sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35         f2fs_handle_critical_error(sbi, reason, end_io);
36 }
37
38 /*
39  * We guarantee no failure on the returned page.
40  */
41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43         struct address_space *mapping = META_MAPPING(sbi);
44         struct page *page;
45 repeat:
46         page = f2fs_grab_cache_page(mapping, index, false);
47         if (!page) {
48                 cond_resched();
49                 goto repeat;
50         }
51         f2fs_wait_on_page_writeback(page, META, true, true);
52         if (!PageUptodate(page))
53                 SetPageUptodate(page);
54         return page;
55 }
56
57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58                                                         bool is_meta)
59 {
60         struct address_space *mapping = META_MAPPING(sbi);
61         struct page *page;
62         struct f2fs_io_info fio = {
63                 .sbi = sbi,
64                 .type = META,
65                 .op = REQ_OP_READ,
66                 .op_flags = REQ_META | REQ_PRIO,
67                 .old_blkaddr = index,
68                 .new_blkaddr = index,
69                 .encrypted_page = NULL,
70                 .is_por = !is_meta ? 1 : 0,
71         };
72         int err;
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         err = f2fs_submit_page_bio(&fio);
88         if (err) {
89                 f2fs_put_page(page, 1);
90                 return ERR_PTR(err);
91         }
92
93         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94
95         lock_page(page);
96         if (unlikely(page->mapping != mapping)) {
97                 f2fs_put_page(page, 1);
98                 goto repeat;
99         }
100
101         if (unlikely(!PageUptodate(page))) {
102                 f2fs_handle_page_eio(sbi, page->index, META);
103                 f2fs_put_page(page, 1);
104                 return ERR_PTR(-EIO);
105         }
106 out:
107         return page;
108 }
109
110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112         return __get_meta_page(sbi, index, true);
113 }
114
115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         struct page *page;
118         int count = 0;
119
120 retry:
121         page = __get_meta_page(sbi, index, true);
122         if (IS_ERR(page)) {
123                 if (PTR_ERR(page) == -EIO &&
124                                 ++count <= DEFAULT_RETRY_IO_COUNT)
125                         goto retry;
126                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127         }
128         return page;
129 }
130
131 /* for POR only */
132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134         return __get_meta_page(sbi, index, false);
135 }
136
137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138                                                         int type)
139 {
140         struct seg_entry *se;
141         unsigned int segno, offset;
142         bool exist;
143
144         if (type == DATA_GENERIC)
145                 return true;
146
147         segno = GET_SEGNO(sbi, blkaddr);
148         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149         se = get_seg_entry(sbi, segno);
150
151         exist = f2fs_test_bit(offset, se->cur_valid_map);
152
153         /* skip data, if we already have an error in checkpoint. */
154         if (unlikely(f2fs_cp_error(sbi)))
155                 return exist;
156
157         if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
158                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
159                          blkaddr, exist);
160                 set_sbi_flag(sbi, SBI_NEED_FSCK);
161                 return exist;
162         }
163
164         if (!exist && type == DATA_GENERIC_ENHANCE) {
165                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166                          blkaddr, exist);
167                 set_sbi_flag(sbi, SBI_NEED_FSCK);
168                 dump_stack();
169         }
170         return exist;
171 }
172
173 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
174                                         block_t blkaddr, int type)
175 {
176         if (time_to_inject(sbi, FAULT_BLKADDR))
177                 return false;
178
179         switch (type) {
180         case META_NAT:
181                 break;
182         case META_SIT:
183                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
184                         return false;
185                 break;
186         case META_SSA:
187                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
188                         blkaddr < SM_I(sbi)->ssa_blkaddr))
189                         return false;
190                 break;
191         case META_CP:
192                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
193                         blkaddr < __start_cp_addr(sbi)))
194                         return false;
195                 break;
196         case META_POR:
197                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
198                         blkaddr < MAIN_BLKADDR(sbi)))
199                         return false;
200                 break;
201         case DATA_GENERIC:
202         case DATA_GENERIC_ENHANCE:
203         case DATA_GENERIC_ENHANCE_READ:
204         case DATA_GENERIC_ENHANCE_UPDATE:
205                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
206                                 blkaddr < MAIN_BLKADDR(sbi))) {
207
208                         /* Skip to emit an error message. */
209                         if (unlikely(f2fs_cp_error(sbi)))
210                                 return false;
211
212                         f2fs_warn(sbi, "access invalid blkaddr:%u",
213                                   blkaddr);
214                         set_sbi_flag(sbi, SBI_NEED_FSCK);
215                         dump_stack();
216                         return false;
217                 } else {
218                         return __is_bitmap_valid(sbi, blkaddr, type);
219                 }
220                 break;
221         case META_GENERIC:
222                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
223                         blkaddr >= MAIN_BLKADDR(sbi)))
224                         return false;
225                 break;
226         default:
227                 BUG();
228         }
229
230         return true;
231 }
232
233 /*
234  * Readahead CP/NAT/SIT/SSA/POR pages
235  */
236 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
237                                                         int type, bool sync)
238 {
239         struct page *page;
240         block_t blkno = start;
241         struct f2fs_io_info fio = {
242                 .sbi = sbi,
243                 .type = META,
244                 .op = REQ_OP_READ,
245                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
246                 .encrypted_page = NULL,
247                 .in_list = 0,
248                 .is_por = (type == META_POR) ? 1 : 0,
249         };
250         struct blk_plug plug;
251         int err;
252
253         if (unlikely(type == META_POR))
254                 fio.op_flags &= ~REQ_META;
255
256         blk_start_plug(&plug);
257         for (; nrpages-- > 0; blkno++) {
258
259                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
260                         goto out;
261
262                 switch (type) {
263                 case META_NAT:
264                         if (unlikely(blkno >=
265                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
266                                 blkno = 0;
267                         /* get nat block addr */
268                         fio.new_blkaddr = current_nat_addr(sbi,
269                                         blkno * NAT_ENTRY_PER_BLOCK);
270                         break;
271                 case META_SIT:
272                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
273                                 goto out;
274                         /* get sit block addr */
275                         fio.new_blkaddr = current_sit_addr(sbi,
276                                         blkno * SIT_ENTRY_PER_BLOCK);
277                         break;
278                 case META_SSA:
279                 case META_CP:
280                 case META_POR:
281                         fio.new_blkaddr = blkno;
282                         break;
283                 default:
284                         BUG();
285                 }
286
287                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
288                                                 fio.new_blkaddr, false);
289                 if (!page)
290                         continue;
291                 if (PageUptodate(page)) {
292                         f2fs_put_page(page, 1);
293                         continue;
294                 }
295
296                 fio.page = page;
297                 err = f2fs_submit_page_bio(&fio);
298                 f2fs_put_page(page, err ? 1 : 0);
299
300                 if (!err)
301                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
302                                                         F2FS_BLKSIZE);
303         }
304 out:
305         blk_finish_plug(&plug);
306         return blkno - start;
307 }
308
309 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
310                                                         unsigned int ra_blocks)
311 {
312         struct page *page;
313         bool readahead = false;
314
315         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
316                 return;
317
318         page = find_get_page(META_MAPPING(sbi), index);
319         if (!page || !PageUptodate(page))
320                 readahead = true;
321         f2fs_put_page(page, 0);
322
323         if (readahead)
324                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
325 }
326
327 static int __f2fs_write_meta_page(struct page *page,
328                                 struct writeback_control *wbc,
329                                 enum iostat_type io_type)
330 {
331         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
332
333         trace_f2fs_writepage(page, META);
334
335         if (unlikely(f2fs_cp_error(sbi))) {
336                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
337                         ClearPageUptodate(page);
338                         dec_page_count(sbi, F2FS_DIRTY_META);
339                         unlock_page(page);
340                         return 0;
341                 }
342                 goto redirty_out;
343         }
344         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345                 goto redirty_out;
346         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
347                 goto redirty_out;
348
349         f2fs_do_write_meta_page(sbi, page, io_type);
350         dec_page_count(sbi, F2FS_DIRTY_META);
351
352         if (wbc->for_reclaim)
353                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
354
355         unlock_page(page);
356
357         if (unlikely(f2fs_cp_error(sbi)))
358                 f2fs_submit_merged_write(sbi, META);
359
360         return 0;
361
362 redirty_out:
363         redirty_page_for_writepage(wbc, page);
364         return AOP_WRITEPAGE_ACTIVATE;
365 }
366
367 static int f2fs_write_meta_page(struct page *page,
368                                 struct writeback_control *wbc)
369 {
370         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
371 }
372
373 static int f2fs_write_meta_pages(struct address_space *mapping,
374                                 struct writeback_control *wbc)
375 {
376         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
377         long diff, written;
378
379         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
380                 goto skip_write;
381
382         /* collect a number of dirty meta pages and write together */
383         if (wbc->sync_mode != WB_SYNC_ALL &&
384                         get_pages(sbi, F2FS_DIRTY_META) <
385                                         nr_pages_to_skip(sbi, META))
386                 goto skip_write;
387
388         /* if locked failed, cp will flush dirty pages instead */
389         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
390                 goto skip_write;
391
392         trace_f2fs_writepages(mapping->host, wbc, META);
393         diff = nr_pages_to_write(sbi, META, wbc);
394         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
395         f2fs_up_write(&sbi->cp_global_sem);
396         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
397         return 0;
398
399 skip_write:
400         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
401         trace_f2fs_writepages(mapping->host, wbc, META);
402         return 0;
403 }
404
405 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
406                                 long nr_to_write, enum iostat_type io_type)
407 {
408         struct address_space *mapping = META_MAPPING(sbi);
409         pgoff_t index = 0, prev = ULONG_MAX;
410         struct folio_batch fbatch;
411         long nwritten = 0;
412         int nr_folios;
413         struct writeback_control wbc = {
414                 .for_reclaim = 0,
415         };
416         struct blk_plug plug;
417
418         folio_batch_init(&fbatch);
419
420         blk_start_plug(&plug);
421
422         while ((nr_folios = filemap_get_folios_tag(mapping, &index,
423                                         (pgoff_t)-1,
424                                         PAGECACHE_TAG_DIRTY, &fbatch))) {
425                 int i;
426
427                 for (i = 0; i < nr_folios; i++) {
428                         struct folio *folio = fbatch.folios[i];
429
430                         if (nr_to_write != LONG_MAX && i != 0 &&
431                                         folio->index != prev +
432                                         folio_nr_pages(fbatch.folios[i-1])) {
433                                 folio_batch_release(&fbatch);
434                                 goto stop;
435                         }
436
437                         folio_lock(folio);
438
439                         if (unlikely(folio->mapping != mapping)) {
440 continue_unlock:
441                                 folio_unlock(folio);
442                                 continue;
443                         }
444                         if (!folio_test_dirty(folio)) {
445                                 /* someone wrote it for us */
446                                 goto continue_unlock;
447                         }
448
449                         f2fs_wait_on_page_writeback(&folio->page, META,
450                                         true, true);
451
452                         if (!folio_clear_dirty_for_io(folio))
453                                 goto continue_unlock;
454
455                         if (__f2fs_write_meta_page(&folio->page, &wbc,
456                                                 io_type)) {
457                                 folio_unlock(folio);
458                                 break;
459                         }
460                         nwritten += folio_nr_pages(folio);
461                         prev = folio->index;
462                         if (unlikely(nwritten >= nr_to_write))
463                                 break;
464                 }
465                 folio_batch_release(&fbatch);
466                 cond_resched();
467         }
468 stop:
469         if (nwritten)
470                 f2fs_submit_merged_write(sbi, type);
471
472         blk_finish_plug(&plug);
473
474         return nwritten;
475 }
476
477 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
478                 struct folio *folio)
479 {
480         trace_f2fs_set_page_dirty(&folio->page, META);
481
482         if (!folio_test_uptodate(folio))
483                 folio_mark_uptodate(folio);
484         if (filemap_dirty_folio(mapping, folio)) {
485                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
486                 set_page_private_reference(&folio->page);
487                 return true;
488         }
489         return false;
490 }
491
492 const struct address_space_operations f2fs_meta_aops = {
493         .writepage      = f2fs_write_meta_page,
494         .writepages     = f2fs_write_meta_pages,
495         .dirty_folio    = f2fs_dirty_meta_folio,
496         .invalidate_folio = f2fs_invalidate_folio,
497         .release_folio  = f2fs_release_folio,
498         .migrate_folio  = filemap_migrate_folio,
499 };
500
501 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
502                                                 unsigned int devidx, int type)
503 {
504         struct inode_management *im = &sbi->im[type];
505         struct ino_entry *e = NULL, *new = NULL;
506
507         if (type == FLUSH_INO) {
508                 rcu_read_lock();
509                 e = radix_tree_lookup(&im->ino_root, ino);
510                 rcu_read_unlock();
511         }
512
513 retry:
514         if (!e)
515                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
516                                                 GFP_NOFS, true, NULL);
517
518         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
519
520         spin_lock(&im->ino_lock);
521         e = radix_tree_lookup(&im->ino_root, ino);
522         if (!e) {
523                 if (!new) {
524                         spin_unlock(&im->ino_lock);
525                         radix_tree_preload_end();
526                         goto retry;
527                 }
528                 e = new;
529                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
530                         f2fs_bug_on(sbi, 1);
531
532                 memset(e, 0, sizeof(struct ino_entry));
533                 e->ino = ino;
534
535                 list_add_tail(&e->list, &im->ino_list);
536                 if (type != ORPHAN_INO)
537                         im->ino_num++;
538         }
539
540         if (type == FLUSH_INO)
541                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
542
543         spin_unlock(&im->ino_lock);
544         radix_tree_preload_end();
545
546         if (new && e != new)
547                 kmem_cache_free(ino_entry_slab, new);
548 }
549
550 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
551 {
552         struct inode_management *im = &sbi->im[type];
553         struct ino_entry *e;
554
555         spin_lock(&im->ino_lock);
556         e = radix_tree_lookup(&im->ino_root, ino);
557         if (e) {
558                 list_del(&e->list);
559                 radix_tree_delete(&im->ino_root, ino);
560                 im->ino_num--;
561                 spin_unlock(&im->ino_lock);
562                 kmem_cache_free(ino_entry_slab, e);
563                 return;
564         }
565         spin_unlock(&im->ino_lock);
566 }
567
568 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
569 {
570         /* add new dirty ino entry into list */
571         __add_ino_entry(sbi, ino, 0, type);
572 }
573
574 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
575 {
576         /* remove dirty ino entry from list */
577         __remove_ino_entry(sbi, ino, type);
578 }
579
580 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
581 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
582 {
583         struct inode_management *im = &sbi->im[mode];
584         struct ino_entry *e;
585
586         spin_lock(&im->ino_lock);
587         e = radix_tree_lookup(&im->ino_root, ino);
588         spin_unlock(&im->ino_lock);
589         return e ? true : false;
590 }
591
592 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
593 {
594         struct ino_entry *e, *tmp;
595         int i;
596
597         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
598                 struct inode_management *im = &sbi->im[i];
599
600                 spin_lock(&im->ino_lock);
601                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
602                         list_del(&e->list);
603                         radix_tree_delete(&im->ino_root, e->ino);
604                         kmem_cache_free(ino_entry_slab, e);
605                         im->ino_num--;
606                 }
607                 spin_unlock(&im->ino_lock);
608         }
609 }
610
611 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
612                                         unsigned int devidx, int type)
613 {
614         __add_ino_entry(sbi, ino, devidx, type);
615 }
616
617 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
618                                         unsigned int devidx, int type)
619 {
620         struct inode_management *im = &sbi->im[type];
621         struct ino_entry *e;
622         bool is_dirty = false;
623
624         spin_lock(&im->ino_lock);
625         e = radix_tree_lookup(&im->ino_root, ino);
626         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
627                 is_dirty = true;
628         spin_unlock(&im->ino_lock);
629         return is_dirty;
630 }
631
632 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
633 {
634         struct inode_management *im = &sbi->im[ORPHAN_INO];
635         int err = 0;
636
637         spin_lock(&im->ino_lock);
638
639         if (time_to_inject(sbi, FAULT_ORPHAN)) {
640                 spin_unlock(&im->ino_lock);
641                 return -ENOSPC;
642         }
643
644         if (unlikely(im->ino_num >= sbi->max_orphans))
645                 err = -ENOSPC;
646         else
647                 im->ino_num++;
648         spin_unlock(&im->ino_lock);
649
650         return err;
651 }
652
653 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
654 {
655         struct inode_management *im = &sbi->im[ORPHAN_INO];
656
657         spin_lock(&im->ino_lock);
658         f2fs_bug_on(sbi, im->ino_num == 0);
659         im->ino_num--;
660         spin_unlock(&im->ino_lock);
661 }
662
663 void f2fs_add_orphan_inode(struct inode *inode)
664 {
665         /* add new orphan ino entry into list */
666         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
667         f2fs_update_inode_page(inode);
668 }
669
670 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
671 {
672         /* remove orphan entry from orphan list */
673         __remove_ino_entry(sbi, ino, ORPHAN_INO);
674 }
675
676 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
677 {
678         struct inode *inode;
679         struct node_info ni;
680         int err;
681
682         inode = f2fs_iget_retry(sbi->sb, ino);
683         if (IS_ERR(inode)) {
684                 /*
685                  * there should be a bug that we can't find the entry
686                  * to orphan inode.
687                  */
688                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
689                 return PTR_ERR(inode);
690         }
691
692         err = f2fs_dquot_initialize(inode);
693         if (err) {
694                 iput(inode);
695                 goto err_out;
696         }
697
698         clear_nlink(inode);
699
700         /* truncate all the data during iput */
701         iput(inode);
702
703         err = f2fs_get_node_info(sbi, ino, &ni, false);
704         if (err)
705                 goto err_out;
706
707         /* ENOMEM was fully retried in f2fs_evict_inode. */
708         if (ni.blk_addr != NULL_ADDR) {
709                 err = -EIO;
710                 goto err_out;
711         }
712         return 0;
713
714 err_out:
715         set_sbi_flag(sbi, SBI_NEED_FSCK);
716         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
717                   __func__, ino);
718         return err;
719 }
720
721 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
722 {
723         block_t start_blk, orphan_blocks, i, j;
724         int err = 0;
725
726         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
727                 return 0;
728
729         if (f2fs_hw_is_readonly(sbi)) {
730                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
731                 return 0;
732         }
733
734         if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
735                 f2fs_info(sbi, "orphan cleanup on readonly fs");
736
737         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
738         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
739
740         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
741
742         for (i = 0; i < orphan_blocks; i++) {
743                 struct page *page;
744                 struct f2fs_orphan_block *orphan_blk;
745
746                 page = f2fs_get_meta_page(sbi, start_blk + i);
747                 if (IS_ERR(page)) {
748                         err = PTR_ERR(page);
749                         goto out;
750                 }
751
752                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
753                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
754                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
755
756                         err = recover_orphan_inode(sbi, ino);
757                         if (err) {
758                                 f2fs_put_page(page, 1);
759                                 goto out;
760                         }
761                 }
762                 f2fs_put_page(page, 1);
763         }
764         /* clear Orphan Flag */
765         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
766 out:
767         set_sbi_flag(sbi, SBI_IS_RECOVERED);
768
769         return err;
770 }
771
772 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
773 {
774         struct list_head *head;
775         struct f2fs_orphan_block *orphan_blk = NULL;
776         unsigned int nentries = 0;
777         unsigned short index = 1;
778         unsigned short orphan_blocks;
779         struct page *page = NULL;
780         struct ino_entry *orphan = NULL;
781         struct inode_management *im = &sbi->im[ORPHAN_INO];
782
783         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
784
785         /*
786          * we don't need to do spin_lock(&im->ino_lock) here, since all the
787          * orphan inode operations are covered under f2fs_lock_op().
788          * And, spin_lock should be avoided due to page operations below.
789          */
790         head = &im->ino_list;
791
792         /* loop for each orphan inode entry and write them in journal block */
793         list_for_each_entry(orphan, head, list) {
794                 if (!page) {
795                         page = f2fs_grab_meta_page(sbi, start_blk++);
796                         orphan_blk =
797                                 (struct f2fs_orphan_block *)page_address(page);
798                         memset(orphan_blk, 0, sizeof(*orphan_blk));
799                 }
800
801                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
802
803                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
804                         /*
805                          * an orphan block is full of 1020 entries,
806                          * then we need to flush current orphan blocks
807                          * and bring another one in memory
808                          */
809                         orphan_blk->blk_addr = cpu_to_le16(index);
810                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
811                         orphan_blk->entry_count = cpu_to_le32(nentries);
812                         set_page_dirty(page);
813                         f2fs_put_page(page, 1);
814                         index++;
815                         nentries = 0;
816                         page = NULL;
817                 }
818         }
819
820         if (page) {
821                 orphan_blk->blk_addr = cpu_to_le16(index);
822                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
823                 orphan_blk->entry_count = cpu_to_le32(nentries);
824                 set_page_dirty(page);
825                 f2fs_put_page(page, 1);
826         }
827 }
828
829 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
830                                                 struct f2fs_checkpoint *ckpt)
831 {
832         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
833         __u32 chksum;
834
835         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
836         if (chksum_ofs < CP_CHKSUM_OFFSET) {
837                 chksum_ofs += sizeof(chksum);
838                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
839                                                 F2FS_BLKSIZE - chksum_ofs);
840         }
841         return chksum;
842 }
843
844 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
845                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
846                 unsigned long long *version)
847 {
848         size_t crc_offset = 0;
849         __u32 crc;
850
851         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
852         if (IS_ERR(*cp_page))
853                 return PTR_ERR(*cp_page);
854
855         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
856
857         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
858         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
859                         crc_offset > CP_CHKSUM_OFFSET) {
860                 f2fs_put_page(*cp_page, 1);
861                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
862                 return -EINVAL;
863         }
864
865         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
866         if (crc != cur_cp_crc(*cp_block)) {
867                 f2fs_put_page(*cp_page, 1);
868                 f2fs_warn(sbi, "invalid crc value");
869                 return -EINVAL;
870         }
871
872         *version = cur_cp_version(*cp_block);
873         return 0;
874 }
875
876 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
877                                 block_t cp_addr, unsigned long long *version)
878 {
879         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
880         struct f2fs_checkpoint *cp_block = NULL;
881         unsigned long long cur_version = 0, pre_version = 0;
882         unsigned int cp_blocks;
883         int err;
884
885         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
886                                         &cp_page_1, version);
887         if (err)
888                 return NULL;
889
890         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
891
892         if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
893                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
894                           le32_to_cpu(cp_block->cp_pack_total_block_count));
895                 goto invalid_cp;
896         }
897         pre_version = *version;
898
899         cp_addr += cp_blocks - 1;
900         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
901                                         &cp_page_2, version);
902         if (err)
903                 goto invalid_cp;
904         cur_version = *version;
905
906         if (cur_version == pre_version) {
907                 *version = cur_version;
908                 f2fs_put_page(cp_page_2, 1);
909                 return cp_page_1;
910         }
911         f2fs_put_page(cp_page_2, 1);
912 invalid_cp:
913         f2fs_put_page(cp_page_1, 1);
914         return NULL;
915 }
916
917 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
918 {
919         struct f2fs_checkpoint *cp_block;
920         struct f2fs_super_block *fsb = sbi->raw_super;
921         struct page *cp1, *cp2, *cur_page;
922         unsigned long blk_size = sbi->blocksize;
923         unsigned long long cp1_version = 0, cp2_version = 0;
924         unsigned long long cp_start_blk_no;
925         unsigned int cp_blks = 1 + __cp_payload(sbi);
926         block_t cp_blk_no;
927         int i;
928         int err;
929
930         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
931                                   GFP_KERNEL);
932         if (!sbi->ckpt)
933                 return -ENOMEM;
934         /*
935          * Finding out valid cp block involves read both
936          * sets( cp pack 1 and cp pack 2)
937          */
938         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
939         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
940
941         /* The second checkpoint pack should start at the next segment */
942         cp_start_blk_no += ((unsigned long long)1) <<
943                                 le32_to_cpu(fsb->log_blocks_per_seg);
944         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
945
946         if (cp1 && cp2) {
947                 if (ver_after(cp2_version, cp1_version))
948                         cur_page = cp2;
949                 else
950                         cur_page = cp1;
951         } else if (cp1) {
952                 cur_page = cp1;
953         } else if (cp2) {
954                 cur_page = cp2;
955         } else {
956                 err = -EFSCORRUPTED;
957                 goto fail_no_cp;
958         }
959
960         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
961         memcpy(sbi->ckpt, cp_block, blk_size);
962
963         if (cur_page == cp1)
964                 sbi->cur_cp_pack = 1;
965         else
966                 sbi->cur_cp_pack = 2;
967
968         /* Sanity checking of checkpoint */
969         if (f2fs_sanity_check_ckpt(sbi)) {
970                 err = -EFSCORRUPTED;
971                 goto free_fail_no_cp;
972         }
973
974         if (cp_blks <= 1)
975                 goto done;
976
977         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
978         if (cur_page == cp2)
979                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
980
981         for (i = 1; i < cp_blks; i++) {
982                 void *sit_bitmap_ptr;
983                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
984
985                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
986                 if (IS_ERR(cur_page)) {
987                         err = PTR_ERR(cur_page);
988                         goto free_fail_no_cp;
989                 }
990                 sit_bitmap_ptr = page_address(cur_page);
991                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
992                 f2fs_put_page(cur_page, 1);
993         }
994 done:
995         f2fs_put_page(cp1, 1);
996         f2fs_put_page(cp2, 1);
997         return 0;
998
999 free_fail_no_cp:
1000         f2fs_put_page(cp1, 1);
1001         f2fs_put_page(cp2, 1);
1002 fail_no_cp:
1003         kvfree(sbi->ckpt);
1004         return err;
1005 }
1006
1007 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1008 {
1009         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1010         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1011
1012         if (is_inode_flag_set(inode, flag))
1013                 return;
1014
1015         set_inode_flag(inode, flag);
1016         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1017         stat_inc_dirty_inode(sbi, type);
1018 }
1019
1020 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1021 {
1022         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1023
1024         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1025                 return;
1026
1027         list_del_init(&F2FS_I(inode)->dirty_list);
1028         clear_inode_flag(inode, flag);
1029         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1030 }
1031
1032 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1033 {
1034         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1035         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1036
1037         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1038                         !S_ISLNK(inode->i_mode))
1039                 return;
1040
1041         spin_lock(&sbi->inode_lock[type]);
1042         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1043                 __add_dirty_inode(inode, type);
1044         inode_inc_dirty_pages(inode);
1045         spin_unlock(&sbi->inode_lock[type]);
1046
1047         set_page_private_reference(&folio->page);
1048 }
1049
1050 void f2fs_remove_dirty_inode(struct inode *inode)
1051 {
1052         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1054
1055         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1056                         !S_ISLNK(inode->i_mode))
1057                 return;
1058
1059         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1060                 return;
1061
1062         spin_lock(&sbi->inode_lock[type]);
1063         __remove_dirty_inode(inode, type);
1064         spin_unlock(&sbi->inode_lock[type]);
1065 }
1066
1067 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1068                                                 bool from_cp)
1069 {
1070         struct list_head *head;
1071         struct inode *inode;
1072         struct f2fs_inode_info *fi;
1073         bool is_dir = (type == DIR_INODE);
1074         unsigned long ino = 0;
1075
1076         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1077                                 get_pages(sbi, is_dir ?
1078                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1079 retry:
1080         if (unlikely(f2fs_cp_error(sbi))) {
1081                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1082                                 get_pages(sbi, is_dir ?
1083                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1084                 return -EIO;
1085         }
1086
1087         spin_lock(&sbi->inode_lock[type]);
1088
1089         head = &sbi->inode_list[type];
1090         if (list_empty(head)) {
1091                 spin_unlock(&sbi->inode_lock[type]);
1092                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1093                                 get_pages(sbi, is_dir ?
1094                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1095                 return 0;
1096         }
1097         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1098         inode = igrab(&fi->vfs_inode);
1099         spin_unlock(&sbi->inode_lock[type]);
1100         if (inode) {
1101                 unsigned long cur_ino = inode->i_ino;
1102
1103                 if (from_cp)
1104                         F2FS_I(inode)->cp_task = current;
1105                 F2FS_I(inode)->wb_task = current;
1106
1107                 filemap_fdatawrite(inode->i_mapping);
1108
1109                 F2FS_I(inode)->wb_task = NULL;
1110                 if (from_cp)
1111                         F2FS_I(inode)->cp_task = NULL;
1112
1113                 iput(inode);
1114                 /* We need to give cpu to another writers. */
1115                 if (ino == cur_ino)
1116                         cond_resched();
1117                 else
1118                         ino = cur_ino;
1119         } else {
1120                 /*
1121                  * We should submit bio, since it exists several
1122                  * writebacking dentry pages in the freeing inode.
1123                  */
1124                 f2fs_submit_merged_write(sbi, DATA);
1125                 cond_resched();
1126         }
1127         goto retry;
1128 }
1129
1130 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1131 {
1132         struct list_head *head = &sbi->inode_list[DIRTY_META];
1133         struct inode *inode;
1134         struct f2fs_inode_info *fi;
1135         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1136
1137         while (total--) {
1138                 if (unlikely(f2fs_cp_error(sbi)))
1139                         return -EIO;
1140
1141                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1142                 if (list_empty(head)) {
1143                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1144                         return 0;
1145                 }
1146                 fi = list_first_entry(head, struct f2fs_inode_info,
1147                                                         gdirty_list);
1148                 inode = igrab(&fi->vfs_inode);
1149                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1150                 if (inode) {
1151                         sync_inode_metadata(inode, 0);
1152
1153                         /* it's on eviction */
1154                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1155                                 f2fs_update_inode_page(inode);
1156                         iput(inode);
1157                 }
1158         }
1159         return 0;
1160 }
1161
1162 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1163 {
1164         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1165         struct f2fs_nm_info *nm_i = NM_I(sbi);
1166         nid_t last_nid = nm_i->next_scan_nid;
1167
1168         next_free_nid(sbi, &last_nid);
1169         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1170         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1171         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1172         ckpt->next_free_nid = cpu_to_le32(last_nid);
1173 }
1174
1175 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1176 {
1177         bool ret = false;
1178
1179         if (!is_journalled_quota(sbi))
1180                 return false;
1181
1182         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1183                 return true;
1184         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1185                 ret = false;
1186         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1187                 ret = false;
1188         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1189                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1190                 ret = true;
1191         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1192                 ret = true;
1193         }
1194         f2fs_up_write(&sbi->quota_sem);
1195         return ret;
1196 }
1197
1198 /*
1199  * Freeze all the FS-operations for checkpoint.
1200  */
1201 static int block_operations(struct f2fs_sb_info *sbi)
1202 {
1203         struct writeback_control wbc = {
1204                 .sync_mode = WB_SYNC_ALL,
1205                 .nr_to_write = LONG_MAX,
1206                 .for_reclaim = 0,
1207         };
1208         int err = 0, cnt = 0;
1209
1210         /*
1211          * Let's flush inline_data in dirty node pages.
1212          */
1213         f2fs_flush_inline_data(sbi);
1214
1215 retry_flush_quotas:
1216         f2fs_lock_all(sbi);
1217         if (__need_flush_quota(sbi)) {
1218                 int locked;
1219
1220                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1221                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1222                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1223                         goto retry_flush_dents;
1224                 }
1225                 f2fs_unlock_all(sbi);
1226
1227                 /* only failed during mount/umount/freeze/quotactl */
1228                 locked = down_read_trylock(&sbi->sb->s_umount);
1229                 f2fs_quota_sync(sbi->sb, -1);
1230                 if (locked)
1231                         up_read(&sbi->sb->s_umount);
1232                 cond_resched();
1233                 goto retry_flush_quotas;
1234         }
1235
1236 retry_flush_dents:
1237         /* write all the dirty dentry pages */
1238         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1239                 f2fs_unlock_all(sbi);
1240                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1241                 if (err)
1242                         return err;
1243                 cond_resched();
1244                 goto retry_flush_quotas;
1245         }
1246
1247         /*
1248          * POR: we should ensure that there are no dirty node pages
1249          * until finishing nat/sit flush. inode->i_blocks can be updated.
1250          */
1251         f2fs_down_write(&sbi->node_change);
1252
1253         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1254                 f2fs_up_write(&sbi->node_change);
1255                 f2fs_unlock_all(sbi);
1256                 err = f2fs_sync_inode_meta(sbi);
1257                 if (err)
1258                         return err;
1259                 cond_resched();
1260                 goto retry_flush_quotas;
1261         }
1262
1263 retry_flush_nodes:
1264         f2fs_down_write(&sbi->node_write);
1265
1266         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1267                 f2fs_up_write(&sbi->node_write);
1268                 atomic_inc(&sbi->wb_sync_req[NODE]);
1269                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1270                 atomic_dec(&sbi->wb_sync_req[NODE]);
1271                 if (err) {
1272                         f2fs_up_write(&sbi->node_change);
1273                         f2fs_unlock_all(sbi);
1274                         return err;
1275                 }
1276                 cond_resched();
1277                 goto retry_flush_nodes;
1278         }
1279
1280         /*
1281          * sbi->node_change is used only for AIO write_begin path which produces
1282          * dirty node blocks and some checkpoint values by block allocation.
1283          */
1284         __prepare_cp_block(sbi);
1285         f2fs_up_write(&sbi->node_change);
1286         return err;
1287 }
1288
1289 static void unblock_operations(struct f2fs_sb_info *sbi)
1290 {
1291         f2fs_up_write(&sbi->node_write);
1292         f2fs_unlock_all(sbi);
1293 }
1294
1295 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1296 {
1297         DEFINE_WAIT(wait);
1298
1299         for (;;) {
1300                 if (!get_pages(sbi, type))
1301                         break;
1302
1303                 if (unlikely(f2fs_cp_error(sbi) &&
1304                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1305                         break;
1306
1307                 if (type == F2FS_DIRTY_META)
1308                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1309                                                         FS_CP_META_IO);
1310                 else if (type == F2FS_WB_CP_DATA)
1311                         f2fs_submit_merged_write(sbi, DATA);
1312
1313                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1314                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1315         }
1316         finish_wait(&sbi->cp_wait, &wait);
1317 }
1318
1319 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1320 {
1321         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1322         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323         unsigned long flags;
1324
1325         if (cpc->reason & CP_UMOUNT) {
1326                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1327                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1328                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1329                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1330                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1331                                                 f2fs_nat_bitmap_enabled(sbi)) {
1332                         f2fs_enable_nat_bits(sbi);
1333                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1334                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1335                 }
1336         }
1337
1338         spin_lock_irqsave(&sbi->cp_lock, flags);
1339
1340         if (cpc->reason & CP_TRIMMED)
1341                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1342         else
1343                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1344
1345         if (cpc->reason & CP_UMOUNT)
1346                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1347         else
1348                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1349
1350         if (cpc->reason & CP_FASTBOOT)
1351                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1352         else
1353                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1354
1355         if (orphan_num)
1356                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1357         else
1358                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1359
1360         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1361                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1362
1363         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1364                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1365         else
1366                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1367
1368         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1369                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1370         else
1371                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1372
1373         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1374                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1375         else
1376                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1377
1378         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1379                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1380         else
1381                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1382
1383         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1384                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1385
1386         /* set this flag to activate crc|cp_ver for recovery */
1387         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1388         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1389
1390         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1391 }
1392
1393 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1394         void *src, block_t blk_addr)
1395 {
1396         struct writeback_control wbc = {
1397                 .for_reclaim = 0,
1398         };
1399
1400         /*
1401          * filemap_get_folios_tag and lock_page again will take
1402          * some extra time. Therefore, f2fs_update_meta_pages and
1403          * f2fs_sync_meta_pages are combined in this function.
1404          */
1405         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1406         int err;
1407
1408         f2fs_wait_on_page_writeback(page, META, true, true);
1409
1410         memcpy(page_address(page), src, PAGE_SIZE);
1411
1412         set_page_dirty(page);
1413         if (unlikely(!clear_page_dirty_for_io(page)))
1414                 f2fs_bug_on(sbi, 1);
1415
1416         /* writeout cp pack 2 page */
1417         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1418         if (unlikely(err && f2fs_cp_error(sbi))) {
1419                 f2fs_put_page(page, 1);
1420                 return;
1421         }
1422
1423         f2fs_bug_on(sbi, err);
1424         f2fs_put_page(page, 0);
1425
1426         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1427         f2fs_submit_merged_write(sbi, META_FLUSH);
1428 }
1429
1430 static inline u64 get_sectors_written(struct block_device *bdev)
1431 {
1432         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1433 }
1434
1435 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1436 {
1437         if (f2fs_is_multi_device(sbi)) {
1438                 u64 sectors = 0;
1439                 int i;
1440
1441                 for (i = 0; i < sbi->s_ndevs; i++)
1442                         sectors += get_sectors_written(FDEV(i).bdev);
1443
1444                 return sectors;
1445         }
1446
1447         return get_sectors_written(sbi->sb->s_bdev);
1448 }
1449
1450 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1451 {
1452         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1453         struct f2fs_nm_info *nm_i = NM_I(sbi);
1454         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1455         block_t start_blk;
1456         unsigned int data_sum_blocks, orphan_blocks;
1457         __u32 crc32 = 0;
1458         int i;
1459         int cp_payload_blks = __cp_payload(sbi);
1460         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1461         u64 kbytes_written;
1462         int err;
1463
1464         /* Flush all the NAT/SIT pages */
1465         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1466
1467         /* start to update checkpoint, cp ver is already updated previously */
1468         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1469         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1470         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1471                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1472
1473                 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1474                 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1475                 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1476         }
1477         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1478                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1479
1480                 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1481                 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1482                 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1483         }
1484
1485         /* 2 cp + n data seg summary + orphan inode blocks */
1486         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1487         spin_lock_irqsave(&sbi->cp_lock, flags);
1488         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1489                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1490         else
1491                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1492         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1493
1494         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1495         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1496                         orphan_blocks);
1497
1498         if (__remain_node_summaries(cpc->reason))
1499                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1500                                 cp_payload_blks + data_sum_blocks +
1501                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1502         else
1503                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1504                                 cp_payload_blks + data_sum_blocks +
1505                                 orphan_blocks);
1506
1507         /* update ckpt flag for checkpoint */
1508         update_ckpt_flags(sbi, cpc);
1509
1510         /* update SIT/NAT bitmap */
1511         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1512         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1513
1514         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1515         *((__le32 *)((unsigned char *)ckpt +
1516                                 le32_to_cpu(ckpt->checksum_offset)))
1517                                 = cpu_to_le32(crc32);
1518
1519         start_blk = __start_cp_next_addr(sbi);
1520
1521         /* write nat bits */
1522         if ((cpc->reason & CP_UMOUNT) &&
1523                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1524                 __u64 cp_ver = cur_cp_version(ckpt);
1525                 block_t blk;
1526
1527                 cp_ver |= ((__u64)crc32 << 32);
1528                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1529
1530                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1531                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1532                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1533                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1534         }
1535
1536         /* write out checkpoint buffer at block 0 */
1537         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1538
1539         for (i = 1; i < 1 + cp_payload_blks; i++)
1540                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1541                                                         start_blk++);
1542
1543         if (orphan_num) {
1544                 write_orphan_inodes(sbi, start_blk);
1545                 start_blk += orphan_blocks;
1546         }
1547
1548         f2fs_write_data_summaries(sbi, start_blk);
1549         start_blk += data_sum_blocks;
1550
1551         /* Record write statistics in the hot node summary */
1552         kbytes_written = sbi->kbytes_written;
1553         kbytes_written += (f2fs_get_sectors_written(sbi) -
1554                                 sbi->sectors_written_start) >> 1;
1555         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1556
1557         if (__remain_node_summaries(cpc->reason)) {
1558                 f2fs_write_node_summaries(sbi, start_blk);
1559                 start_blk += NR_CURSEG_NODE_TYPE;
1560         }
1561
1562         /* update user_block_counts */
1563         sbi->last_valid_block_count = sbi->total_valid_block_count;
1564         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1565         percpu_counter_set(&sbi->rf_node_block_count, 0);
1566
1567         /* Here, we have one bio having CP pack except cp pack 2 page */
1568         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1569         /* Wait for all dirty meta pages to be submitted for IO */
1570         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1571
1572         /* wait for previous submitted meta pages writeback */
1573         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1574
1575         /* flush all device cache */
1576         err = f2fs_flush_device_cache(sbi);
1577         if (err)
1578                 return err;
1579
1580         /* barrier and flush checkpoint cp pack 2 page if it can */
1581         commit_checkpoint(sbi, ckpt, start_blk);
1582         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1583
1584         /*
1585          * invalidate intermediate page cache borrowed from meta inode which are
1586          * used for migration of encrypted, verity or compressed inode's blocks.
1587          */
1588         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1589                 f2fs_sb_has_compression(sbi))
1590                 invalidate_mapping_pages(META_MAPPING(sbi),
1591                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1592
1593         f2fs_release_ino_entry(sbi, false);
1594
1595         f2fs_reset_fsync_node_info(sbi);
1596
1597         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1598         clear_sbi_flag(sbi, SBI_NEED_CP);
1599         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1600
1601         spin_lock(&sbi->stat_lock);
1602         sbi->unusable_block_count = 0;
1603         spin_unlock(&sbi->stat_lock);
1604
1605         __set_cp_next_pack(sbi);
1606
1607         /*
1608          * redirty superblock if metadata like node page or inode cache is
1609          * updated during writing checkpoint.
1610          */
1611         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1612                         get_pages(sbi, F2FS_DIRTY_IMETA))
1613                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1614
1615         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1616
1617         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1618 }
1619
1620 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621 {
1622         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1623         unsigned long long ckpt_ver;
1624         int err = 0;
1625
1626         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1627                 return -EROFS;
1628
1629         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1630                 if (cpc->reason != CP_PAUSE)
1631                         return 0;
1632                 f2fs_warn(sbi, "Start checkpoint disabled!");
1633         }
1634         if (cpc->reason != CP_RESIZE)
1635                 f2fs_down_write(&sbi->cp_global_sem);
1636
1637         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1638                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1639                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1640                 goto out;
1641         if (unlikely(f2fs_cp_error(sbi))) {
1642                 err = -EIO;
1643                 goto out;
1644         }
1645
1646         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1647
1648         err = block_operations(sbi);
1649         if (err)
1650                 goto out;
1651
1652         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1653
1654         f2fs_flush_merged_writes(sbi);
1655
1656         /* this is the case of multiple fstrims without any changes */
1657         if (cpc->reason & CP_DISCARD) {
1658                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1659                         unblock_operations(sbi);
1660                         goto out;
1661                 }
1662
1663                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1664                                 SIT_I(sbi)->dirty_sentries == 0 &&
1665                                 prefree_segments(sbi) == 0) {
1666                         f2fs_flush_sit_entries(sbi, cpc);
1667                         f2fs_clear_prefree_segments(sbi, cpc);
1668                         unblock_operations(sbi);
1669                         goto out;
1670                 }
1671         }
1672
1673         /*
1674          * update checkpoint pack index
1675          * Increase the version number so that
1676          * SIT entries and seg summaries are written at correct place
1677          */
1678         ckpt_ver = cur_cp_version(ckpt);
1679         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1680
1681         /* write cached NAT/SIT entries to NAT/SIT area */
1682         err = f2fs_flush_nat_entries(sbi, cpc);
1683         if (err) {
1684                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1685                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1686                 goto stop;
1687         }
1688
1689         f2fs_flush_sit_entries(sbi, cpc);
1690
1691         /* save inmem log status */
1692         f2fs_save_inmem_curseg(sbi);
1693
1694         err = do_checkpoint(sbi, cpc);
1695         if (err) {
1696                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1697                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1698                 f2fs_release_discard_addrs(sbi);
1699         } else {
1700                 f2fs_clear_prefree_segments(sbi, cpc);
1701         }
1702
1703         f2fs_restore_inmem_curseg(sbi);
1704         stat_inc_cp_count(sbi);
1705 stop:
1706         unblock_operations(sbi);
1707
1708         if (cpc->reason & CP_RECOVERY)
1709                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1710
1711         /* update CP_TIME to trigger checkpoint periodically */
1712         f2fs_update_time(sbi, CP_TIME);
1713         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1714 out:
1715         if (cpc->reason != CP_RESIZE)
1716                 f2fs_up_write(&sbi->cp_global_sem);
1717         return err;
1718 }
1719
1720 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1721 {
1722         int i;
1723
1724         for (i = 0; i < MAX_INO_ENTRY; i++) {
1725                 struct inode_management *im = &sbi->im[i];
1726
1727                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1728                 spin_lock_init(&im->ino_lock);
1729                 INIT_LIST_HEAD(&im->ino_list);
1730                 im->ino_num = 0;
1731         }
1732
1733         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1734                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1735                                 F2FS_ORPHANS_PER_BLOCK;
1736 }
1737
1738 int __init f2fs_create_checkpoint_caches(void)
1739 {
1740         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1741                         sizeof(struct ino_entry));
1742         if (!ino_entry_slab)
1743                 return -ENOMEM;
1744         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1745                         sizeof(struct inode_entry));
1746         if (!f2fs_inode_entry_slab) {
1747                 kmem_cache_destroy(ino_entry_slab);
1748                 return -ENOMEM;
1749         }
1750         return 0;
1751 }
1752
1753 void f2fs_destroy_checkpoint_caches(void)
1754 {
1755         kmem_cache_destroy(ino_entry_slab);
1756         kmem_cache_destroy(f2fs_inode_entry_slab);
1757 }
1758
1759 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1760 {
1761         struct cp_control cpc = { .reason = CP_SYNC, };
1762         int err;
1763
1764         f2fs_down_write(&sbi->gc_lock);
1765         err = f2fs_write_checkpoint(sbi, &cpc);
1766         f2fs_up_write(&sbi->gc_lock);
1767
1768         return err;
1769 }
1770
1771 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1772 {
1773         struct ckpt_req_control *cprc = &sbi->cprc_info;
1774         struct ckpt_req *req, *next;
1775         struct llist_node *dispatch_list;
1776         u64 sum_diff = 0, diff, count = 0;
1777         int ret;
1778
1779         dispatch_list = llist_del_all(&cprc->issue_list);
1780         if (!dispatch_list)
1781                 return;
1782         dispatch_list = llist_reverse_order(dispatch_list);
1783
1784         ret = __write_checkpoint_sync(sbi);
1785         atomic_inc(&cprc->issued_ckpt);
1786
1787         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1788                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1789                 req->ret = ret;
1790                 complete(&req->wait);
1791
1792                 sum_diff += diff;
1793                 count++;
1794         }
1795         atomic_sub(count, &cprc->queued_ckpt);
1796         atomic_add(count, &cprc->total_ckpt);
1797
1798         spin_lock(&cprc->stat_lock);
1799         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1800         if (cprc->peak_time < cprc->cur_time)
1801                 cprc->peak_time = cprc->cur_time;
1802         spin_unlock(&cprc->stat_lock);
1803 }
1804
1805 static int issue_checkpoint_thread(void *data)
1806 {
1807         struct f2fs_sb_info *sbi = data;
1808         struct ckpt_req_control *cprc = &sbi->cprc_info;
1809         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1810 repeat:
1811         if (kthread_should_stop())
1812                 return 0;
1813
1814         if (!llist_empty(&cprc->issue_list))
1815                 __checkpoint_and_complete_reqs(sbi);
1816
1817         wait_event_interruptible(*q,
1818                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1819         goto repeat;
1820 }
1821
1822 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1823                 struct ckpt_req *wait_req)
1824 {
1825         struct ckpt_req_control *cprc = &sbi->cprc_info;
1826
1827         if (!llist_empty(&cprc->issue_list)) {
1828                 __checkpoint_and_complete_reqs(sbi);
1829         } else {
1830                 /* already dispatched by issue_checkpoint_thread */
1831                 if (wait_req)
1832                         wait_for_completion(&wait_req->wait);
1833         }
1834 }
1835
1836 static void init_ckpt_req(struct ckpt_req *req)
1837 {
1838         memset(req, 0, sizeof(struct ckpt_req));
1839
1840         init_completion(&req->wait);
1841         req->queue_time = ktime_get();
1842 }
1843
1844 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1845 {
1846         struct ckpt_req_control *cprc = &sbi->cprc_info;
1847         struct ckpt_req req;
1848         struct cp_control cpc;
1849
1850         cpc.reason = __get_cp_reason(sbi);
1851         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1852                 int ret;
1853
1854                 f2fs_down_write(&sbi->gc_lock);
1855                 ret = f2fs_write_checkpoint(sbi, &cpc);
1856                 f2fs_up_write(&sbi->gc_lock);
1857
1858                 return ret;
1859         }
1860
1861         if (!cprc->f2fs_issue_ckpt)
1862                 return __write_checkpoint_sync(sbi);
1863
1864         init_ckpt_req(&req);
1865
1866         llist_add(&req.llnode, &cprc->issue_list);
1867         atomic_inc(&cprc->queued_ckpt);
1868
1869         /*
1870          * update issue_list before we wake up issue_checkpoint thread,
1871          * this smp_mb() pairs with another barrier in ___wait_event(),
1872          * see more details in comments of waitqueue_active().
1873          */
1874         smp_mb();
1875
1876         if (waitqueue_active(&cprc->ckpt_wait_queue))
1877                 wake_up(&cprc->ckpt_wait_queue);
1878
1879         if (cprc->f2fs_issue_ckpt)
1880                 wait_for_completion(&req.wait);
1881         else
1882                 flush_remained_ckpt_reqs(sbi, &req);
1883
1884         return req.ret;
1885 }
1886
1887 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1888 {
1889         dev_t dev = sbi->sb->s_bdev->bd_dev;
1890         struct ckpt_req_control *cprc = &sbi->cprc_info;
1891
1892         if (cprc->f2fs_issue_ckpt)
1893                 return 0;
1894
1895         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1896                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1897         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1898                 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1899
1900                 cprc->f2fs_issue_ckpt = NULL;
1901                 return err;
1902         }
1903
1904         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1905
1906         return 0;
1907 }
1908
1909 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1910 {
1911         struct ckpt_req_control *cprc = &sbi->cprc_info;
1912         struct task_struct *ckpt_task;
1913
1914         if (!cprc->f2fs_issue_ckpt)
1915                 return;
1916
1917         ckpt_task = cprc->f2fs_issue_ckpt;
1918         cprc->f2fs_issue_ckpt = NULL;
1919         kthread_stop(ckpt_task);
1920
1921         f2fs_flush_ckpt_thread(sbi);
1922 }
1923
1924 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1925 {
1926         struct ckpt_req_control *cprc = &sbi->cprc_info;
1927
1928         flush_remained_ckpt_reqs(sbi, NULL);
1929
1930         /* Let's wait for the previous dispatched checkpoint. */
1931         while (atomic_read(&cprc->queued_ckpt))
1932                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1933 }
1934
1935 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1936 {
1937         struct ckpt_req_control *cprc = &sbi->cprc_info;
1938
1939         atomic_set(&cprc->issued_ckpt, 0);
1940         atomic_set(&cprc->total_ckpt, 0);
1941         atomic_set(&cprc->queued_ckpt, 0);
1942         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1943         init_waitqueue_head(&cprc->ckpt_wait_queue);
1944         init_llist_head(&cprc->issue_list);
1945         spin_lock_init(&cprc->stat_lock);
1946 }