Merge tag 'for-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES   4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27
28 /*
29  * Location of the first zone of superblock logging zone pairs.
30  *
31  * - primary superblock:    0B (zone 0)
32  * - first copy:          512G (zone starting at that offset)
33  * - second copy:           4T (zone starting at that offset)
34  */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
38
39 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44
45 /*
46  * Minimum of active zones we need:
47  *
48  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50  * - 1 zone for tree-log dedicated block group
51  * - 1 zone for relocation
52  */
53 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
54
55 /*
56  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58  * We do not expect the zone size to become larger than 8GiB or smaller than
59  * 4MiB in the near future.
60  */
61 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
63
64 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71         return (zone->cond == BLK_ZONE_COND_FULL) ||
72                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74
75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77         struct blk_zone *zones = data;
78
79         memcpy(&zones[idx], zone, sizeof(*zone));
80
81         return 0;
82 }
83
84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85                             u64 *wp_ret)
86 {
87         bool empty[BTRFS_NR_SB_LOG_ZONES];
88         bool full[BTRFS_NR_SB_LOG_ZONES];
89         sector_t sector;
90         int i;
91
92         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
93                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
94                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
95                 full[i] = sb_zone_is_full(&zones[i]);
96         }
97
98         /*
99          * Possible states of log buffer zones
100          *
101          *           Empty[0]  In use[0]  Full[0]
102          * Empty[1]         *          0        1
103          * In use[1]        x          x        1
104          * Full[1]          0          0        C
105          *
106          * Log position:
107          *   *: Special case, no superblock is written
108          *   0: Use write pointer of zones[0]
109          *   1: Use write pointer of zones[1]
110          *   C: Compare super blocks from zones[0] and zones[1], use the latest
111          *      one determined by generation
112          *   x: Invalid state
113          */
114
115         if (empty[0] && empty[1]) {
116                 /* Special case to distinguish no superblock to read */
117                 *wp_ret = zones[0].start << SECTOR_SHIFT;
118                 return -ENOENT;
119         } else if (full[0] && full[1]) {
120                 /* Compare two super blocks */
121                 struct address_space *mapping = bdev->bd_inode->i_mapping;
122                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
123                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
124                 int i;
125
126                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
127                         u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
128                         u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
129                                                 BTRFS_SUPER_INFO_SIZE;
130
131                         page[i] = read_cache_page_gfp(mapping,
132                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
133                         if (IS_ERR(page[i])) {
134                                 if (i == 1)
135                                         btrfs_release_disk_super(super[0]);
136                                 return PTR_ERR(page[i]);
137                         }
138                         super[i] = page_address(page[i]);
139                 }
140
141                 if (btrfs_super_generation(super[0]) >
142                     btrfs_super_generation(super[1]))
143                         sector = zones[1].start;
144                 else
145                         sector = zones[0].start;
146
147                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
148                         btrfs_release_disk_super(super[i]);
149         } else if (!full[0] && (empty[1] || full[1])) {
150                 sector = zones[0].wp;
151         } else if (full[0]) {
152                 sector = zones[1].wp;
153         } else {
154                 return -EUCLEAN;
155         }
156         *wp_ret = sector << SECTOR_SHIFT;
157         return 0;
158 }
159
160 /*
161  * Get the first zone number of the superblock mirror
162  */
163 static inline u32 sb_zone_number(int shift, int mirror)
164 {
165         u64 zone = U64_MAX;
166
167         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
168         switch (mirror) {
169         case 0: zone = 0; break;
170         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
171         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
172         }
173
174         ASSERT(zone <= U32_MAX);
175
176         return (u32)zone;
177 }
178
179 static inline sector_t zone_start_sector(u32 zone_number,
180                                          struct block_device *bdev)
181 {
182         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
183 }
184
185 static inline u64 zone_start_physical(u32 zone_number,
186                                       struct btrfs_zoned_device_info *zone_info)
187 {
188         return (u64)zone_number << zone_info->zone_size_shift;
189 }
190
191 /*
192  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
193  * device into static sized chunks and fake a conventional zone on each of
194  * them.
195  */
196 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
197                                 struct blk_zone *zones, unsigned int nr_zones)
198 {
199         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
200         sector_t bdev_size = bdev_nr_sectors(device->bdev);
201         unsigned int i;
202
203         pos >>= SECTOR_SHIFT;
204         for (i = 0; i < nr_zones; i++) {
205                 zones[i].start = i * zone_sectors + pos;
206                 zones[i].len = zone_sectors;
207                 zones[i].capacity = zone_sectors;
208                 zones[i].wp = zones[i].start + zone_sectors;
209                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
210                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
211
212                 if (zones[i].wp >= bdev_size) {
213                         i++;
214                         break;
215                 }
216         }
217
218         return i;
219 }
220
221 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
222                                struct blk_zone *zones, unsigned int *nr_zones)
223 {
224         struct btrfs_zoned_device_info *zinfo = device->zone_info;
225         int ret;
226
227         if (!*nr_zones)
228                 return 0;
229
230         if (!bdev_is_zoned(device->bdev)) {
231                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
232                 *nr_zones = ret;
233                 return 0;
234         }
235
236         /* Check cache */
237         if (zinfo->zone_cache) {
238                 unsigned int i;
239                 u32 zno;
240
241                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
242                 zno = pos >> zinfo->zone_size_shift;
243                 /*
244                  * We cannot report zones beyond the zone end. So, it is OK to
245                  * cap *nr_zones to at the end.
246                  */
247                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
248
249                 for (i = 0; i < *nr_zones; i++) {
250                         struct blk_zone *zone_info;
251
252                         zone_info = &zinfo->zone_cache[zno + i];
253                         if (!zone_info->len)
254                                 break;
255                 }
256
257                 if (i == *nr_zones) {
258                         /* Cache hit on all the zones */
259                         memcpy(zones, zinfo->zone_cache + zno,
260                                sizeof(*zinfo->zone_cache) * *nr_zones);
261                         return 0;
262                 }
263         }
264
265         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
266                                   copy_zone_info_cb, zones);
267         if (ret < 0) {
268                 btrfs_err_in_rcu(device->fs_info,
269                                  "zoned: failed to read zone %llu on %s (devid %llu)",
270                                  pos, rcu_str_deref(device->name),
271                                  device->devid);
272                 return ret;
273         }
274         *nr_zones = ret;
275         if (!ret)
276                 return -EIO;
277
278         /* Populate cache */
279         if (zinfo->zone_cache) {
280                 u32 zno = pos >> zinfo->zone_size_shift;
281
282                 memcpy(zinfo->zone_cache + zno, zones,
283                        sizeof(*zinfo->zone_cache) * *nr_zones);
284         }
285
286         return 0;
287 }
288
289 /* The emulated zone size is determined from the size of device extent */
290 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
291 {
292         struct btrfs_path *path;
293         struct btrfs_root *root = fs_info->dev_root;
294         struct btrfs_key key;
295         struct extent_buffer *leaf;
296         struct btrfs_dev_extent *dext;
297         int ret = 0;
298
299         key.objectid = 1;
300         key.type = BTRFS_DEV_EXTENT_KEY;
301         key.offset = 0;
302
303         path = btrfs_alloc_path();
304         if (!path)
305                 return -ENOMEM;
306
307         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
308         if (ret < 0)
309                 goto out;
310
311         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
312                 ret = btrfs_next_leaf(root, path);
313                 if (ret < 0)
314                         goto out;
315                 /* No dev extents at all? Not good */
316                 if (ret > 0) {
317                         ret = -EUCLEAN;
318                         goto out;
319                 }
320         }
321
322         leaf = path->nodes[0];
323         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
325         ret = 0;
326
327 out:
328         btrfs_free_path(path);
329
330         return ret;
331 }
332
333 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
334 {
335         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
336         struct btrfs_device *device;
337         int ret = 0;
338
339         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
340         if (!btrfs_fs_incompat(fs_info, ZONED))
341                 return 0;
342
343         mutex_lock(&fs_devices->device_list_mutex);
344         list_for_each_entry(device, &fs_devices->devices, dev_list) {
345                 /* We can skip reading of zone info for missing devices */
346                 if (!device->bdev)
347                         continue;
348
349                 ret = btrfs_get_dev_zone_info(device, true);
350                 if (ret)
351                         break;
352         }
353         mutex_unlock(&fs_devices->device_list_mutex);
354
355         return ret;
356 }
357
358 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
359 {
360         struct btrfs_fs_info *fs_info = device->fs_info;
361         struct btrfs_zoned_device_info *zone_info = NULL;
362         struct block_device *bdev = device->bdev;
363         unsigned int max_active_zones;
364         unsigned int nactive;
365         sector_t nr_sectors;
366         sector_t sector = 0;
367         struct blk_zone *zones = NULL;
368         unsigned int i, nreported = 0, nr_zones;
369         sector_t zone_sectors;
370         char *model, *emulated;
371         int ret;
372
373         /*
374          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
375          * yet be set.
376          */
377         if (!btrfs_fs_incompat(fs_info, ZONED))
378                 return 0;
379
380         if (device->zone_info)
381                 return 0;
382
383         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
384         if (!zone_info)
385                 return -ENOMEM;
386
387         device->zone_info = zone_info;
388
389         if (!bdev_is_zoned(bdev)) {
390                 if (!fs_info->zone_size) {
391                         ret = calculate_emulated_zone_size(fs_info);
392                         if (ret)
393                                 goto out;
394                 }
395
396                 ASSERT(fs_info->zone_size);
397                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
398         } else {
399                 zone_sectors = bdev_zone_sectors(bdev);
400         }
401
402         ASSERT(is_power_of_two_u64(zone_sectors));
403         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
404
405         /* We reject devices with a zone size larger than 8GB */
406         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
407                 btrfs_err_in_rcu(fs_info,
408                 "zoned: %s: zone size %llu larger than supported maximum %llu",
409                                  rcu_str_deref(device->name),
410                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
411                 ret = -EINVAL;
412                 goto out;
413         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
414                 btrfs_err_in_rcu(fs_info,
415                 "zoned: %s: zone size %llu smaller than supported minimum %u",
416                                  rcu_str_deref(device->name),
417                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
418                 ret = -EINVAL;
419                 goto out;
420         }
421
422         nr_sectors = bdev_nr_sectors(bdev);
423         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
424         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
425         if (!IS_ALIGNED(nr_sectors, zone_sectors))
426                 zone_info->nr_zones++;
427
428         max_active_zones = bdev_max_active_zones(bdev);
429         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
430                 btrfs_err_in_rcu(fs_info,
431 "zoned: %s: max active zones %u is too small, need at least %u active zones",
432                                  rcu_str_deref(device->name), max_active_zones,
433                                  BTRFS_MIN_ACTIVE_ZONES);
434                 ret = -EINVAL;
435                 goto out;
436         }
437         zone_info->max_active_zones = max_active_zones;
438
439         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
440         if (!zone_info->seq_zones) {
441                 ret = -ENOMEM;
442                 goto out;
443         }
444
445         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
446         if (!zone_info->empty_zones) {
447                 ret = -ENOMEM;
448                 goto out;
449         }
450
451         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452         if (!zone_info->active_zones) {
453                 ret = -ENOMEM;
454                 goto out;
455         }
456
457         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
458         if (!zones) {
459                 ret = -ENOMEM;
460                 goto out;
461         }
462
463         /*
464          * Enable zone cache only for a zoned device. On a non-zoned device, we
465          * fill the zone info with emulated CONVENTIONAL zones, so no need to
466          * use the cache.
467          */
468         if (populate_cache && bdev_is_zoned(device->bdev)) {
469                 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
470                                                 sizeof(struct blk_zone));
471                 if (!zone_info->zone_cache) {
472                         btrfs_err_in_rcu(device->fs_info,
473                                 "zoned: failed to allocate zone cache for %s",
474                                 rcu_str_deref(device->name));
475                         ret = -ENOMEM;
476                         goto out;
477                 }
478         }
479
480         /* Get zones type */
481         nactive = 0;
482         while (sector < nr_sectors) {
483                 nr_zones = BTRFS_REPORT_NR_ZONES;
484                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
485                                           &nr_zones);
486                 if (ret)
487                         goto out;
488
489                 for (i = 0; i < nr_zones; i++) {
490                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
491                                 __set_bit(nreported, zone_info->seq_zones);
492                         switch (zones[i].cond) {
493                         case BLK_ZONE_COND_EMPTY:
494                                 __set_bit(nreported, zone_info->empty_zones);
495                                 break;
496                         case BLK_ZONE_COND_IMP_OPEN:
497                         case BLK_ZONE_COND_EXP_OPEN:
498                         case BLK_ZONE_COND_CLOSED:
499                                 __set_bit(nreported, zone_info->active_zones);
500                                 nactive++;
501                                 break;
502                         }
503                         nreported++;
504                 }
505                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
506         }
507
508         if (nreported != zone_info->nr_zones) {
509                 btrfs_err_in_rcu(device->fs_info,
510                                  "inconsistent number of zones on %s (%u/%u)",
511                                  rcu_str_deref(device->name), nreported,
512                                  zone_info->nr_zones);
513                 ret = -EIO;
514                 goto out;
515         }
516
517         if (max_active_zones) {
518                 if (nactive > max_active_zones) {
519                         btrfs_err_in_rcu(device->fs_info,
520                         "zoned: %u active zones on %s exceeds max_active_zones %u",
521                                          nactive, rcu_str_deref(device->name),
522                                          max_active_zones);
523                         ret = -EIO;
524                         goto out;
525                 }
526                 atomic_set(&zone_info->active_zones_left,
527                            max_active_zones - nactive);
528                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
529         }
530
531         /* Validate superblock log */
532         nr_zones = BTRFS_NR_SB_LOG_ZONES;
533         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
534                 u32 sb_zone;
535                 u64 sb_wp;
536                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
537
538                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
539                 if (sb_zone + 1 >= zone_info->nr_zones)
540                         continue;
541
542                 ret = btrfs_get_dev_zones(device,
543                                           zone_start_physical(sb_zone, zone_info),
544                                           &zone_info->sb_zones[sb_pos],
545                                           &nr_zones);
546                 if (ret)
547                         goto out;
548
549                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
550                         btrfs_err_in_rcu(device->fs_info,
551         "zoned: failed to read super block log zone info at devid %llu zone %u",
552                                          device->devid, sb_zone);
553                         ret = -EUCLEAN;
554                         goto out;
555                 }
556
557                 /*
558                  * If zones[0] is conventional, always use the beginning of the
559                  * zone to record superblock. No need to validate in that case.
560                  */
561                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
562                     BLK_ZONE_TYPE_CONVENTIONAL)
563                         continue;
564
565                 ret = sb_write_pointer(device->bdev,
566                                        &zone_info->sb_zones[sb_pos], &sb_wp);
567                 if (ret != -ENOENT && ret) {
568                         btrfs_err_in_rcu(device->fs_info,
569                         "zoned: super block log zone corrupted devid %llu zone %u",
570                                          device->devid, sb_zone);
571                         ret = -EUCLEAN;
572                         goto out;
573                 }
574         }
575
576
577         kvfree(zones);
578
579         if (bdev_is_zoned(bdev)) {
580                 model = "host-managed zoned";
581                 emulated = "";
582         } else {
583                 model = "regular";
584                 emulated = "emulated ";
585         }
586
587         btrfs_info_in_rcu(fs_info,
588                 "%s block device %s, %u %szones of %llu bytes",
589                 model, rcu_str_deref(device->name), zone_info->nr_zones,
590                 emulated, zone_info->zone_size);
591
592         return 0;
593
594 out:
595         kvfree(zones);
596         btrfs_destroy_dev_zone_info(device);
597         return ret;
598 }
599
600 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
601 {
602         struct btrfs_zoned_device_info *zone_info = device->zone_info;
603
604         if (!zone_info)
605                 return;
606
607         bitmap_free(zone_info->active_zones);
608         bitmap_free(zone_info->seq_zones);
609         bitmap_free(zone_info->empty_zones);
610         vfree(zone_info->zone_cache);
611         kfree(zone_info);
612         device->zone_info = NULL;
613 }
614
615 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
616 {
617         struct btrfs_zoned_device_info *zone_info;
618
619         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
620         if (!zone_info)
621                 return NULL;
622
623         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
624         if (!zone_info->seq_zones)
625                 goto out;
626
627         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
628                     zone_info->nr_zones);
629
630         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
631         if (!zone_info->empty_zones)
632                 goto out;
633
634         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
635                     zone_info->nr_zones);
636
637         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
638         if (!zone_info->active_zones)
639                 goto out;
640
641         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
642                     zone_info->nr_zones);
643         zone_info->zone_cache = NULL;
644
645         return zone_info;
646
647 out:
648         bitmap_free(zone_info->seq_zones);
649         bitmap_free(zone_info->empty_zones);
650         bitmap_free(zone_info->active_zones);
651         kfree(zone_info);
652         return NULL;
653 }
654
655 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
656                        struct blk_zone *zone)
657 {
658         unsigned int nr_zones = 1;
659         int ret;
660
661         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
662         if (ret != 0 || !nr_zones)
663                 return ret ? ret : -EIO;
664
665         return 0;
666 }
667
668 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
669 {
670         struct btrfs_device *device;
671
672         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
673                 if (device->bdev && bdev_is_zoned(device->bdev)) {
674                         btrfs_err(fs_info,
675                                 "zoned: mode not enabled but zoned device found: %pg",
676                                 device->bdev);
677                         return -EINVAL;
678                 }
679         }
680
681         return 0;
682 }
683
684 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
685 {
686         struct queue_limits *lim = &fs_info->limits;
687         struct btrfs_device *device;
688         u64 zone_size = 0;
689         int ret;
690
691         /*
692          * Host-Managed devices can't be used without the ZONED flag.  With the
693          * ZONED all devices can be used, using zone emulation if required.
694          */
695         if (!btrfs_fs_incompat(fs_info, ZONED))
696                 return btrfs_check_for_zoned_device(fs_info);
697
698         blk_set_stacking_limits(lim);
699
700         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
701                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
702
703                 if (!device->bdev)
704                         continue;
705
706                 if (!zone_size) {
707                         zone_size = zone_info->zone_size;
708                 } else if (zone_info->zone_size != zone_size) {
709                         btrfs_err(fs_info,
710                 "zoned: unequal block device zone sizes: have %llu found %llu",
711                                   zone_info->zone_size, zone_size);
712                         return -EINVAL;
713                 }
714
715                 /*
716                  * With the zoned emulation, we can have non-zoned device on the
717                  * zoned mode. In this case, we don't have a valid max zone
718                  * append size.
719                  */
720                 if (bdev_is_zoned(device->bdev)) {
721                         blk_stack_limits(lim,
722                                          &bdev_get_queue(device->bdev)->limits,
723                                          0);
724                 }
725         }
726
727         /*
728          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
729          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
730          * check the alignment here.
731          */
732         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
733                 btrfs_err(fs_info,
734                           "zoned: zone size %llu not aligned to stripe %u",
735                           zone_size, BTRFS_STRIPE_LEN);
736                 return -EINVAL;
737         }
738
739         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
740                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
741                 return -EINVAL;
742         }
743
744         fs_info->zone_size = zone_size;
745         /*
746          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
747          * Technically, we can have multiple pages per segment. But, since
748          * we add the pages one by one to a bio, and cannot increase the
749          * metadata reservation even if it increases the number of extents, it
750          * is safe to stick with the limit.
751          */
752         fs_info->max_zone_append_size = ALIGN_DOWN(
753                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
754                      (u64)lim->max_sectors << SECTOR_SHIFT,
755                      (u64)lim->max_segments << PAGE_SHIFT),
756                 fs_info->sectorsize);
757         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
758         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
759                 fs_info->max_extent_size = fs_info->max_zone_append_size;
760
761         /*
762          * Check mount options here, because we might change fs_info->zoned
763          * from fs_info->zone_size.
764          */
765         ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
766         if (ret)
767                 return ret;
768
769         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
770         return 0;
771 }
772
773 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
774 {
775         if (!btrfs_is_zoned(info))
776                 return 0;
777
778         /*
779          * Space cache writing is not COWed. Disable that to avoid write errors
780          * in sequential zones.
781          */
782         if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
783                 btrfs_err(info, "zoned: space cache v1 is not supported");
784                 return -EINVAL;
785         }
786
787         if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
788                 btrfs_err(info, "zoned: NODATACOW not supported");
789                 return -EINVAL;
790         }
791
792         if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
793                 btrfs_info(info,
794                            "zoned: async discard ignored and disabled for zoned mode");
795                 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
796         }
797
798         return 0;
799 }
800
801 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
802                            int rw, u64 *bytenr_ret)
803 {
804         u64 wp;
805         int ret;
806
807         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
808                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
809                 return 0;
810         }
811
812         ret = sb_write_pointer(bdev, zones, &wp);
813         if (ret != -ENOENT && ret < 0)
814                 return ret;
815
816         if (rw == WRITE) {
817                 struct blk_zone *reset = NULL;
818
819                 if (wp == zones[0].start << SECTOR_SHIFT)
820                         reset = &zones[0];
821                 else if (wp == zones[1].start << SECTOR_SHIFT)
822                         reset = &zones[1];
823
824                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
825                         unsigned int nofs_flags;
826
827                         ASSERT(sb_zone_is_full(reset));
828
829                         nofs_flags = memalloc_nofs_save();
830                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831                                                reset->start, reset->len);
832                         memalloc_nofs_restore(nofs_flags);
833                         if (ret)
834                                 return ret;
835
836                         reset->cond = BLK_ZONE_COND_EMPTY;
837                         reset->wp = reset->start;
838                 }
839         } else if (ret != -ENOENT) {
840                 /*
841                  * For READ, we want the previous one. Move write pointer to
842                  * the end of a zone, if it is at the head of a zone.
843                  */
844                 u64 zone_end = 0;
845
846                 if (wp == zones[0].start << SECTOR_SHIFT)
847                         zone_end = zones[1].start + zones[1].capacity;
848                 else if (wp == zones[1].start << SECTOR_SHIFT)
849                         zone_end = zones[0].start + zones[0].capacity;
850                 if (zone_end)
851                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852                                         BTRFS_SUPER_INFO_SIZE);
853
854                 wp -= BTRFS_SUPER_INFO_SIZE;
855         }
856
857         *bytenr_ret = wp;
858         return 0;
859
860 }
861
862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863                                u64 *bytenr_ret)
864 {
865         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866         sector_t zone_sectors;
867         u32 sb_zone;
868         int ret;
869         u8 zone_sectors_shift;
870         sector_t nr_sectors;
871         u32 nr_zones;
872
873         if (!bdev_is_zoned(bdev)) {
874                 *bytenr_ret = btrfs_sb_offset(mirror);
875                 return 0;
876         }
877
878         ASSERT(rw == READ || rw == WRITE);
879
880         zone_sectors = bdev_zone_sectors(bdev);
881         if (!is_power_of_2(zone_sectors))
882                 return -EINVAL;
883         zone_sectors_shift = ilog2(zone_sectors);
884         nr_sectors = bdev_nr_sectors(bdev);
885         nr_zones = nr_sectors >> zone_sectors_shift;
886
887         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888         if (sb_zone + 1 >= nr_zones)
889                 return -ENOENT;
890
891         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
892                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893                                   zones);
894         if (ret < 0)
895                 return ret;
896         if (ret != BTRFS_NR_SB_LOG_ZONES)
897                 return -EIO;
898
899         return sb_log_location(bdev, zones, rw, bytenr_ret);
900 }
901
902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903                           u64 *bytenr_ret)
904 {
905         struct btrfs_zoned_device_info *zinfo = device->zone_info;
906         u32 zone_num;
907
908         /*
909          * For a zoned filesystem on a non-zoned block device, use the same
910          * super block locations as regular filesystem. Doing so, the super
911          * block can always be retrieved and the zoned flag of the volume
912          * detected from the super block information.
913          */
914         if (!bdev_is_zoned(device->bdev)) {
915                 *bytenr_ret = btrfs_sb_offset(mirror);
916                 return 0;
917         }
918
919         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920         if (zone_num + 1 >= zinfo->nr_zones)
921                 return -ENOENT;
922
923         return sb_log_location(device->bdev,
924                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925                                rw, bytenr_ret);
926 }
927
928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929                                   int mirror)
930 {
931         u32 zone_num;
932
933         if (!zinfo)
934                 return false;
935
936         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937         if (zone_num + 1 >= zinfo->nr_zones)
938                 return false;
939
940         if (!test_bit(zone_num, zinfo->seq_zones))
941                 return false;
942
943         return true;
944 }
945
946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947 {
948         struct btrfs_zoned_device_info *zinfo = device->zone_info;
949         struct blk_zone *zone;
950         int i;
951
952         if (!is_sb_log_zone(zinfo, mirror))
953                 return 0;
954
955         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957                 /* Advance the next zone */
958                 if (zone->cond == BLK_ZONE_COND_FULL) {
959                         zone++;
960                         continue;
961                 }
962
963                 if (zone->cond == BLK_ZONE_COND_EMPTY)
964                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
966                 zone->wp += SUPER_INFO_SECTORS;
967
968                 if (sb_zone_is_full(zone)) {
969                         /*
970                          * No room left to write new superblock. Since
971                          * superblock is written with REQ_SYNC, it is safe to
972                          * finish the zone now.
973                          *
974                          * If the write pointer is exactly at the capacity,
975                          * explicit ZONE_FINISH is not necessary.
976                          */
977                         if (zone->wp != zone->start + zone->capacity) {
978                                 unsigned int nofs_flags;
979                                 int ret;
980
981                                 nofs_flags = memalloc_nofs_save();
982                                 ret = blkdev_zone_mgmt(device->bdev,
983                                                 REQ_OP_ZONE_FINISH, zone->start,
984                                                 zone->len);
985                                 memalloc_nofs_restore(nofs_flags);
986                                 if (ret)
987                                         return ret;
988                         }
989
990                         zone->wp = zone->start + zone->len;
991                         zone->cond = BLK_ZONE_COND_FULL;
992                 }
993                 return 0;
994         }
995
996         /* All the zones are FULL. Should not reach here. */
997         ASSERT(0);
998         return -EIO;
999 }
1000
1001 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1002 {
1003         unsigned int nofs_flags;
1004         sector_t zone_sectors;
1005         sector_t nr_sectors;
1006         u8 zone_sectors_shift;
1007         u32 sb_zone;
1008         u32 nr_zones;
1009         int ret;
1010
1011         zone_sectors = bdev_zone_sectors(bdev);
1012         zone_sectors_shift = ilog2(zone_sectors);
1013         nr_sectors = bdev_nr_sectors(bdev);
1014         nr_zones = nr_sectors >> zone_sectors_shift;
1015
1016         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1017         if (sb_zone + 1 >= nr_zones)
1018                 return -ENOENT;
1019
1020         nofs_flags = memalloc_nofs_save();
1021         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1022                                zone_start_sector(sb_zone, bdev),
1023                                zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1024         memalloc_nofs_restore(nofs_flags);
1025         return ret;
1026 }
1027
1028 /*
1029  * Find allocatable zones within a given region.
1030  *
1031  * @device:     the device to allocate a region on
1032  * @hole_start: the position of the hole to allocate the region
1033  * @num_bytes:  size of wanted region
1034  * @hole_end:   the end of the hole
1035  * @return:     position of allocatable zones
1036  *
1037  * Allocatable region should not contain any superblock locations.
1038  */
1039 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1040                                  u64 hole_end, u64 num_bytes)
1041 {
1042         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1043         const u8 shift = zinfo->zone_size_shift;
1044         u64 nzones = num_bytes >> shift;
1045         u64 pos = hole_start;
1046         u64 begin, end;
1047         bool have_sb;
1048         int i;
1049
1050         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1051         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1052
1053         while (pos < hole_end) {
1054                 begin = pos >> shift;
1055                 end = begin + nzones;
1056
1057                 if (end > zinfo->nr_zones)
1058                         return hole_end;
1059
1060                 /* Check if zones in the region are all empty */
1061                 if (btrfs_dev_is_sequential(device, pos) &&
1062                     !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1063                         pos += zinfo->zone_size;
1064                         continue;
1065                 }
1066
1067                 have_sb = false;
1068                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1069                         u32 sb_zone;
1070                         u64 sb_pos;
1071
1072                         sb_zone = sb_zone_number(shift, i);
1073                         if (!(end <= sb_zone ||
1074                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1075                                 have_sb = true;
1076                                 pos = zone_start_physical(
1077                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1078                                 break;
1079                         }
1080
1081                         /* We also need to exclude regular superblock positions */
1082                         sb_pos = btrfs_sb_offset(i);
1083                         if (!(pos + num_bytes <= sb_pos ||
1084                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1085                                 have_sb = true;
1086                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1087                                             zinfo->zone_size);
1088                                 break;
1089                         }
1090                 }
1091                 if (!have_sb)
1092                         break;
1093         }
1094
1095         return pos;
1096 }
1097
1098 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1099 {
1100         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1101         unsigned int zno = (pos >> zone_info->zone_size_shift);
1102
1103         /* We can use any number of zones */
1104         if (zone_info->max_active_zones == 0)
1105                 return true;
1106
1107         if (!test_bit(zno, zone_info->active_zones)) {
1108                 /* Active zone left? */
1109                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1110                         return false;
1111                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1112                         /* Someone already set the bit */
1113                         atomic_inc(&zone_info->active_zones_left);
1114                 }
1115         }
1116
1117         return true;
1118 }
1119
1120 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1121 {
1122         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1123         unsigned int zno = (pos >> zone_info->zone_size_shift);
1124
1125         /* We can use any number of zones */
1126         if (zone_info->max_active_zones == 0)
1127                 return;
1128
1129         if (test_and_clear_bit(zno, zone_info->active_zones))
1130                 atomic_inc(&zone_info->active_zones_left);
1131 }
1132
1133 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1134                             u64 length, u64 *bytes)
1135 {
1136         unsigned int nofs_flags;
1137         int ret;
1138
1139         *bytes = 0;
1140         nofs_flags = memalloc_nofs_save();
1141         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1142                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1143         memalloc_nofs_restore(nofs_flags);
1144         if (ret)
1145                 return ret;
1146
1147         *bytes = length;
1148         while (length) {
1149                 btrfs_dev_set_zone_empty(device, physical);
1150                 btrfs_dev_clear_active_zone(device, physical);
1151                 physical += device->zone_info->zone_size;
1152                 length -= device->zone_info->zone_size;
1153         }
1154
1155         return 0;
1156 }
1157
1158 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159 {
1160         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161         const u8 shift = zinfo->zone_size_shift;
1162         unsigned long begin = start >> shift;
1163         unsigned long nbits = size >> shift;
1164         u64 pos;
1165         int ret;
1166
1167         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169
1170         if (begin + nbits > zinfo->nr_zones)
1171                 return -ERANGE;
1172
1173         /* All the zones are conventional */
1174         if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1175                 return 0;
1176
1177         /* All the zones are sequential and empty */
1178         if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1179             bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1180                 return 0;
1181
1182         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183                 u64 reset_bytes;
1184
1185                 if (!btrfs_dev_is_sequential(device, pos) ||
1186                     btrfs_dev_is_empty_zone(device, pos))
1187                         continue;
1188
1189                 /* Free regions should be empty */
1190                 btrfs_warn_in_rcu(
1191                         device->fs_info,
1192                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193                         rcu_str_deref(device->name), device->devid, pos >> shift);
1194                 WARN_ON_ONCE(1);
1195
1196                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1197                                               &reset_bytes);
1198                 if (ret)
1199                         return ret;
1200         }
1201
1202         return 0;
1203 }
1204
1205 /*
1206  * Calculate an allocation pointer from the extent allocation information
1207  * for a block group consist of conventional zones. It is pointed to the
1208  * end of the highest addressed extent in the block group as an allocation
1209  * offset.
1210  */
1211 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212                                    u64 *offset_ret, bool new)
1213 {
1214         struct btrfs_fs_info *fs_info = cache->fs_info;
1215         struct btrfs_root *root;
1216         struct btrfs_path *path;
1217         struct btrfs_key key;
1218         struct btrfs_key found_key;
1219         int ret;
1220         u64 length;
1221
1222         /*
1223          * Avoid  tree lookups for a new block group, there's no use for it.
1224          * It must always be 0.
1225          *
1226          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227          * For new a block group, this function is called from
1228          * btrfs_make_block_group() which is already taking the chunk mutex.
1229          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230          * buffer locks to avoid deadlock.
1231          */
1232         if (new) {
1233                 *offset_ret = 0;
1234                 return 0;
1235         }
1236
1237         path = btrfs_alloc_path();
1238         if (!path)
1239                 return -ENOMEM;
1240
1241         key.objectid = cache->start + cache->length;
1242         key.type = 0;
1243         key.offset = 0;
1244
1245         root = btrfs_extent_root(fs_info, key.objectid);
1246         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1247         /* We should not find the exact match */
1248         if (!ret)
1249                 ret = -EUCLEAN;
1250         if (ret < 0)
1251                 goto out;
1252
1253         ret = btrfs_previous_extent_item(root, path, cache->start);
1254         if (ret) {
1255                 if (ret == 1) {
1256                         ret = 0;
1257                         *offset_ret = 0;
1258                 }
1259                 goto out;
1260         }
1261
1262         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1263
1264         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265                 length = found_key.offset;
1266         else
1267                 length = fs_info->nodesize;
1268
1269         if (!(found_key.objectid >= cache->start &&
1270                found_key.objectid + length <= cache->start + cache->length)) {
1271                 ret = -EUCLEAN;
1272                 goto out;
1273         }
1274         *offset_ret = found_key.objectid + length - cache->start;
1275         ret = 0;
1276
1277 out:
1278         btrfs_free_path(path);
1279         return ret;
1280 }
1281
1282 struct zone_info {
1283         u64 physical;
1284         u64 capacity;
1285         u64 alloc_offset;
1286 };
1287
1288 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1289                                 struct zone_info *info, unsigned long *active,
1290                                 struct btrfs_chunk_map *map)
1291 {
1292         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1293         struct btrfs_device *device = map->stripes[zone_idx].dev;
1294         int dev_replace_is_ongoing = 0;
1295         unsigned int nofs_flag;
1296         struct blk_zone zone;
1297         int ret;
1298
1299         info->physical = map->stripes[zone_idx].physical;
1300
1301         if (!device->bdev) {
1302                 info->alloc_offset = WP_MISSING_DEV;
1303                 return 0;
1304         }
1305
1306         /* Consider a zone as active if we can allow any number of active zones. */
1307         if (!device->zone_info->max_active_zones)
1308                 __set_bit(zone_idx, active);
1309
1310         if (!btrfs_dev_is_sequential(device, info->physical)) {
1311                 info->alloc_offset = WP_CONVENTIONAL;
1312                 return 0;
1313         }
1314
1315         /* This zone will be used for allocation, so mark this zone non-empty. */
1316         btrfs_dev_clear_zone_empty(device, info->physical);
1317
1318         down_read(&dev_replace->rwsem);
1319         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1320         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1321                 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1322         up_read(&dev_replace->rwsem);
1323
1324         /*
1325          * The group is mapped to a sequential zone. Get the zone write pointer
1326          * to determine the allocation offset within the zone.
1327          */
1328         WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1329         nofs_flag = memalloc_nofs_save();
1330         ret = btrfs_get_dev_zone(device, info->physical, &zone);
1331         memalloc_nofs_restore(nofs_flag);
1332         if (ret) {
1333                 if (ret != -EIO && ret != -EOPNOTSUPP)
1334                         return ret;
1335                 info->alloc_offset = WP_MISSING_DEV;
1336                 return 0;
1337         }
1338
1339         if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340                 btrfs_err_in_rcu(fs_info,
1341                 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342                         zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1343                         device->devid);
1344                 return -EIO;
1345         }
1346
1347         info->capacity = (zone.capacity << SECTOR_SHIFT);
1348
1349         switch (zone.cond) {
1350         case BLK_ZONE_COND_OFFLINE:
1351         case BLK_ZONE_COND_READONLY:
1352                 btrfs_err(fs_info,
1353                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1354                           (info->physical >> device->zone_info->zone_size_shift),
1355                           rcu_str_deref(device->name), device->devid);
1356                 info->alloc_offset = WP_MISSING_DEV;
1357                 break;
1358         case BLK_ZONE_COND_EMPTY:
1359                 info->alloc_offset = 0;
1360                 break;
1361         case BLK_ZONE_COND_FULL:
1362                 info->alloc_offset = info->capacity;
1363                 break;
1364         default:
1365                 /* Partially used zone. */
1366                 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1367                 __set_bit(zone_idx, active);
1368                 break;
1369         }
1370
1371         return 0;
1372 }
1373
1374 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1375                                          struct zone_info *info,
1376                                          unsigned long *active)
1377 {
1378         if (info->alloc_offset == WP_MISSING_DEV) {
1379                 btrfs_err(bg->fs_info,
1380                         "zoned: cannot recover write pointer for zone %llu",
1381                         info->physical);
1382                 return -EIO;
1383         }
1384
1385         bg->alloc_offset = info->alloc_offset;
1386         bg->zone_capacity = info->capacity;
1387         if (test_bit(0, active))
1388                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1389         return 0;
1390 }
1391
1392 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1393                                       struct btrfs_chunk_map *map,
1394                                       struct zone_info *zone_info,
1395                                       unsigned long *active)
1396 {
1397         struct btrfs_fs_info *fs_info = bg->fs_info;
1398
1399         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1400                 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1401                 return -EINVAL;
1402         }
1403
1404         if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1405                 btrfs_err(bg->fs_info,
1406                           "zoned: cannot recover write pointer for zone %llu",
1407                           zone_info[0].physical);
1408                 return -EIO;
1409         }
1410         if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1411                 btrfs_err(bg->fs_info,
1412                           "zoned: cannot recover write pointer for zone %llu",
1413                           zone_info[1].physical);
1414                 return -EIO;
1415         }
1416         if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1417                 btrfs_err(bg->fs_info,
1418                           "zoned: write pointer offset mismatch of zones in DUP profile");
1419                 return -EIO;
1420         }
1421
1422         if (test_bit(0, active) != test_bit(1, active)) {
1423                 if (!btrfs_zone_activate(bg))
1424                         return -EIO;
1425         } else if (test_bit(0, active)) {
1426                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1427         }
1428
1429         bg->alloc_offset = zone_info[0].alloc_offset;
1430         bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1431         return 0;
1432 }
1433
1434 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1435                                         struct btrfs_chunk_map *map,
1436                                         struct zone_info *zone_info,
1437                                         unsigned long *active)
1438 {
1439         struct btrfs_fs_info *fs_info = bg->fs_info;
1440         int i;
1441
1442         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1443                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1444                           btrfs_bg_type_to_raid_name(map->type));
1445                 return -EINVAL;
1446         }
1447
1448         for (i = 0; i < map->num_stripes; i++) {
1449                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451                         continue;
1452
1453                 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454                     !btrfs_test_opt(fs_info, DEGRADED)) {
1455                         btrfs_err(fs_info,
1456                         "zoned: write pointer offset mismatch of zones in %s profile",
1457                                   btrfs_bg_type_to_raid_name(map->type));
1458                         return -EIO;
1459                 }
1460                 if (test_bit(0, active) != test_bit(i, active)) {
1461                         if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462                             !btrfs_zone_activate(bg)) {
1463                                 return -EIO;
1464                         }
1465                 } else {
1466                         if (test_bit(0, active))
1467                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1468                 }
1469                 /* In case a device is missing we have a cap of 0, so don't use it. */
1470                 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1471                                                  zone_info[1].capacity);
1472         }
1473
1474         if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1475                 bg->alloc_offset = zone_info[0].alloc_offset;
1476         else
1477                 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1478
1479         return 0;
1480 }
1481
1482 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1483                                         struct btrfs_chunk_map *map,
1484                                         struct zone_info *zone_info,
1485                                         unsigned long *active)
1486 {
1487         struct btrfs_fs_info *fs_info = bg->fs_info;
1488
1489         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1490                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1491                           btrfs_bg_type_to_raid_name(map->type));
1492                 return -EINVAL;
1493         }
1494
1495         for (int i = 0; i < map->num_stripes; i++) {
1496                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1497                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498                         continue;
1499
1500                 if (test_bit(0, active) != test_bit(i, active)) {
1501                         if (!btrfs_zone_activate(bg))
1502                                 return -EIO;
1503                 } else {
1504                         if (test_bit(0, active))
1505                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1506                 }
1507                 bg->zone_capacity += zone_info[i].capacity;
1508                 bg->alloc_offset += zone_info[i].alloc_offset;
1509         }
1510
1511         return 0;
1512 }
1513
1514 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1515                                          struct btrfs_chunk_map *map,
1516                                          struct zone_info *zone_info,
1517                                          unsigned long *active)
1518 {
1519         struct btrfs_fs_info *fs_info = bg->fs_info;
1520
1521         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1522                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1523                           btrfs_bg_type_to_raid_name(map->type));
1524                 return -EINVAL;
1525         }
1526
1527         for (int i = 0; i < map->num_stripes; i++) {
1528                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1529                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1530                         continue;
1531
1532                 if (test_bit(0, active) != test_bit(i, active)) {
1533                         if (!btrfs_zone_activate(bg))
1534                                 return -EIO;
1535                 } else {
1536                         if (test_bit(0, active))
1537                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1538                 }
1539
1540                 if ((i % map->sub_stripes) == 0) {
1541                         bg->zone_capacity += zone_info[i].capacity;
1542                         bg->alloc_offset += zone_info[i].alloc_offset;
1543                 }
1544         }
1545
1546         return 0;
1547 }
1548
1549 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1550 {
1551         struct btrfs_fs_info *fs_info = cache->fs_info;
1552         struct btrfs_chunk_map *map;
1553         u64 logical = cache->start;
1554         u64 length = cache->length;
1555         struct zone_info *zone_info = NULL;
1556         int ret;
1557         int i;
1558         unsigned long *active = NULL;
1559         u64 last_alloc = 0;
1560         u32 num_sequential = 0, num_conventional = 0;
1561
1562         if (!btrfs_is_zoned(fs_info))
1563                 return 0;
1564
1565         /* Sanity check */
1566         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1567                 btrfs_err(fs_info,
1568                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1569                           logical, length, fs_info->zone_size);
1570                 return -EIO;
1571         }
1572
1573         map = btrfs_find_chunk_map(fs_info, logical, length);
1574         if (!map)
1575                 return -EINVAL;
1576
1577         cache->physical_map = map;
1578
1579         zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1580         if (!zone_info) {
1581                 ret = -ENOMEM;
1582                 goto out;
1583         }
1584
1585         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1586         if (!active) {
1587                 ret = -ENOMEM;
1588                 goto out;
1589         }
1590
1591         for (i = 0; i < map->num_stripes; i++) {
1592                 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1593                 if (ret)
1594                         goto out;
1595
1596                 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1597                         num_conventional++;
1598                 else
1599                         num_sequential++;
1600         }
1601
1602         if (num_sequential > 0)
1603                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1604
1605         if (num_conventional > 0) {
1606                 /* Zone capacity is always zone size in emulation */
1607                 cache->zone_capacity = cache->length;
1608                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1609                 if (ret) {
1610                         btrfs_err(fs_info,
1611                         "zoned: failed to determine allocation offset of bg %llu",
1612                                   cache->start);
1613                         goto out;
1614                 } else if (map->num_stripes == num_conventional) {
1615                         cache->alloc_offset = last_alloc;
1616                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1617                         goto out;
1618                 }
1619         }
1620
1621         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1622         case 0: /* single */
1623                 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1624                 break;
1625         case BTRFS_BLOCK_GROUP_DUP:
1626                 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1627                 break;
1628         case BTRFS_BLOCK_GROUP_RAID1:
1629         case BTRFS_BLOCK_GROUP_RAID1C3:
1630         case BTRFS_BLOCK_GROUP_RAID1C4:
1631                 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1632                 break;
1633         case BTRFS_BLOCK_GROUP_RAID0:
1634                 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1635                 break;
1636         case BTRFS_BLOCK_GROUP_RAID10:
1637                 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1638                 break;
1639         case BTRFS_BLOCK_GROUP_RAID5:
1640         case BTRFS_BLOCK_GROUP_RAID6:
1641         default:
1642                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1643                           btrfs_bg_type_to_raid_name(map->type));
1644                 ret = -EINVAL;
1645                 goto out;
1646         }
1647
1648 out:
1649         /* Reject non SINGLE data profiles without RST */
1650         if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1651             (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1652             !fs_info->stripe_root) {
1653                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1654                           btrfs_bg_type_to_raid_name(map->type));
1655                 return -EINVAL;
1656         }
1657
1658         if (cache->alloc_offset > cache->zone_capacity) {
1659                 btrfs_err(fs_info,
1660 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1661                           cache->alloc_offset, cache->zone_capacity,
1662                           cache->start);
1663                 ret = -EIO;
1664         }
1665
1666         /* An extent is allocated after the write pointer */
1667         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1668                 btrfs_err(fs_info,
1669                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1670                           logical, last_alloc, cache->alloc_offset);
1671                 ret = -EIO;
1672         }
1673
1674         if (!ret) {
1675                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1676                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1677                         btrfs_get_block_group(cache);
1678                         spin_lock(&fs_info->zone_active_bgs_lock);
1679                         list_add_tail(&cache->active_bg_list,
1680                                       &fs_info->zone_active_bgs);
1681                         spin_unlock(&fs_info->zone_active_bgs_lock);
1682                 }
1683         } else {
1684                 btrfs_free_chunk_map(cache->physical_map);
1685                 cache->physical_map = NULL;
1686         }
1687         bitmap_free(active);
1688         kfree(zone_info);
1689
1690         return ret;
1691 }
1692
1693 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1694 {
1695         u64 unusable, free;
1696
1697         if (!btrfs_is_zoned(cache->fs_info))
1698                 return;
1699
1700         WARN_ON(cache->bytes_super != 0);
1701         unusable = (cache->alloc_offset - cache->used) +
1702                    (cache->length - cache->zone_capacity);
1703         free = cache->zone_capacity - cache->alloc_offset;
1704
1705         /* We only need ->free_space in ALLOC_SEQ block groups */
1706         cache->cached = BTRFS_CACHE_FINISHED;
1707         cache->free_space_ctl->free_space = free;
1708         cache->zone_unusable = unusable;
1709 }
1710
1711 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1712 {
1713         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1714         struct btrfs_inode *inode = bbio->inode;
1715         struct btrfs_fs_info *fs_info = bbio->fs_info;
1716         struct btrfs_block_group *cache;
1717         bool ret = false;
1718
1719         if (!btrfs_is_zoned(fs_info))
1720                 return false;
1721
1722         if (!inode || !is_data_inode(&inode->vfs_inode))
1723                 return false;
1724
1725         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1726                 return false;
1727
1728         /*
1729          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1730          * extent layout the relocation code has.
1731          * Furthermore we have set aside own block-group from which only the
1732          * relocation "process" can allocate and make sure only one process at a
1733          * time can add pages to an extent that gets relocated, so it's safe to
1734          * use regular REQ_OP_WRITE for this special case.
1735          */
1736         if (btrfs_is_data_reloc_root(inode->root))
1737                 return false;
1738
1739         cache = btrfs_lookup_block_group(fs_info, start);
1740         ASSERT(cache);
1741         if (!cache)
1742                 return false;
1743
1744         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1745         btrfs_put_block_group(cache);
1746
1747         return ret;
1748 }
1749
1750 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1751 {
1752         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1753         struct btrfs_ordered_sum *sum = bbio->sums;
1754
1755         if (physical < bbio->orig_physical)
1756                 sum->logical -= bbio->orig_physical - physical;
1757         else
1758                 sum->logical += physical - bbio->orig_physical;
1759 }
1760
1761 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1762                                         u64 logical)
1763 {
1764         struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1765         struct extent_map *em;
1766
1767         ordered->disk_bytenr = logical;
1768
1769         write_lock(&em_tree->lock);
1770         em = search_extent_mapping(em_tree, ordered->file_offset,
1771                                    ordered->num_bytes);
1772         em->block_start = logical;
1773         free_extent_map(em);
1774         write_unlock(&em_tree->lock);
1775 }
1776
1777 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1778                                       u64 logical, u64 len)
1779 {
1780         struct btrfs_ordered_extent *new;
1781
1782         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1783             split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1784                              ordered->num_bytes, len, logical))
1785                 return false;
1786
1787         new = btrfs_split_ordered_extent(ordered, len);
1788         if (IS_ERR(new))
1789                 return false;
1790         new->disk_bytenr = logical;
1791         btrfs_finish_one_ordered(new);
1792         return true;
1793 }
1794
1795 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1796 {
1797         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1798         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1799         struct btrfs_ordered_sum *sum;
1800         u64 logical, len;
1801
1802         /*
1803          * Write to pre-allocated region is for the data relocation, and so
1804          * it should use WRITE operation. No split/rewrite are necessary.
1805          */
1806         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1807                 return;
1808
1809         ASSERT(!list_empty(&ordered->list));
1810         /* The ordered->list can be empty in the above pre-alloc case. */
1811         sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1812         logical = sum->logical;
1813         len = sum->len;
1814
1815         while (len < ordered->disk_num_bytes) {
1816                 sum = list_next_entry(sum, list);
1817                 if (sum->logical == logical + len) {
1818                         len += sum->len;
1819                         continue;
1820                 }
1821                 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1822                         set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1823                         btrfs_err(fs_info, "failed to split ordered extent");
1824                         goto out;
1825                 }
1826                 logical = sum->logical;
1827                 len = sum->len;
1828         }
1829
1830         if (ordered->disk_bytenr != logical)
1831                 btrfs_rewrite_logical_zoned(ordered, logical);
1832
1833 out:
1834         /*
1835          * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1836          * were allocated by btrfs_alloc_dummy_sum only to record the logical
1837          * addresses and don't contain actual checksums.  We thus must free them
1838          * here so that we don't attempt to log the csums later.
1839          */
1840         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1841             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1842                 while ((sum = list_first_entry_or_null(&ordered->list,
1843                                                        typeof(*sum), list))) {
1844                         list_del(&sum->list);
1845                         kfree(sum);
1846                 }
1847         }
1848 }
1849
1850 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1851                                struct btrfs_block_group **active_bg)
1852 {
1853         const struct writeback_control *wbc = ctx->wbc;
1854         struct btrfs_block_group *block_group = ctx->zoned_bg;
1855         struct btrfs_fs_info *fs_info = block_group->fs_info;
1856
1857         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1858                 return true;
1859
1860         if (fs_info->treelog_bg == block_group->start) {
1861                 if (!btrfs_zone_activate(block_group)) {
1862                         int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1863
1864                         if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1865                                 return false;
1866                 }
1867         } else if (*active_bg != block_group) {
1868                 struct btrfs_block_group *tgt = *active_bg;
1869
1870                 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1871                 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1872
1873                 if (tgt) {
1874                         /*
1875                          * If there is an unsent IO left in the allocated area,
1876                          * we cannot wait for them as it may cause a deadlock.
1877                          */
1878                         if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1879                                 if (wbc->sync_mode == WB_SYNC_NONE ||
1880                                     (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1881                                         return false;
1882                         }
1883
1884                         /* Pivot active metadata/system block group. */
1885                         btrfs_zoned_meta_io_unlock(fs_info);
1886                         wait_eb_writebacks(tgt);
1887                         do_zone_finish(tgt, true);
1888                         btrfs_zoned_meta_io_lock(fs_info);
1889                         if (*active_bg == tgt) {
1890                                 btrfs_put_block_group(tgt);
1891                                 *active_bg = NULL;
1892                         }
1893                 }
1894                 if (!btrfs_zone_activate(block_group))
1895                         return false;
1896                 if (*active_bg != block_group) {
1897                         ASSERT(*active_bg == NULL);
1898                         *active_bg = block_group;
1899                         btrfs_get_block_group(block_group);
1900                 }
1901         }
1902
1903         return true;
1904 }
1905
1906 /*
1907  * Check if @ctx->eb is aligned to the write pointer.
1908  *
1909  * Return:
1910  *   0:        @ctx->eb is at the write pointer. You can write it.
1911  *   -EAGAIN:  There is a hole. The caller should handle the case.
1912  *   -EBUSY:   There is a hole, but the caller can just bail out.
1913  */
1914 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1915                                    struct btrfs_eb_write_context *ctx)
1916 {
1917         const struct writeback_control *wbc = ctx->wbc;
1918         const struct extent_buffer *eb = ctx->eb;
1919         struct btrfs_block_group *block_group = ctx->zoned_bg;
1920
1921         if (!btrfs_is_zoned(fs_info))
1922                 return 0;
1923
1924         if (block_group) {
1925                 if (block_group->start > eb->start ||
1926                     block_group->start + block_group->length <= eb->start) {
1927                         btrfs_put_block_group(block_group);
1928                         block_group = NULL;
1929                         ctx->zoned_bg = NULL;
1930                 }
1931         }
1932
1933         if (!block_group) {
1934                 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1935                 if (!block_group)
1936                         return 0;
1937                 ctx->zoned_bg = block_group;
1938         }
1939
1940         if (block_group->meta_write_pointer == eb->start) {
1941                 struct btrfs_block_group **tgt;
1942
1943                 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1944                         return 0;
1945
1946                 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1947                         tgt = &fs_info->active_system_bg;
1948                 else
1949                         tgt = &fs_info->active_meta_bg;
1950                 if (check_bg_is_active(ctx, tgt))
1951                         return 0;
1952         }
1953
1954         /*
1955          * Since we may release fs_info->zoned_meta_io_lock, someone can already
1956          * start writing this eb. In that case, we can just bail out.
1957          */
1958         if (block_group->meta_write_pointer > eb->start)
1959                 return -EBUSY;
1960
1961         /* If for_sync, this hole will be filled with trasnsaction commit. */
1962         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1963                 return -EAGAIN;
1964         return -EBUSY;
1965 }
1966
1967 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1968 {
1969         if (!btrfs_dev_is_sequential(device, physical))
1970                 return -EOPNOTSUPP;
1971
1972         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1973                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1974 }
1975
1976 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1977                           struct blk_zone *zone)
1978 {
1979         struct btrfs_io_context *bioc = NULL;
1980         u64 mapped_length = PAGE_SIZE;
1981         unsigned int nofs_flag;
1982         int nmirrors;
1983         int i, ret;
1984
1985         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1986                               &mapped_length, &bioc, NULL, NULL);
1987         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1988                 ret = -EIO;
1989                 goto out_put_bioc;
1990         }
1991
1992         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1993                 ret = -EINVAL;
1994                 goto out_put_bioc;
1995         }
1996
1997         nofs_flag = memalloc_nofs_save();
1998         nmirrors = (int)bioc->num_stripes;
1999         for (i = 0; i < nmirrors; i++) {
2000                 u64 physical = bioc->stripes[i].physical;
2001                 struct btrfs_device *dev = bioc->stripes[i].dev;
2002
2003                 /* Missing device */
2004                 if (!dev->bdev)
2005                         continue;
2006
2007                 ret = btrfs_get_dev_zone(dev, physical, zone);
2008                 /* Failing device */
2009                 if (ret == -EIO || ret == -EOPNOTSUPP)
2010                         continue;
2011                 break;
2012         }
2013         memalloc_nofs_restore(nofs_flag);
2014 out_put_bioc:
2015         btrfs_put_bioc(bioc);
2016         return ret;
2017 }
2018
2019 /*
2020  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2021  * filling zeros between @physical_pos to a write pointer of dev-replace
2022  * source device.
2023  */
2024 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2025                                     u64 physical_start, u64 physical_pos)
2026 {
2027         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2028         struct blk_zone zone;
2029         u64 length;
2030         u64 wp;
2031         int ret;
2032
2033         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2034                 return 0;
2035
2036         ret = read_zone_info(fs_info, logical, &zone);
2037         if (ret)
2038                 return ret;
2039
2040         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2041
2042         if (physical_pos == wp)
2043                 return 0;
2044
2045         if (physical_pos > wp)
2046                 return -EUCLEAN;
2047
2048         length = wp - physical_pos;
2049         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2050 }
2051
2052 /*
2053  * Activate block group and underlying device zones
2054  *
2055  * @block_group: the block group to activate
2056  *
2057  * Return: true on success, false otherwise
2058  */
2059 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2060 {
2061         struct btrfs_fs_info *fs_info = block_group->fs_info;
2062         struct btrfs_chunk_map *map;
2063         struct btrfs_device *device;
2064         u64 physical;
2065         const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2066         bool ret;
2067         int i;
2068
2069         if (!btrfs_is_zoned(block_group->fs_info))
2070                 return true;
2071
2072         map = block_group->physical_map;
2073
2074         spin_lock(&fs_info->zone_active_bgs_lock);
2075         spin_lock(&block_group->lock);
2076         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2077                 ret = true;
2078                 goto out_unlock;
2079         }
2080
2081         /* No space left */
2082         if (btrfs_zoned_bg_is_full(block_group)) {
2083                 ret = false;
2084                 goto out_unlock;
2085         }
2086
2087         for (i = 0; i < map->num_stripes; i++) {
2088                 struct btrfs_zoned_device_info *zinfo;
2089                 int reserved = 0;
2090
2091                 device = map->stripes[i].dev;
2092                 physical = map->stripes[i].physical;
2093                 zinfo = device->zone_info;
2094
2095                 if (zinfo->max_active_zones == 0)
2096                         continue;
2097
2098                 if (is_data)
2099                         reserved = zinfo->reserved_active_zones;
2100                 /*
2101                  * For the data block group, leave active zones for one
2102                  * metadata block group and one system block group.
2103                  */
2104                 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2105                         ret = false;
2106                         goto out_unlock;
2107                 }
2108
2109                 if (!btrfs_dev_set_active_zone(device, physical)) {
2110                         /* Cannot activate the zone */
2111                         ret = false;
2112                         goto out_unlock;
2113                 }
2114                 if (!is_data)
2115                         zinfo->reserved_active_zones--;
2116         }
2117
2118         /* Successfully activated all the zones */
2119         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2120         spin_unlock(&block_group->lock);
2121
2122         /* For the active block group list */
2123         btrfs_get_block_group(block_group);
2124         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2125         spin_unlock(&fs_info->zone_active_bgs_lock);
2126
2127         return true;
2128
2129 out_unlock:
2130         spin_unlock(&block_group->lock);
2131         spin_unlock(&fs_info->zone_active_bgs_lock);
2132         return ret;
2133 }
2134
2135 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2136 {
2137         struct btrfs_fs_info *fs_info = block_group->fs_info;
2138         const u64 end = block_group->start + block_group->length;
2139         struct radix_tree_iter iter;
2140         struct extent_buffer *eb;
2141         void __rcu **slot;
2142
2143         rcu_read_lock();
2144         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2145                                  block_group->start >> fs_info->sectorsize_bits) {
2146                 eb = radix_tree_deref_slot(slot);
2147                 if (!eb)
2148                         continue;
2149                 if (radix_tree_deref_retry(eb)) {
2150                         slot = radix_tree_iter_retry(&iter);
2151                         continue;
2152                 }
2153
2154                 if (eb->start < block_group->start)
2155                         continue;
2156                 if (eb->start >= end)
2157                         break;
2158
2159                 slot = radix_tree_iter_resume(slot, &iter);
2160                 rcu_read_unlock();
2161                 wait_on_extent_buffer_writeback(eb);
2162                 rcu_read_lock();
2163         }
2164         rcu_read_unlock();
2165 }
2166
2167 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2168 {
2169         struct btrfs_fs_info *fs_info = block_group->fs_info;
2170         struct btrfs_chunk_map *map;
2171         const bool is_metadata = (block_group->flags &
2172                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2173         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2174         int ret = 0;
2175         int i;
2176
2177         spin_lock(&block_group->lock);
2178         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2179                 spin_unlock(&block_group->lock);
2180                 return 0;
2181         }
2182
2183         /* Check if we have unwritten allocated space */
2184         if (is_metadata &&
2185             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2186                 spin_unlock(&block_group->lock);
2187                 return -EAGAIN;
2188         }
2189
2190         /*
2191          * If we are sure that the block group is full (= no more room left for
2192          * new allocation) and the IO for the last usable block is completed, we
2193          * don't need to wait for the other IOs. This holds because we ensure
2194          * the sequential IO submissions using the ZONE_APPEND command for data
2195          * and block_group->meta_write_pointer for metadata.
2196          */
2197         if (!fully_written) {
2198                 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2199                         spin_unlock(&block_group->lock);
2200                         return -EAGAIN;
2201                 }
2202                 spin_unlock(&block_group->lock);
2203
2204                 ret = btrfs_inc_block_group_ro(block_group, false);
2205                 if (ret)
2206                         return ret;
2207
2208                 /* Ensure all writes in this block group finish */
2209                 btrfs_wait_block_group_reservations(block_group);
2210                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2211                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2212                                          block_group->length);
2213                 /* Wait for extent buffers to be written. */
2214                 if (is_metadata)
2215                         wait_eb_writebacks(block_group);
2216
2217                 spin_lock(&block_group->lock);
2218
2219                 /*
2220                  * Bail out if someone already deactivated the block group, or
2221                  * allocated space is left in the block group.
2222                  */
2223                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2224                               &block_group->runtime_flags)) {
2225                         spin_unlock(&block_group->lock);
2226                         btrfs_dec_block_group_ro(block_group);
2227                         return 0;
2228                 }
2229
2230                 if (block_group->reserved ||
2231                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2232                              &block_group->runtime_flags)) {
2233                         spin_unlock(&block_group->lock);
2234                         btrfs_dec_block_group_ro(block_group);
2235                         return -EAGAIN;
2236                 }
2237         }
2238
2239         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2240         block_group->alloc_offset = block_group->zone_capacity;
2241         if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2242                 block_group->meta_write_pointer = block_group->start +
2243                                                   block_group->zone_capacity;
2244         block_group->free_space_ctl->free_space = 0;
2245         btrfs_clear_treelog_bg(block_group);
2246         btrfs_clear_data_reloc_bg(block_group);
2247         spin_unlock(&block_group->lock);
2248
2249         down_read(&dev_replace->rwsem);
2250         map = block_group->physical_map;
2251         for (i = 0; i < map->num_stripes; i++) {
2252                 struct btrfs_device *device = map->stripes[i].dev;
2253                 const u64 physical = map->stripes[i].physical;
2254                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2255                 unsigned int nofs_flags;
2256
2257                 if (zinfo->max_active_zones == 0)
2258                         continue;
2259
2260                 nofs_flags = memalloc_nofs_save();
2261                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2262                                        physical >> SECTOR_SHIFT,
2263                                        zinfo->zone_size >> SECTOR_SHIFT);
2264                 memalloc_nofs_restore(nofs_flags);
2265
2266                 if (ret) {
2267                         up_read(&dev_replace->rwsem);
2268                         return ret;
2269                 }
2270
2271                 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2272                         zinfo->reserved_active_zones++;
2273                 btrfs_dev_clear_active_zone(device, physical);
2274         }
2275         up_read(&dev_replace->rwsem);
2276
2277         if (!fully_written)
2278                 btrfs_dec_block_group_ro(block_group);
2279
2280         spin_lock(&fs_info->zone_active_bgs_lock);
2281         ASSERT(!list_empty(&block_group->active_bg_list));
2282         list_del_init(&block_group->active_bg_list);
2283         spin_unlock(&fs_info->zone_active_bgs_lock);
2284
2285         /* For active_bg_list */
2286         btrfs_put_block_group(block_group);
2287
2288         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2289
2290         return 0;
2291 }
2292
2293 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2294 {
2295         if (!btrfs_is_zoned(block_group->fs_info))
2296                 return 0;
2297
2298         return do_zone_finish(block_group, false);
2299 }
2300
2301 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2302 {
2303         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2304         struct btrfs_device *device;
2305         bool ret = false;
2306
2307         if (!btrfs_is_zoned(fs_info))
2308                 return true;
2309
2310         /* Check if there is a device with active zones left */
2311         mutex_lock(&fs_info->chunk_mutex);
2312         spin_lock(&fs_info->zone_active_bgs_lock);
2313         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2314                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2315                 int reserved = 0;
2316
2317                 if (!device->bdev)
2318                         continue;
2319
2320                 if (!zinfo->max_active_zones) {
2321                         ret = true;
2322                         break;
2323                 }
2324
2325                 if (flags & BTRFS_BLOCK_GROUP_DATA)
2326                         reserved = zinfo->reserved_active_zones;
2327
2328                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2329                 case 0: /* single */
2330                         ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2331                         break;
2332                 case BTRFS_BLOCK_GROUP_DUP:
2333                         ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2334                         break;
2335                 }
2336                 if (ret)
2337                         break;
2338         }
2339         spin_unlock(&fs_info->zone_active_bgs_lock);
2340         mutex_unlock(&fs_info->chunk_mutex);
2341
2342         if (!ret)
2343                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2344
2345         return ret;
2346 }
2347
2348 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2349 {
2350         struct btrfs_block_group *block_group;
2351         u64 min_alloc_bytes;
2352
2353         if (!btrfs_is_zoned(fs_info))
2354                 return;
2355
2356         block_group = btrfs_lookup_block_group(fs_info, logical);
2357         ASSERT(block_group);
2358
2359         /* No MIXED_BG on zoned btrfs. */
2360         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2361                 min_alloc_bytes = fs_info->sectorsize;
2362         else
2363                 min_alloc_bytes = fs_info->nodesize;
2364
2365         /* Bail out if we can allocate more data from this block group. */
2366         if (logical + length + min_alloc_bytes <=
2367             block_group->start + block_group->zone_capacity)
2368                 goto out;
2369
2370         do_zone_finish(block_group, true);
2371
2372 out:
2373         btrfs_put_block_group(block_group);
2374 }
2375
2376 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2377 {
2378         struct btrfs_block_group *bg =
2379                 container_of(work, struct btrfs_block_group, zone_finish_work);
2380
2381         wait_on_extent_buffer_writeback(bg->last_eb);
2382         free_extent_buffer(bg->last_eb);
2383         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2384         btrfs_put_block_group(bg);
2385 }
2386
2387 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2388                                    struct extent_buffer *eb)
2389 {
2390         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2391             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2392                 return;
2393
2394         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2395                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2396                           bg->start);
2397                 return;
2398         }
2399
2400         /* For the work */
2401         btrfs_get_block_group(bg);
2402         atomic_inc(&eb->refs);
2403         bg->last_eb = eb;
2404         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2405         queue_work(system_unbound_wq, &bg->zone_finish_work);
2406 }
2407
2408 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2409 {
2410         struct btrfs_fs_info *fs_info = bg->fs_info;
2411
2412         spin_lock(&fs_info->relocation_bg_lock);
2413         if (fs_info->data_reloc_bg == bg->start)
2414                 fs_info->data_reloc_bg = 0;
2415         spin_unlock(&fs_info->relocation_bg_lock);
2416 }
2417
2418 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2419 {
2420         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2421         struct btrfs_device *device;
2422
2423         if (!btrfs_is_zoned(fs_info))
2424                 return;
2425
2426         mutex_lock(&fs_devices->device_list_mutex);
2427         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2428                 if (device->zone_info) {
2429                         vfree(device->zone_info->zone_cache);
2430                         device->zone_info->zone_cache = NULL;
2431                 }
2432         }
2433         mutex_unlock(&fs_devices->device_list_mutex);
2434 }
2435
2436 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2437 {
2438         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439         struct btrfs_device *device;
2440         u64 used = 0;
2441         u64 total = 0;
2442         u64 factor;
2443
2444         ASSERT(btrfs_is_zoned(fs_info));
2445
2446         if (fs_info->bg_reclaim_threshold == 0)
2447                 return false;
2448
2449         mutex_lock(&fs_devices->device_list_mutex);
2450         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2451                 if (!device->bdev)
2452                         continue;
2453
2454                 total += device->disk_total_bytes;
2455                 used += device->bytes_used;
2456         }
2457         mutex_unlock(&fs_devices->device_list_mutex);
2458
2459         factor = div64_u64(used * 100, total);
2460         return factor >= fs_info->bg_reclaim_threshold;
2461 }
2462
2463 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2464                                        u64 length)
2465 {
2466         struct btrfs_block_group *block_group;
2467
2468         if (!btrfs_is_zoned(fs_info))
2469                 return;
2470
2471         block_group = btrfs_lookup_block_group(fs_info, logical);
2472         /* It should be called on a previous data relocation block group. */
2473         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2474
2475         spin_lock(&block_group->lock);
2476         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2477                 goto out;
2478
2479         /* All relocation extents are written. */
2480         if (block_group->start + block_group->alloc_offset == logical + length) {
2481                 /*
2482                  * Now, release this block group for further allocations and
2483                  * zone finish.
2484                  */
2485                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2486                           &block_group->runtime_flags);
2487         }
2488
2489 out:
2490         spin_unlock(&block_group->lock);
2491         btrfs_put_block_group(block_group);
2492 }
2493
2494 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2495 {
2496         struct btrfs_block_group *block_group;
2497         struct btrfs_block_group *min_bg = NULL;
2498         u64 min_avail = U64_MAX;
2499         int ret;
2500
2501         spin_lock(&fs_info->zone_active_bgs_lock);
2502         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2503                             active_bg_list) {
2504                 u64 avail;
2505
2506                 spin_lock(&block_group->lock);
2507                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2508                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2509                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2510                         spin_unlock(&block_group->lock);
2511                         continue;
2512                 }
2513
2514                 avail = block_group->zone_capacity - block_group->alloc_offset;
2515                 if (min_avail > avail) {
2516                         if (min_bg)
2517                                 btrfs_put_block_group(min_bg);
2518                         min_bg = block_group;
2519                         min_avail = avail;
2520                         btrfs_get_block_group(min_bg);
2521                 }
2522                 spin_unlock(&block_group->lock);
2523         }
2524         spin_unlock(&fs_info->zone_active_bgs_lock);
2525
2526         if (!min_bg)
2527                 return 0;
2528
2529         ret = btrfs_zone_finish(min_bg);
2530         btrfs_put_block_group(min_bg);
2531
2532         return ret < 0 ? ret : 1;
2533 }
2534
2535 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2536                                 struct btrfs_space_info *space_info,
2537                                 bool do_finish)
2538 {
2539         struct btrfs_block_group *bg;
2540         int index;
2541
2542         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2543                 return 0;
2544
2545         for (;;) {
2546                 int ret;
2547                 bool need_finish = false;
2548
2549                 down_read(&space_info->groups_sem);
2550                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2551                         list_for_each_entry(bg, &space_info->block_groups[index],
2552                                             list) {
2553                                 if (!spin_trylock(&bg->lock))
2554                                         continue;
2555                                 if (btrfs_zoned_bg_is_full(bg) ||
2556                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2557                                              &bg->runtime_flags)) {
2558                                         spin_unlock(&bg->lock);
2559                                         continue;
2560                                 }
2561                                 spin_unlock(&bg->lock);
2562
2563                                 if (btrfs_zone_activate(bg)) {
2564                                         up_read(&space_info->groups_sem);
2565                                         return 1;
2566                                 }
2567
2568                                 need_finish = true;
2569                         }
2570                 }
2571                 up_read(&space_info->groups_sem);
2572
2573                 if (!do_finish || !need_finish)
2574                         break;
2575
2576                 ret = btrfs_zone_finish_one_bg(fs_info);
2577                 if (ret == 0)
2578                         break;
2579                 if (ret < 0)
2580                         return ret;
2581         }
2582
2583         return 0;
2584 }
2585
2586 /*
2587  * Reserve zones for one metadata block group, one tree-log block group, and one
2588  * system block group.
2589  */
2590 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2591 {
2592         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593         struct btrfs_block_group *block_group;
2594         struct btrfs_device *device;
2595         /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2596         unsigned int metadata_reserve = 2;
2597         /* Reserve a zone for SINGLE system block group. */
2598         unsigned int system_reserve = 1;
2599
2600         if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2601                 return;
2602
2603         /*
2604          * This function is called from the mount context. So, there is no
2605          * parallel process touching the bits. No need for read_seqretry().
2606          */
2607         if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608                 metadata_reserve = 4;
2609         if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2610                 system_reserve = 2;
2611
2612         /* Apply the reservation on all the devices. */
2613         mutex_lock(&fs_devices->device_list_mutex);
2614         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2615                 if (!device->bdev)
2616                         continue;
2617
2618                 device->zone_info->reserved_active_zones =
2619                         metadata_reserve + system_reserve;
2620         }
2621         mutex_unlock(&fs_devices->device_list_mutex);
2622
2623         /* Release reservation for currently active block groups. */
2624         spin_lock(&fs_info->zone_active_bgs_lock);
2625         list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2626                 struct btrfs_chunk_map *map = block_group->physical_map;
2627
2628                 if (!(block_group->flags &
2629                       (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2630                         continue;
2631
2632                 for (int i = 0; i < map->num_stripes; i++)
2633                         map->stripes[i].dev->zone_info->reserved_active_zones--;
2634         }
2635         spin_unlock(&fs_info->zone_active_bgs_lock);
2636 }