Merge tag '6.9-rc5-cifs-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22
23 static struct kmem_cache *btrfs_ordered_extent_cache;
24
25 static u64 entry_end(struct btrfs_ordered_extent *entry)
26 {
27         if (entry->file_offset + entry->num_bytes < entry->file_offset)
28                 return (u64)-1;
29         return entry->file_offset + entry->num_bytes;
30 }
31
32 /* returns NULL if the insertion worked, or it returns the node it did find
33  * in the tree
34  */
35 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36                                    struct rb_node *node)
37 {
38         struct rb_node **p = &root->rb_node;
39         struct rb_node *parent = NULL;
40         struct btrfs_ordered_extent *entry;
41
42         while (*p) {
43                 parent = *p;
44                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
45
46                 if (file_offset < entry->file_offset)
47                         p = &(*p)->rb_left;
48                 else if (file_offset >= entry_end(entry))
49                         p = &(*p)->rb_right;
50                 else
51                         return parent;
52         }
53
54         rb_link_node(node, parent, p);
55         rb_insert_color(node, root);
56         return NULL;
57 }
58
59 /*
60  * look for a given offset in the tree, and if it can't be found return the
61  * first lesser offset
62  */
63 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
64                                      struct rb_node **prev_ret)
65 {
66         struct rb_node *n = root->rb_node;
67         struct rb_node *prev = NULL;
68         struct rb_node *test;
69         struct btrfs_ordered_extent *entry;
70         struct btrfs_ordered_extent *prev_entry = NULL;
71
72         while (n) {
73                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74                 prev = n;
75                 prev_entry = entry;
76
77                 if (file_offset < entry->file_offset)
78                         n = n->rb_left;
79                 else if (file_offset >= entry_end(entry))
80                         n = n->rb_right;
81                 else
82                         return n;
83         }
84         if (!prev_ret)
85                 return NULL;
86
87         while (prev && file_offset >= entry_end(prev_entry)) {
88                 test = rb_next(prev);
89                 if (!test)
90                         break;
91                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
92                                       rb_node);
93                 if (file_offset < entry_end(prev_entry))
94                         break;
95
96                 prev = test;
97         }
98         if (prev)
99                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
100                                       rb_node);
101         while (prev && file_offset < entry_end(prev_entry)) {
102                 test = rb_prev(prev);
103                 if (!test)
104                         break;
105                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106                                       rb_node);
107                 prev = test;
108         }
109         *prev_ret = prev;
110         return NULL;
111 }
112
113 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
114                           u64 len)
115 {
116         if (file_offset + len <= entry->file_offset ||
117             entry->file_offset + entry->num_bytes <= file_offset)
118                 return 0;
119         return 1;
120 }
121
122 /*
123  * look find the first ordered struct that has this offset, otherwise
124  * the first one less than this offset
125  */
126 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
127                                                   u64 file_offset)
128 {
129         struct rb_node *prev = NULL;
130         struct rb_node *ret;
131         struct btrfs_ordered_extent *entry;
132
133         if (inode->ordered_tree_last) {
134                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
135                                  rb_node);
136                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
137                         return inode->ordered_tree_last;
138         }
139         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
140         if (!ret)
141                 ret = prev;
142         if (ret)
143                 inode->ordered_tree_last = ret;
144         return ret;
145 }
146
147 static struct btrfs_ordered_extent *alloc_ordered_extent(
148                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
149                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
150                         u64 offset, unsigned long flags, int compress_type)
151 {
152         struct btrfs_ordered_extent *entry;
153         int ret;
154         u64 qgroup_rsv = 0;
155
156         if (flags &
157             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158                 /* For nocow write, we can release the qgroup rsv right now */
159                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
160                 if (ret < 0)
161                         return ERR_PTR(ret);
162         } else {
163                 /*
164                  * The ordered extent has reserved qgroup space, release now
165                  * and pass the reserved number for qgroup_record to free.
166                  */
167                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
168                 if (ret < 0)
169                         return ERR_PTR(ret);
170         }
171         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172         if (!entry)
173                 return ERR_PTR(-ENOMEM);
174
175         entry->file_offset = file_offset;
176         entry->num_bytes = num_bytes;
177         entry->ram_bytes = ram_bytes;
178         entry->disk_bytenr = disk_bytenr;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->offset = offset;
181         entry->bytes_left = num_bytes;
182         entry->inode = igrab(&inode->vfs_inode);
183         entry->compress_type = compress_type;
184         entry->truncated_len = (u64)-1;
185         entry->qgroup_rsv = qgroup_rsv;
186         entry->flags = flags;
187         refcount_set(&entry->refs, 1);
188         init_waitqueue_head(&entry->wait);
189         INIT_LIST_HEAD(&entry->list);
190         INIT_LIST_HEAD(&entry->log_list);
191         INIT_LIST_HEAD(&entry->root_extent_list);
192         INIT_LIST_HEAD(&entry->work_list);
193         INIT_LIST_HEAD(&entry->bioc_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_root *root = inode->root;
212         struct btrfs_fs_info *fs_info = root->fs_info;
213         struct rb_node *node;
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* One ref for the tree. */
221         refcount_inc(&entry->refs);
222
223         spin_lock_irq(&inode->ordered_tree_lock);
224         node = tree_insert(&inode->ordered_tree, entry->file_offset,
225                            &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&inode->ordered_tree_lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292         spin_lock_irq(&inode->ordered_tree_lock);
293         list_add_tail(&sum->list, &entry->list);
294         spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296
297 static void finish_ordered_fn(struct btrfs_work *work)
298 {
299         struct btrfs_ordered_extent *ordered_extent;
300
301         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302         btrfs_finish_ordered_io(ordered_extent);
303 }
304
305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306                                       struct page *page, u64 file_offset,
307                                       u64 len, bool uptodate)
308 {
309         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310         struct btrfs_fs_info *fs_info = inode->root->fs_info;
311
312         lockdep_assert_held(&inode->ordered_tree_lock);
313
314         if (page) {
315                 ASSERT(page->mapping);
316                 ASSERT(page_offset(page) <= file_offset);
317                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
318
319                 /*
320                  * Ordered (Private2) bit indicates whether we still have
321                  * pending io unfinished for the ordered extent.
322                  *
323                  * If there's no such bit, we need to skip to next range.
324                  */
325                 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
326                                               file_offset, len))
327                         return false;
328                 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
329         }
330
331         /* Now we're fine to update the accounting. */
332         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333                 btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335                            inode->root->root_key.objectid, btrfs_ino(inode),
336                            ordered->file_offset, ordered->num_bytes,
337                            len, ordered->bytes_left);
338                 ordered->bytes_left = 0;
339         } else {
340                 ordered->bytes_left -= len;
341         }
342
343         if (!uptodate)
344                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345
346         if (ordered->bytes_left)
347                 return false;
348
349         /*
350          * All the IO of the ordered extent is finished, we need to queue
351          * the finish_func to be executed.
352          */
353         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354         cond_wake_up(&ordered->wait);
355         refcount_inc(&ordered->refs);
356         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357         return true;
358 }
359
360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363         struct btrfs_fs_info *fs_info = inode->root->fs_info;
364         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366
367         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
368         btrfs_queue_work(wq, &ordered->work);
369 }
370
371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372                                  struct page *page, u64 file_offset, u64 len,
373                                  bool uptodate)
374 {
375         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376         unsigned long flags;
377         bool ret;
378
379         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380
381         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
382         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
384
385         if (ret)
386                 btrfs_queue_ordered_fn(ordered);
387         return ret;
388 }
389
390 /*
391  * Mark all ordered extents io inside the specified range finished.
392  *
393  * @page:        The involved page for the operation.
394  *               For uncompressed buffered IO, the page status also needs to be
395  *               updated to indicate whether the pending ordered io is finished.
396  *               Can be NULL for direct IO and compressed write.
397  *               For these cases, callers are ensured they won't execute the
398  *               endio function twice.
399  *
400  * This function is called for endio, thus the range must have ordered
401  * extent(s) covering it.
402  */
403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404                                     struct page *page, u64 file_offset,
405                                     u64 num_bytes, bool uptodate)
406 {
407         struct rb_node *node;
408         struct btrfs_ordered_extent *entry = NULL;
409         unsigned long flags;
410         u64 cur = file_offset;
411
412         trace_btrfs_writepage_end_io_hook(inode, file_offset,
413                                           file_offset + num_bytes - 1,
414                                           uptodate);
415
416         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
417         while (cur < file_offset + num_bytes) {
418                 u64 entry_end;
419                 u64 end;
420                 u32 len;
421
422                 node = ordered_tree_search(inode, cur);
423                 /* No ordered extents at all */
424                 if (!node)
425                         break;
426
427                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
428                 entry_end = entry->file_offset + entry->num_bytes;
429                 /*
430                  * |<-- OE --->|  |
431                  *                cur
432                  * Go to next OE.
433                  */
434                 if (cur >= entry_end) {
435                         node = rb_next(node);
436                         /* No more ordered extents, exit */
437                         if (!node)
438                                 break;
439                         entry = rb_entry(node, struct btrfs_ordered_extent,
440                                          rb_node);
441
442                         /* Go to next ordered extent and continue */
443                         cur = entry->file_offset;
444                         continue;
445                 }
446                 /*
447                  * |    |<--- OE --->|
448                  * cur
449                  * Go to the start of OE.
450                  */
451                 if (cur < entry->file_offset) {
452                         cur = entry->file_offset;
453                         continue;
454                 }
455
456                 /*
457                  * Now we are definitely inside one ordered extent.
458                  *
459                  * |<--- OE --->|
460                  *      |
461                  *      cur
462                  */
463                 end = min(entry->file_offset + entry->num_bytes,
464                           file_offset + num_bytes) - 1;
465                 ASSERT(end + 1 - cur < U32_MAX);
466                 len = end + 1 - cur;
467
468                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
469                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
470                         btrfs_queue_ordered_fn(entry);
471                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
472                 }
473                 cur += len;
474         }
475         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
476 }
477
478 /*
479  * Finish IO for one ordered extent across a given range.  The range can only
480  * contain one ordered extent.
481  *
482  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
483  *               search and use the ordered extent directly.
484  *               Will be also used to store the finished ordered extent.
485  * @file_offset: File offset for the finished IO
486  * @io_size:     Length of the finish IO range
487  *
488  * Return true if the ordered extent is finished in the range, and update
489  * @cached.
490  * Return false otherwise.
491  *
492  * NOTE: The range can NOT cross multiple ordered extents.
493  * Thus caller should ensure the range doesn't cross ordered extents.
494  */
495 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
496                                     struct btrfs_ordered_extent **cached,
497                                     u64 file_offset, u64 io_size)
498 {
499         struct rb_node *node;
500         struct btrfs_ordered_extent *entry = NULL;
501         unsigned long flags;
502         bool finished = false;
503
504         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
505         if (cached && *cached) {
506                 entry = *cached;
507                 goto have_entry;
508         }
509
510         node = ordered_tree_search(inode, file_offset);
511         if (!node)
512                 goto out;
513
514         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
515 have_entry:
516         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
517                 goto out;
518
519         if (io_size > entry->bytes_left)
520                 btrfs_crit(inode->root->fs_info,
521                            "bad ordered accounting left %llu size %llu",
522                        entry->bytes_left, io_size);
523
524         entry->bytes_left -= io_size;
525
526         if (entry->bytes_left == 0) {
527                 /*
528                  * Ensure only one caller can set the flag and finished_ret
529                  * accordingly
530                  */
531                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
532                 /* test_and_set_bit implies a barrier */
533                 cond_wake_up_nomb(&entry->wait);
534         }
535 out:
536         if (finished && cached && entry) {
537                 *cached = entry;
538                 refcount_inc(&entry->refs);
539                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
540         }
541         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
542         return finished;
543 }
544
545 /*
546  * used to drop a reference on an ordered extent.  This will free
547  * the extent if the last reference is dropped
548  */
549 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
550 {
551         struct list_head *cur;
552         struct btrfs_ordered_sum *sum;
553
554         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
555
556         if (refcount_dec_and_test(&entry->refs)) {
557                 ASSERT(list_empty(&entry->root_extent_list));
558                 ASSERT(list_empty(&entry->log_list));
559                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
560                 if (entry->inode)
561                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
562                 while (!list_empty(&entry->list)) {
563                         cur = entry->list.next;
564                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
565                         list_del(&sum->list);
566                         kvfree(sum);
567                 }
568                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
569         }
570 }
571
572 /*
573  * remove an ordered extent from the tree.  No references are dropped
574  * and waiters are woken up.
575  */
576 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
577                                  struct btrfs_ordered_extent *entry)
578 {
579         struct btrfs_root *root = btrfs_inode->root;
580         struct btrfs_fs_info *fs_info = root->fs_info;
581         struct rb_node *node;
582         bool pending;
583         bool freespace_inode;
584
585         /*
586          * If this is a free space inode the thread has not acquired the ordered
587          * extents lockdep map.
588          */
589         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
590
591         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
592         /* This is paired with btrfs_alloc_ordered_extent. */
593         spin_lock(&btrfs_inode->lock);
594         btrfs_mod_outstanding_extents(btrfs_inode, -1);
595         spin_unlock(&btrfs_inode->lock);
596         if (root != fs_info->tree_root) {
597                 u64 release;
598
599                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
600                         release = entry->disk_num_bytes;
601                 else
602                         release = entry->num_bytes;
603                 btrfs_delalloc_release_metadata(btrfs_inode, release,
604                                                 test_bit(BTRFS_ORDERED_IOERR,
605                                                          &entry->flags));
606         }
607
608         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
609                                  fs_info->delalloc_batch);
610
611         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
612         node = &entry->rb_node;
613         rb_erase(node, &btrfs_inode->ordered_tree);
614         RB_CLEAR_NODE(node);
615         if (btrfs_inode->ordered_tree_last == node)
616                 btrfs_inode->ordered_tree_last = NULL;
617         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
618         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
619         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
620
621         /*
622          * The current running transaction is waiting on us, we need to let it
623          * know that we're complete and wake it up.
624          */
625         if (pending) {
626                 struct btrfs_transaction *trans;
627
628                 /*
629                  * The checks for trans are just a formality, it should be set,
630                  * but if it isn't we don't want to deref/assert under the spin
631                  * lock, so be nice and check if trans is set, but ASSERT() so
632                  * if it isn't set a developer will notice.
633                  */
634                 spin_lock(&fs_info->trans_lock);
635                 trans = fs_info->running_transaction;
636                 if (trans)
637                         refcount_inc(&trans->use_count);
638                 spin_unlock(&fs_info->trans_lock);
639
640                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
641                 if (trans) {
642                         if (atomic_dec_and_test(&trans->pending_ordered))
643                                 wake_up(&trans->pending_wait);
644                         btrfs_put_transaction(trans);
645                 }
646         }
647
648         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
649
650         spin_lock(&root->ordered_extent_lock);
651         list_del_init(&entry->root_extent_list);
652         root->nr_ordered_extents--;
653
654         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
655
656         if (!root->nr_ordered_extents) {
657                 spin_lock(&fs_info->ordered_root_lock);
658                 BUG_ON(list_empty(&root->ordered_root));
659                 list_del_init(&root->ordered_root);
660                 spin_unlock(&fs_info->ordered_root_lock);
661         }
662         spin_unlock(&root->ordered_extent_lock);
663         wake_up(&entry->wait);
664         if (!freespace_inode)
665                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
666 }
667
668 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
669 {
670         struct btrfs_ordered_extent *ordered;
671
672         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
673         btrfs_start_ordered_extent(ordered);
674         complete(&ordered->completion);
675 }
676
677 /*
678  * wait for all the ordered extents in a root.  This is done when balancing
679  * space between drives.
680  */
681 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
682                                const u64 range_start, const u64 range_len)
683 {
684         struct btrfs_fs_info *fs_info = root->fs_info;
685         LIST_HEAD(splice);
686         LIST_HEAD(skipped);
687         LIST_HEAD(works);
688         struct btrfs_ordered_extent *ordered, *next;
689         u64 count = 0;
690         const u64 range_end = range_start + range_len;
691
692         mutex_lock(&root->ordered_extent_mutex);
693         spin_lock(&root->ordered_extent_lock);
694         list_splice_init(&root->ordered_extents, &splice);
695         while (!list_empty(&splice) && nr) {
696                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
697                                            root_extent_list);
698
699                 if (range_end <= ordered->disk_bytenr ||
700                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
701                         list_move_tail(&ordered->root_extent_list, &skipped);
702                         cond_resched_lock(&root->ordered_extent_lock);
703                         continue;
704                 }
705
706                 list_move_tail(&ordered->root_extent_list,
707                                &root->ordered_extents);
708                 refcount_inc(&ordered->refs);
709                 spin_unlock(&root->ordered_extent_lock);
710
711                 btrfs_init_work(&ordered->flush_work,
712                                 btrfs_run_ordered_extent_work, NULL);
713                 list_add_tail(&ordered->work_list, &works);
714                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
715
716                 cond_resched();
717                 spin_lock(&root->ordered_extent_lock);
718                 if (nr != U64_MAX)
719                         nr--;
720                 count++;
721         }
722         list_splice_tail(&skipped, &root->ordered_extents);
723         list_splice_tail(&splice, &root->ordered_extents);
724         spin_unlock(&root->ordered_extent_lock);
725
726         list_for_each_entry_safe(ordered, next, &works, work_list) {
727                 list_del_init(&ordered->work_list);
728                 wait_for_completion(&ordered->completion);
729                 btrfs_put_ordered_extent(ordered);
730                 cond_resched();
731         }
732         mutex_unlock(&root->ordered_extent_mutex);
733
734         return count;
735 }
736
737 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
738                              const u64 range_start, const u64 range_len)
739 {
740         struct btrfs_root *root;
741         LIST_HEAD(splice);
742         u64 done;
743
744         mutex_lock(&fs_info->ordered_operations_mutex);
745         spin_lock(&fs_info->ordered_root_lock);
746         list_splice_init(&fs_info->ordered_roots, &splice);
747         while (!list_empty(&splice) && nr) {
748                 root = list_first_entry(&splice, struct btrfs_root,
749                                         ordered_root);
750                 root = btrfs_grab_root(root);
751                 BUG_ON(!root);
752                 list_move_tail(&root->ordered_root,
753                                &fs_info->ordered_roots);
754                 spin_unlock(&fs_info->ordered_root_lock);
755
756                 done = btrfs_wait_ordered_extents(root, nr,
757                                                   range_start, range_len);
758                 btrfs_put_root(root);
759
760                 spin_lock(&fs_info->ordered_root_lock);
761                 if (nr != U64_MAX) {
762                         nr -= done;
763                 }
764         }
765         list_splice_tail(&splice, &fs_info->ordered_roots);
766         spin_unlock(&fs_info->ordered_root_lock);
767         mutex_unlock(&fs_info->ordered_operations_mutex);
768 }
769
770 /*
771  * Start IO and wait for a given ordered extent to finish.
772  *
773  * Wait on page writeback for all the pages in the extent and the IO completion
774  * code to insert metadata into the btree corresponding to the extent.
775  */
776 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
777 {
778         u64 start = entry->file_offset;
779         u64 end = start + entry->num_bytes - 1;
780         struct btrfs_inode *inode = BTRFS_I(entry->inode);
781         bool freespace_inode;
782
783         trace_btrfs_ordered_extent_start(inode, entry);
784
785         /*
786          * If this is a free space inode do not take the ordered extents lockdep
787          * map.
788          */
789         freespace_inode = btrfs_is_free_space_inode(inode);
790
791         /*
792          * pages in the range can be dirty, clean or writeback.  We
793          * start IO on any dirty ones so the wait doesn't stall waiting
794          * for the flusher thread to find them
795          */
796         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
797                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
798
799         if (!freespace_inode)
800                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
801         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
802 }
803
804 /*
805  * Used to wait on ordered extents across a large range of bytes.
806  */
807 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
808 {
809         int ret = 0;
810         int ret_wb = 0;
811         u64 end;
812         u64 orig_end;
813         struct btrfs_ordered_extent *ordered;
814
815         if (start + len < start) {
816                 orig_end = OFFSET_MAX;
817         } else {
818                 orig_end = start + len - 1;
819                 if (orig_end > OFFSET_MAX)
820                         orig_end = OFFSET_MAX;
821         }
822
823         /* start IO across the range first to instantiate any delalloc
824          * extents
825          */
826         ret = btrfs_fdatawrite_range(inode, start, orig_end);
827         if (ret)
828                 return ret;
829
830         /*
831          * If we have a writeback error don't return immediately. Wait first
832          * for any ordered extents that haven't completed yet. This is to make
833          * sure no one can dirty the same page ranges and call writepages()
834          * before the ordered extents complete - to avoid failures (-EEXIST)
835          * when adding the new ordered extents to the ordered tree.
836          */
837         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
838
839         end = orig_end;
840         while (1) {
841                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
842                 if (!ordered)
843                         break;
844                 if (ordered->file_offset > orig_end) {
845                         btrfs_put_ordered_extent(ordered);
846                         break;
847                 }
848                 if (ordered->file_offset + ordered->num_bytes <= start) {
849                         btrfs_put_ordered_extent(ordered);
850                         break;
851                 }
852                 btrfs_start_ordered_extent(ordered);
853                 end = ordered->file_offset;
854                 /*
855                  * If the ordered extent had an error save the error but don't
856                  * exit without waiting first for all other ordered extents in
857                  * the range to complete.
858                  */
859                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
860                         ret = -EIO;
861                 btrfs_put_ordered_extent(ordered);
862                 if (end == 0 || end == start)
863                         break;
864                 end--;
865         }
866         return ret_wb ? ret_wb : ret;
867 }
868
869 /*
870  * find an ordered extent corresponding to file_offset.  return NULL if
871  * nothing is found, otherwise take a reference on the extent and return it
872  */
873 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
874                                                          u64 file_offset)
875 {
876         struct rb_node *node;
877         struct btrfs_ordered_extent *entry = NULL;
878         unsigned long flags;
879
880         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
881         node = ordered_tree_search(inode, file_offset);
882         if (!node)
883                 goto out;
884
885         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
886         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
887                 entry = NULL;
888         if (entry) {
889                 refcount_inc(&entry->refs);
890                 trace_btrfs_ordered_extent_lookup(inode, entry);
891         }
892 out:
893         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
894         return entry;
895 }
896
897 /* Since the DIO code tries to lock a wide area we need to look for any ordered
898  * extents that exist in the range, rather than just the start of the range.
899  */
900 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
901                 struct btrfs_inode *inode, u64 file_offset, u64 len)
902 {
903         struct rb_node *node;
904         struct btrfs_ordered_extent *entry = NULL;
905
906         spin_lock_irq(&inode->ordered_tree_lock);
907         node = ordered_tree_search(inode, file_offset);
908         if (!node) {
909                 node = ordered_tree_search(inode, file_offset + len);
910                 if (!node)
911                         goto out;
912         }
913
914         while (1) {
915                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
916                 if (range_overlaps(entry, file_offset, len))
917                         break;
918
919                 if (entry->file_offset >= file_offset + len) {
920                         entry = NULL;
921                         break;
922                 }
923                 entry = NULL;
924                 node = rb_next(node);
925                 if (!node)
926                         break;
927         }
928 out:
929         if (entry) {
930                 refcount_inc(&entry->refs);
931                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
932         }
933         spin_unlock_irq(&inode->ordered_tree_lock);
934         return entry;
935 }
936
937 /*
938  * Adds all ordered extents to the given list. The list ends up sorted by the
939  * file_offset of the ordered extents.
940  */
941 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
942                                            struct list_head *list)
943 {
944         struct rb_node *n;
945
946         ASSERT(inode_is_locked(&inode->vfs_inode));
947
948         spin_lock_irq(&inode->ordered_tree_lock);
949         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
950                 struct btrfs_ordered_extent *ordered;
951
952                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
953
954                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
955                         continue;
956
957                 ASSERT(list_empty(&ordered->log_list));
958                 list_add_tail(&ordered->log_list, list);
959                 refcount_inc(&ordered->refs);
960                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
961         }
962         spin_unlock_irq(&inode->ordered_tree_lock);
963 }
964
965 /*
966  * lookup and return any extent before 'file_offset'.  NULL is returned
967  * if none is found
968  */
969 struct btrfs_ordered_extent *
970 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
971 {
972         struct rb_node *node;
973         struct btrfs_ordered_extent *entry = NULL;
974
975         spin_lock_irq(&inode->ordered_tree_lock);
976         node = ordered_tree_search(inode, file_offset);
977         if (!node)
978                 goto out;
979
980         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
981         refcount_inc(&entry->refs);
982         trace_btrfs_ordered_extent_lookup_first(inode, entry);
983 out:
984         spin_unlock_irq(&inode->ordered_tree_lock);
985         return entry;
986 }
987
988 /*
989  * Lookup the first ordered extent that overlaps the range
990  * [@file_offset, @file_offset + @len).
991  *
992  * The difference between this and btrfs_lookup_first_ordered_extent() is
993  * that this one won't return any ordered extent that does not overlap the range.
994  * And the difference against btrfs_lookup_ordered_extent() is, this function
995  * ensures the first ordered extent gets returned.
996  */
997 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
998                         struct btrfs_inode *inode, u64 file_offset, u64 len)
999 {
1000         struct rb_node *node;
1001         struct rb_node *cur;
1002         struct rb_node *prev;
1003         struct rb_node *next;
1004         struct btrfs_ordered_extent *entry = NULL;
1005
1006         spin_lock_irq(&inode->ordered_tree_lock);
1007         node = inode->ordered_tree.rb_node;
1008         /*
1009          * Here we don't want to use tree_search() which will use tree->last
1010          * and screw up the search order.
1011          * And __tree_search() can't return the adjacent ordered extents
1012          * either, thus here we do our own search.
1013          */
1014         while (node) {
1015                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1016
1017                 if (file_offset < entry->file_offset) {
1018                         node = node->rb_left;
1019                 } else if (file_offset >= entry_end(entry)) {
1020                         node = node->rb_right;
1021                 } else {
1022                         /*
1023                          * Direct hit, got an ordered extent that starts at
1024                          * @file_offset
1025                          */
1026                         goto out;
1027                 }
1028         }
1029         if (!entry) {
1030                 /* Empty tree */
1031                 goto out;
1032         }
1033
1034         cur = &entry->rb_node;
1035         /* We got an entry around @file_offset, check adjacent entries */
1036         if (entry->file_offset < file_offset) {
1037                 prev = cur;
1038                 next = rb_next(cur);
1039         } else {
1040                 prev = rb_prev(cur);
1041                 next = cur;
1042         }
1043         if (prev) {
1044                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1045                 if (range_overlaps(entry, file_offset, len))
1046                         goto out;
1047         }
1048         if (next) {
1049                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1050                 if (range_overlaps(entry, file_offset, len))
1051                         goto out;
1052         }
1053         /* No ordered extent in the range */
1054         entry = NULL;
1055 out:
1056         if (entry) {
1057                 refcount_inc(&entry->refs);
1058                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1059         }
1060
1061         spin_unlock_irq(&inode->ordered_tree_lock);
1062         return entry;
1063 }
1064
1065 /*
1066  * Lock the passed range and ensures all pending ordered extents in it are run
1067  * to completion.
1068  *
1069  * @inode:        Inode whose ordered tree is to be searched
1070  * @start:        Beginning of range to flush
1071  * @end:          Last byte of range to lock
1072  * @cached_state: If passed, will return the extent state responsible for the
1073  *                locked range. It's the caller's responsibility to free the
1074  *                cached state.
1075  *
1076  * Always return with the given range locked, ensuring after it's called no
1077  * order extent can be pending.
1078  */
1079 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1080                                         u64 end,
1081                                         struct extent_state **cached_state)
1082 {
1083         struct btrfs_ordered_extent *ordered;
1084         struct extent_state *cache = NULL;
1085         struct extent_state **cachedp = &cache;
1086
1087         if (cached_state)
1088                 cachedp = cached_state;
1089
1090         while (1) {
1091                 lock_extent(&inode->io_tree, start, end, cachedp);
1092                 ordered = btrfs_lookup_ordered_range(inode, start,
1093                                                      end - start + 1);
1094                 if (!ordered) {
1095                         /*
1096                          * If no external cached_state has been passed then
1097                          * decrement the extra ref taken for cachedp since we
1098                          * aren't exposing it outside of this function
1099                          */
1100                         if (!cached_state)
1101                                 refcount_dec(&cache->refs);
1102                         break;
1103                 }
1104                 unlock_extent(&inode->io_tree, start, end, cachedp);
1105                 btrfs_start_ordered_extent(ordered);
1106                 btrfs_put_ordered_extent(ordered);
1107         }
1108 }
1109
1110 /*
1111  * Lock the passed range and ensure all pending ordered extents in it are run
1112  * to completion in nowait mode.
1113  *
1114  * Return true if btrfs_lock_ordered_range does not return any extents,
1115  * otherwise false.
1116  */
1117 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1118                                   struct extent_state **cached_state)
1119 {
1120         struct btrfs_ordered_extent *ordered;
1121
1122         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1123                 return false;
1124
1125         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1126         if (!ordered)
1127                 return true;
1128
1129         btrfs_put_ordered_extent(ordered);
1130         unlock_extent(&inode->io_tree, start, end, cached_state);
1131
1132         return false;
1133 }
1134
1135 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1136 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1137                         struct btrfs_ordered_extent *ordered, u64 len)
1138 {
1139         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1140         struct btrfs_root *root = inode->root;
1141         struct btrfs_fs_info *fs_info = root->fs_info;
1142         u64 file_offset = ordered->file_offset;
1143         u64 disk_bytenr = ordered->disk_bytenr;
1144         unsigned long flags = ordered->flags;
1145         struct btrfs_ordered_sum *sum, *tmpsum;
1146         struct btrfs_ordered_extent *new;
1147         struct rb_node *node;
1148         u64 offset = 0;
1149
1150         trace_btrfs_ordered_extent_split(inode, ordered);
1151
1152         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1153
1154         /*
1155          * The entire bio must be covered by the ordered extent, but we can't
1156          * reduce the original extent to a zero length either.
1157          */
1158         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1159                 return ERR_PTR(-EINVAL);
1160         /* We cannot split partially completed ordered extents. */
1161         if (ordered->bytes_left) {
1162                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1163                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1164                         return ERR_PTR(-EINVAL);
1165         }
1166         /* We cannot split a compressed ordered extent. */
1167         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1168                 return ERR_PTR(-EINVAL);
1169
1170         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1171                                    len, 0, flags, ordered->compress_type);
1172         if (IS_ERR(new))
1173                 return new;
1174
1175         /* One ref for the tree. */
1176         refcount_inc(&new->refs);
1177
1178         spin_lock_irq(&root->ordered_extent_lock);
1179         spin_lock(&inode->ordered_tree_lock);
1180         /* Remove from tree once */
1181         node = &ordered->rb_node;
1182         rb_erase(node, &inode->ordered_tree);
1183         RB_CLEAR_NODE(node);
1184         if (inode->ordered_tree_last == node)
1185                 inode->ordered_tree_last = NULL;
1186
1187         ordered->file_offset += len;
1188         ordered->disk_bytenr += len;
1189         ordered->num_bytes -= len;
1190         ordered->disk_num_bytes -= len;
1191
1192         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1193                 ASSERT(ordered->bytes_left == 0);
1194                 new->bytes_left = 0;
1195         } else {
1196                 ordered->bytes_left -= len;
1197         }
1198
1199         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1200                 if (ordered->truncated_len > len) {
1201                         ordered->truncated_len -= len;
1202                 } else {
1203                         new->truncated_len = ordered->truncated_len;
1204                         ordered->truncated_len = 0;
1205                 }
1206         }
1207
1208         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1209                 if (offset == len)
1210                         break;
1211                 list_move_tail(&sum->list, &new->list);
1212                 offset += sum->len;
1213         }
1214
1215         /* Re-insert the node */
1216         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1217                            &ordered->rb_node);
1218         if (node)
1219                 btrfs_panic(fs_info, -EEXIST,
1220                         "zoned: inconsistency in ordered tree at offset %llu",
1221                         ordered->file_offset);
1222
1223         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1224         if (node)
1225                 btrfs_panic(fs_info, -EEXIST,
1226                         "zoned: inconsistency in ordered tree at offset %llu",
1227                         new->file_offset);
1228         spin_unlock(&inode->ordered_tree_lock);
1229
1230         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1231         root->nr_ordered_extents++;
1232         spin_unlock_irq(&root->ordered_extent_lock);
1233         return new;
1234 }
1235
1236 int __init ordered_data_init(void)
1237 {
1238         btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1239         if (!btrfs_ordered_extent_cache)
1240                 return -ENOMEM;
1241
1242         return 0;
1243 }
1244
1245 void __cold ordered_data_exit(void)
1246 {
1247         kmem_cache_destroy(btrfs_ordered_extent_cache);
1248 }