sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / fs / bcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10
11 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12
13 /*
14  * Tracks an in progress split/rewrite of a btree node and the update to the
15  * parent node:
16  *
17  * When we split/rewrite a node, we do all the updates in memory without
18  * waiting for any writes to complete - we allocate the new node(s) and update
19  * the parent node, possibly recursively up to the root.
20  *
21  * The end result is that we have one or more new nodes being written -
22  * possibly several, if there were multiple splits - and then a write (updating
23  * an interior node) which will make all these new nodes visible.
24  *
25  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
26  * nodes can't be freed (their space on disk can't be reclaimed) until the
27  * update to the interior node that makes the new node visible completes -
28  * until then, the old nodes are still reachable on disk.
29  *
30  */
31 struct btree_update {
32         struct closure                  cl;
33         struct bch_fs                   *c;
34         u64                             start_time;
35
36         struct list_head                list;
37         struct list_head                unwritten_list;
38
39         /* What kind of update are we doing? */
40         enum {
41                 BTREE_INTERIOR_NO_UPDATE,
42                 BTREE_INTERIOR_UPDATING_NODE,
43                 BTREE_INTERIOR_UPDATING_ROOT,
44                 BTREE_INTERIOR_UPDATING_AS,
45         } mode;
46
47         unsigned                        nodes_written:1;
48         unsigned                        took_gc_lock:1;
49
50         enum btree_id                   btree_id;
51         unsigned                        update_level;
52
53         struct disk_reservation         disk_res;
54
55         /*
56          * BTREE_INTERIOR_UPDATING_NODE:
57          * The update that made the new nodes visible was a regular update to an
58          * existing interior node - @b. We can't write out the update to @b
59          * until the new nodes we created are finished writing, so we block @b
60          * from writing by putting this btree_interior update on the
61          * @b->write_blocked list with @write_blocked_list:
62          */
63         struct btree                    *b;
64         struct list_head                write_blocked_list;
65
66         /*
67          * We may be freeing nodes that were dirty, and thus had journal entries
68          * pinned: we need to transfer the oldest of those pins to the
69          * btree_update operation, and release it when the new node(s)
70          * are all persistent and reachable:
71          */
72         struct journal_entry_pin        journal;
73
74         /* Preallocated nodes we reserve when we start the update: */
75         struct prealloc_nodes {
76                 struct btree            *b[BTREE_UPDATE_NODES_MAX];
77                 unsigned                nr;
78         }                               prealloc_nodes[2];
79
80         /* Nodes being freed: */
81         struct keylist                  old_keys;
82         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
83                                                   BKEY_BTREE_PTR_U64s_MAX];
84
85         /* Nodes being added: */
86         struct keylist                  new_keys;
87         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
88                                                   BKEY_BTREE_PTR_U64s_MAX];
89
90         /* New nodes, that will be made reachable by this update: */
91         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
92         unsigned                        nr_new_nodes;
93
94         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
95         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
96         unsigned                        nr_old_nodes;
97
98         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
99                                                      BCH_REPLICAS_MAX];
100         open_bucket_idx_t               nr_open_buckets;
101
102         unsigned                        journal_u64s;
103         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
104
105         /* Only here to reduce stack usage on recursive splits: */
106         struct keylist                  parent_keys;
107         /*
108          * Enough room for btree_split's keys without realloc - btree node
109          * pointers never have crc/compression info, so we only need to acount
110          * for the pointers for three keys
111          */
112         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
113 };
114
115 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
116                                                   struct btree_trans *,
117                                                   struct btree *,
118                                                   struct bkey_format);
119
120 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
121
122 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
123
124 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
125                                   unsigned, unsigned, enum btree_node_sibling);
126
127 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
128                                         btree_path_idx_t path_idx,
129                                         unsigned level, unsigned flags,
130                                         enum btree_node_sibling sib)
131 {
132         struct btree_path *path = trans->paths + path_idx;
133         struct btree *b;
134
135         EBUG_ON(!btree_node_locked(path, level));
136
137         b = path->l[level].b;
138         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
139                 return 0;
140
141         return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
142 }
143
144 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
145                                               btree_path_idx_t path,
146                                               unsigned level,
147                                               unsigned flags)
148 {
149         return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
150                                                     btree_prev_sib) ?:
151                 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
152                                                     btree_next_sib);
153 }
154
155 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
156                             struct btree *, unsigned);
157 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
158 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
159                                struct btree *, struct bkey_i *,
160                                unsigned, bool);
161 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
162                                         struct bkey_i *, unsigned, bool);
163
164 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
165 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
166
167 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
168                                                      struct btree *b)
169 {
170         unsigned depth = btree_node_root(c, b)->c.level + 1;
171
172         /*
173          * Number of nodes we might have to allocate in a worst case btree
174          * split operation - we split all the way up to the root, then allocate
175          * a new root, unless we're already at max depth:
176          */
177         if (depth < BTREE_MAX_DEPTH)
178                 return (depth - b->c.level) * 2 + 1;
179         else
180                 return (depth - b->c.level) * 2 - 1;
181 }
182
183 static inline void btree_node_reset_sib_u64s(struct btree *b)
184 {
185         b->sib_u64s[0] = b->nr.live_u64s;
186         b->sib_u64s[1] = b->nr.live_u64s;
187 }
188
189 static inline void *btree_data_end(struct btree *b)
190 {
191         return (void *) b->data + btree_buf_bytes(b);
192 }
193
194 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
195 {
196         return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
197 }
198
199 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
200 {
201         return btree_data_end(b);
202 }
203
204 static inline void *write_block(struct btree *b)
205 {
206         return (void *) b->data + (b->written << 9);
207 }
208
209 static inline bool __btree_addr_written(struct btree *b, void *p)
210 {
211         return p < write_block(b);
212 }
213
214 static inline bool bset_written(struct btree *b, struct bset *i)
215 {
216         return __btree_addr_written(b, i);
217 }
218
219 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
220 {
221         return __btree_addr_written(b, k);
222 }
223
224 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
225 {
226         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
227                 b->whiteout_u64s;
228         ssize_t total = btree_buf_bytes(b) >> 3;
229
230         /* Always leave one extra u64 for bch2_varint_decode: */
231         used++;
232
233         return total - used;
234 }
235
236 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
237 {
238         ssize_t remaining = __bch2_btree_u64s_remaining(b,
239                                 btree_bkey_last(b, bset_tree_last(b)));
240
241         BUG_ON(remaining < 0);
242
243         if (bset_written(b, btree_bset_last(b)))
244                 return 0;
245
246         return remaining;
247 }
248
249 #define BTREE_WRITE_SET_U64s_BITS       9
250
251 static inline unsigned btree_write_set_buffer(struct btree *b)
252 {
253         /*
254          * Could buffer up larger amounts of keys for btrees with larger keys,
255          * pending benchmarking:
256          */
257         return 8 << BTREE_WRITE_SET_U64s_BITS;
258 }
259
260 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
261 {
262         struct bset_tree *t = bset_tree_last(b);
263         struct btree_node_entry *bne = max(write_block(b),
264                         (void *) btree_bkey_last(b, bset_tree_last(b)));
265         ssize_t remaining_space =
266                 __bch2_btree_u64s_remaining(b, bne->keys.start);
267
268         if (unlikely(bset_written(b, bset(b, t)))) {
269                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
270                         return bne;
271         } else {
272                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
273                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
274                         return bne;
275         }
276
277         return NULL;
278 }
279
280 static inline void push_whiteout(struct btree *b, struct bpos pos)
281 {
282         struct bkey_packed k;
283
284         BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
285         EBUG_ON(btree_node_just_written(b));
286
287         if (!bkey_pack_pos(&k, pos, b)) {
288                 struct bkey *u = (void *) &k;
289
290                 bkey_init(u);
291                 u->p = pos;
292         }
293
294         k.needs_whiteout = true;
295
296         b->whiteout_u64s += k.u64s;
297         bkey_p_copy(unwritten_whiteouts_start(b), &k);
298 }
299
300 /*
301  * write lock must be held on @b (else the dirty bset that we were going to
302  * insert into could be written out from under us)
303  */
304 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
305 {
306         if (unlikely(btree_node_need_rewrite(b)))
307                 return false;
308
309         return u64s <= bch2_btree_keys_u64s_remaining(b);
310 }
311
312 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
313
314 bool bch2_btree_interior_updates_flush(struct bch_fs *);
315
316 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
317 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
318                                         struct jset_entry *, unsigned long);
319
320 void bch2_do_pending_node_rewrites(struct bch_fs *);
321 void bch2_free_pending_node_rewrites(struct bch_fs *);
322
323 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
324 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
325 int bch2_fs_btree_interior_update_init(struct bch_fs *);
326
327 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */