i);
2498
2499                 if (r->alive && !test_bit(i, &skip)) {
2500                         journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2501                                           i, r->level, &r->key, r->key.k.u64s);
2502                         end = vstruct_next(end);
2503                 }
2504         }
2505
2506         mutex_unlock(&c->btree_root_lock);
2507
2508         return end;
2509 }
2510
2511 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2512 {
2513         if (c->btree_interior_update_worker)
2514                 destroy_workqueue(c->btree_interior_update_worker);
2515         mempool_exit(&c->btree_interior_update_pool);
2516 }
2517
2518 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2519 {
2520         mutex_init(&c->btree_reserve_cache_lock);
2521         INIT_LIST_HEAD(&c->btree_interior_update_list);
2522         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2523         mutex_init(&c->btree_interior_update_lock);
2524         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2525
2526         INIT_LIST_HEAD(&c->pending_node_rewrites);
2527         mutex_init(&c->pending_node_rewrites_lock);
2528 }
2529
2530 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2531 {
2532         c->btree_interior_update_worker =
2533                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2534         if (!c->btree_interior_update_worker)
2535                 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2536
2537         if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2538                                       sizeof(struct btree_update)))
2539                 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2540
2541         return 0;
2542 }