Merge tag 'firewire-fixes-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40                 return -EFSCORRUPTED;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49         struct sysinfo val;
50         unsigned long avail_ram;
51         unsigned long mem_size = 0;
52         bool res = false;
53
54         if (!nm_i)
55                 return true;
56
57         si_meminfo(&val);
58
59         /* only uses low memory */
60         avail_ram = val.totalram - val.totalhigh;
61
62         /*
63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64          */
65         if (type == FREE_NIDS) {
66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69         } else if (type == NAT_ENTRIES) {
70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73                 if (excess_cached_nats(sbi))
74                         res = false;
75         } else if (type == DIRTY_DENTS) {
76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return false;
78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80         } else if (type == INO_ENTRIES) {
81                 int i;
82
83                 for (i = 0; i < MAX_INO_ENTRY; i++)
84                         mem_size += sbi->im[i].ino_num *
85                                                 sizeof(struct ino_entry);
86                 mem_size >>= PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
90                                                 EX_READ : EX_BLOCK_AGE;
91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93                 mem_size = (atomic_read(&eti->total_ext_tree) *
94                                 sizeof(struct extent_tree) +
95                                 atomic_read(&eti->total_ext_node) *
96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98         } else if (type == DISCARD_CACHE) {
99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page);
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161
162         set_to_next_nat(nm_i, nid);
163
164         return dst_page;
165 }
166
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220
221         return ne;
222 }
223
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348         return seq_id;
349 }
350
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494
495                 nat_set_version(e, inc_node_version(version));
496         }
497
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631
632         blk_start_plug(&plug);
633
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, (int)NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641
642         blk_finish_plug(&plug);
643 }
644
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654
655         if (!dn->max_level)
656                 return pgofs + 1;
657
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692
693         noffset[0] = 0;
694
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856                 unsigned int ofs_in_node = dn->ofs_in_node;
857                 pgoff_t fofs = index;
858                 unsigned int c_len;
859                 block_t blkaddr;
860
861                 /* should align fofs and ofs_in_node to cluster_size */
862                 if (fofs % cluster_size) {
863                         fofs = round_down(fofs, cluster_size);
864                         ofs_in_node = round_down(ofs_in_node, cluster_size);
865                 }
866
867                 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868                 if (!c_len)
869                         goto out;
870
871                 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872                 if (blkaddr == COMPRESS_ADDR)
873                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
874                                                 ofs_in_node + 1);
875
876                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877                                         fofs, blkaddr, cluster_size, c_len);
878         }
879 out:
880         return 0;
881
882 release_pages:
883         f2fs_put_page(parent, 1);
884         if (i > 1)
885                 f2fs_put_page(npage[0], 0);
886 release_out:
887         dn->inode_page = NULL;
888         dn->node_page = NULL;
889         if (err == -ENOENT) {
890                 dn->cur_level = i;
891                 dn->max_level = level;
892                 dn->ofs_in_node = offset[level];
893         }
894         return err;
895 }
896
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900         struct node_info ni;
901         int err;
902         pgoff_t index;
903
904         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905         if (err)
906                 return err;
907
908         /* Deallocate node address */
909         f2fs_invalidate_blocks(sbi, ni.blk_addr);
910         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911         set_node_addr(sbi, &ni, NULL_ADDR, false);
912
913         if (dn->nid == dn->inode->i_ino) {
914                 f2fs_remove_orphan_inode(sbi, dn->nid);
915                 dec_valid_inode_count(sbi);
916                 f2fs_inode_synced(dn->inode);
917         }
918
919         clear_node_page_dirty(dn->node_page);
920         set_sbi_flag(sbi, SBI_IS_DIRTY);
921
922         index = dn->node_page->index;
923         f2fs_put_page(dn->node_page, 1);
924
925         invalidate_mapping_pages(NODE_MAPPING(sbi),
926                         index, index);
927
928         dn->node_page = NULL;
929         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930
931         return 0;
932 }
933
934 static int truncate_dnode(struct dnode_of_data *dn)
935 {
936         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937         struct page *page;
938         int err;
939
940         if (dn->nid == 0)
941                 return 1;
942
943         /* get direct node */
944         page = f2fs_get_node_page(sbi, dn->nid);
945         if (PTR_ERR(page) == -ENOENT)
946                 return 1;
947         else if (IS_ERR(page))
948                 return PTR_ERR(page);
949
950         if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951                 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952                                 dn->inode->i_ino, dn->nid, ino_of_node(page));
953                 set_sbi_flag(sbi, SBI_NEED_FSCK);
954                 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955                 f2fs_put_page(page, 1);
956                 return -EFSCORRUPTED;
957         }
958
959         /* Make dnode_of_data for parameter */
960         dn->node_page = page;
961         dn->ofs_in_node = 0;
962         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963         err = truncate_node(dn);
964         if (err) {
965                 f2fs_put_page(page, 1);
966                 return err;
967         }
968
969         return 1;
970 }
971
972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973                                                 int ofs, int depth)
974 {
975         struct dnode_of_data rdn = *dn;
976         struct page *page;
977         struct f2fs_node *rn;
978         nid_t child_nid;
979         unsigned int child_nofs;
980         int freed = 0;
981         int i, ret;
982
983         if (dn->nid == 0)
984                 return NIDS_PER_BLOCK + 1;
985
986         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987
988         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989         if (IS_ERR(page)) {
990                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991                 return PTR_ERR(page);
992         }
993
994         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995
996         rn = F2FS_NODE(page);
997         if (depth < 3) {
998                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999                         child_nid = le32_to_cpu(rn->in.nid[i]);
1000                         if (child_nid == 0)
1001                                 continue;
1002                         rdn.nid = child_nid;
1003                         ret = truncate_dnode(&rdn);
1004                         if (ret < 0)
1005                                 goto out_err;
1006                         if (set_nid(page, i, 0, false))
1007                                 dn->node_changed = true;
1008                 }
1009         } else {
1010                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012                         child_nid = le32_to_cpu(rn->in.nid[i]);
1013                         if (child_nid == 0) {
1014                                 child_nofs += NIDS_PER_BLOCK + 1;
1015                                 continue;
1016                         }
1017                         rdn.nid = child_nid;
1018                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019                         if (ret == (NIDS_PER_BLOCK + 1)) {
1020                                 if (set_nid(page, i, 0, false))
1021                                         dn->node_changed = true;
1022                                 child_nofs += ret;
1023                         } else if (ret < 0 && ret != -ENOENT) {
1024                                 goto out_err;
1025                         }
1026                 }
1027                 freed = child_nofs;
1028         }
1029
1030         if (!ofs) {
1031                 /* remove current indirect node */
1032                 dn->node_page = page;
1033                 ret = truncate_node(dn);
1034                 if (ret)
1035                         goto out_err;
1036                 freed++;
1037         } else {
1038                 f2fs_put_page(page, 1);
1039         }
1040         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041         return freed;
1042
1043 out_err:
1044         f2fs_put_page(page, 1);
1045         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046         return ret;
1047 }
1048
1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050                         struct f2fs_inode *ri, int *offset, int depth)
1051 {
1052         struct page *pages[2];
1053         nid_t nid[3];
1054         nid_t child_nid;
1055         int err = 0;
1056         int i;
1057         int idx = depth - 2;
1058
1059         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060         if (!nid[0])
1061                 return 0;
1062
1063         /* get indirect nodes in the path */
1064         for (i = 0; i < idx + 1; i++) {
1065                 /* reference count'll be increased */
1066                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067                 if (IS_ERR(pages[i])) {
1068                         err = PTR_ERR(pages[i]);
1069                         idx = i - 1;
1070                         goto fail;
1071                 }
1072                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073         }
1074
1075         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077         /* free direct nodes linked to a partial indirect node */
1078         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079                 child_nid = get_nid(pages[idx], i, false);
1080                 if (!child_nid)
1081                         continue;
1082                 dn->nid = child_nid;
1083                 err = truncate_dnode(dn);
1084                 if (err < 0)
1085                         goto fail;
1086                 if (set_nid(pages[idx], i, 0, false))
1087                         dn->node_changed = true;
1088         }
1089
1090         if (offset[idx + 1] == 0) {
1091                 dn->node_page = pages[idx];
1092                 dn->nid = nid[idx];
1093                 err = truncate_node(dn);
1094                 if (err)
1095                         goto fail;
1096         } else {
1097                 f2fs_put_page(pages[idx], 1);
1098         }
1099         offset[idx]++;
1100         offset[idx + 1] = 0;
1101         idx--;
1102 fail:
1103         for (i = idx; i >= 0; i--)
1104                 f2fs_put_page(pages[i], 1);
1105
1106         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108         return err;
1109 }
1110
1111 /*
1112  * All the block addresses of data and nodes should be nullified.
1113  */
1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115 {
1116         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117         int err = 0, cont = 1;
1118         int level, offset[4], noffset[4];
1119         unsigned int nofs = 0;
1120         struct f2fs_inode *ri;
1121         struct dnode_of_data dn;
1122         struct page *page;
1123
1124         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126         level = get_node_path(inode, from, offset, noffset);
1127         if (level < 0) {
1128                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129                 return level;
1130         }
1131
1132         page = f2fs_get_node_page(sbi, inode->i_ino);
1133         if (IS_ERR(page)) {
1134                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135                 return PTR_ERR(page);
1136         }
1137
1138         set_new_dnode(&dn, inode, page, NULL, 0);
1139         unlock_page(page);
1140
1141         ri = F2FS_INODE(page);
1142         switch (level) {
1143         case 0:
1144         case 1:
1145                 nofs = noffset[1];
1146                 break;
1147         case 2:
1148                 nofs = noffset[1];
1149                 if (!offset[level - 1])
1150                         goto skip_partial;
1151                 err = truncate_partial_nodes(&dn, ri, offset, level);
1152                 if (err < 0 && err != -ENOENT)
1153                         goto fail;
1154                 nofs += 1 + NIDS_PER_BLOCK;
1155                 break;
1156         case 3:
1157                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158                 if (!offset[level - 1])
1159                         goto skip_partial;
1160                 err = truncate_partial_nodes(&dn, ri, offset, level);
1161                 if (err < 0 && err != -ENOENT)
1162                         goto fail;
1163                 break;
1164         default:
1165                 BUG();
1166         }
1167
1168 skip_partial:
1169         while (cont) {
1170                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171                 switch (offset[0]) {
1172                 case NODE_DIR1_BLOCK:
1173                 case NODE_DIR2_BLOCK:
1174                         err = truncate_dnode(&dn);
1175                         break;
1176
1177                 case NODE_IND1_BLOCK:
1178                 case NODE_IND2_BLOCK:
1179                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1180                         break;
1181
1182                 case NODE_DIND_BLOCK:
1183                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1184                         cont = 0;
1185                         break;
1186
1187                 default:
1188                         BUG();
1189                 }
1190                 if (err < 0 && err != -ENOENT)
1191                         goto fail;
1192                 if (offset[1] == 0 &&
1193                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1194                         lock_page(page);
1195                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1196                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1197                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1198                         set_page_dirty(page);
1199                         unlock_page(page);
1200                 }
1201                 offset[1] = 0;
1202                 offset[0]++;
1203                 nofs += err;
1204         }
1205 fail:
1206         f2fs_put_page(page, 0);
1207         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1208         return err > 0 ? 0 : err;
1209 }
1210
1211 /* caller must lock inode page */
1212 int f2fs_truncate_xattr_node(struct inode *inode)
1213 {
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1216         struct dnode_of_data dn;
1217         struct page *npage;
1218         int err;
1219
1220         if (!nid)
1221                 return 0;
1222
1223         npage = f2fs_get_node_page(sbi, nid);
1224         if (IS_ERR(npage))
1225                 return PTR_ERR(npage);
1226
1227         set_new_dnode(&dn, inode, NULL, npage, nid);
1228         err = truncate_node(&dn);
1229         if (err) {
1230                 f2fs_put_page(npage, 1);
1231                 return err;
1232         }
1233
1234         f2fs_i_xnid_write(inode, 0);
1235
1236         return 0;
1237 }
1238
1239 /*
1240  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1241  * f2fs_unlock_op().
1242  */
1243 int f2fs_remove_inode_page(struct inode *inode)
1244 {
1245         struct dnode_of_data dn;
1246         int err;
1247
1248         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1249         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1250         if (err)
1251                 return err;
1252
1253         err = f2fs_truncate_xattr_node(inode);
1254         if (err) {
1255                 f2fs_put_dnode(&dn);
1256                 return err;
1257         }
1258
1259         /* remove potential inline_data blocks */
1260         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1261                                 S_ISLNK(inode->i_mode))
1262                 f2fs_truncate_data_blocks_range(&dn, 1);
1263
1264         /* 0 is possible, after f2fs_new_inode() has failed */
1265         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1266                 f2fs_put_dnode(&dn);
1267                 return -EIO;
1268         }
1269
1270         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1271                 f2fs_warn(F2FS_I_SB(inode),
1272                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1273                         inode->i_ino, (unsigned long long)inode->i_blocks);
1274                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1275         }
1276
1277         /* will put inode & node pages */
1278         err = truncate_node(&dn);
1279         if (err) {
1280                 f2fs_put_dnode(&dn);
1281                 return err;
1282         }
1283         return 0;
1284 }
1285
1286 struct page *f2fs_new_inode_page(struct inode *inode)
1287 {
1288         struct dnode_of_data dn;
1289
1290         /* allocate inode page for new inode */
1291         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1292
1293         /* caller should f2fs_put_page(page, 1); */
1294         return f2fs_new_node_page(&dn, 0);
1295 }
1296
1297 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1298 {
1299         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300         struct node_info new_ni;
1301         struct page *page;
1302         int err;
1303
1304         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1305                 return ERR_PTR(-EPERM);
1306
1307         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1308         if (!page)
1309                 return ERR_PTR(-ENOMEM);
1310
1311         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1312                 goto fail;
1313
1314 #ifdef CONFIG_F2FS_CHECK_FS
1315         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1316         if (err) {
1317                 dec_valid_node_count(sbi, dn->inode, !ofs);
1318                 goto fail;
1319         }
1320         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1321                 err = -EFSCORRUPTED;
1322                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1323                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1324                 goto fail;
1325         }
1326 #endif
1327         new_ni.nid = dn->nid;
1328         new_ni.ino = dn->inode->i_ino;
1329         new_ni.blk_addr = NULL_ADDR;
1330         new_ni.flag = 0;
1331         new_ni.version = 0;
1332         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1333
1334         f2fs_wait_on_page_writeback(page, NODE, true, true);
1335         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1336         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1337         if (!PageUptodate(page))
1338                 SetPageUptodate(page);
1339         if (set_page_dirty(page))
1340                 dn->node_changed = true;
1341
1342         if (f2fs_has_xattr_block(ofs))
1343                 f2fs_i_xnid_write(dn->inode, dn->nid);
1344
1345         if (ofs == 0)
1346                 inc_valid_inode_count(sbi);
1347         return page;
1348
1349 fail:
1350         clear_node_page_dirty(page);
1351         f2fs_put_page(page, 1);
1352         return ERR_PTR(err);
1353 }
1354
1355 /*
1356  * Caller should do after getting the following values.
1357  * 0: f2fs_put_page(page, 0)
1358  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1359  */
1360 static int read_node_page(struct page *page, blk_opf_t op_flags)
1361 {
1362         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1363         struct node_info ni;
1364         struct f2fs_io_info fio = {
1365                 .sbi = sbi,
1366                 .type = NODE,
1367                 .op = REQ_OP_READ,
1368                 .op_flags = op_flags,
1369                 .page = page,
1370                 .encrypted_page = NULL,
1371         };
1372         int err;
1373
1374         if (PageUptodate(page)) {
1375                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1376                         ClearPageUptodate(page);
1377                         return -EFSBADCRC;
1378                 }
1379                 return LOCKED_PAGE;
1380         }
1381
1382         err = f2fs_get_node_info(sbi, page->index, &ni, false);
1383         if (err)
1384                 return err;
1385
1386         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1387         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1388                 ClearPageUptodate(page);
1389                 return -ENOENT;
1390         }
1391
1392         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1393
1394         err = f2fs_submit_page_bio(&fio);
1395
1396         if (!err)
1397                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1398
1399         return err;
1400 }
1401
1402 /*
1403  * Readahead a node page
1404  */
1405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1406 {
1407         struct page *apage;
1408         int err;
1409
1410         if (!nid)
1411                 return;
1412         if (f2fs_check_nid_range(sbi, nid))
1413                 return;
1414
1415         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1416         if (apage)
1417                 return;
1418
1419         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1420         if (!apage)
1421                 return;
1422
1423         err = read_node_page(apage, REQ_RAHEAD);
1424         f2fs_put_page(apage, err ? 1 : 0);
1425 }
1426
1427 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1428                                         struct page *parent, int start)
1429 {
1430         struct page *page;
1431         int err;
1432
1433         if (!nid)
1434                 return ERR_PTR(-ENOENT);
1435         if (f2fs_check_nid_range(sbi, nid))
1436                 return ERR_PTR(-EINVAL);
1437 repeat:
1438         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1439         if (!page)
1440                 return ERR_PTR(-ENOMEM);
1441
1442         err = read_node_page(page, 0);
1443         if (err < 0) {
1444                 goto out_put_err;
1445         } else if (err == LOCKED_PAGE) {
1446                 err = 0;
1447                 goto page_hit;
1448         }
1449
1450         if (parent)
1451                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1452
1453         lock_page(page);
1454
1455         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1456                 f2fs_put_page(page, 1);
1457                 goto repeat;
1458         }
1459
1460         if (unlikely(!PageUptodate(page))) {
1461                 err = -EIO;
1462                 goto out_err;
1463         }
1464
1465         if (!f2fs_inode_chksum_verify(sbi, page)) {
1466                 err = -EFSBADCRC;
1467                 goto out_err;
1468         }
1469 page_hit:
1470         if (likely(nid == nid_of_node(page)))
1471                 return page;
1472
1473         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474                           nid, nid_of_node(page), ino_of_node(page),
1475                           ofs_of_node(page), cpver_of_node(page),
1476                           next_blkaddr_of_node(page));
1477         set_sbi_flag(sbi, SBI_NEED_FSCK);
1478         f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479         err = -EFSCORRUPTED;
1480 out_err:
1481         ClearPageUptodate(page);
1482 out_put_err:
1483         /* ENOENT comes from read_node_page which is not an error. */
1484         if (err != -ENOENT)
1485                 f2fs_handle_page_eio(sbi, page->index, NODE);
1486         f2fs_put_page(page, 1);
1487         return ERR_PTR(err);
1488 }
1489
1490 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1491 {
1492         return __get_node_page(sbi, nid, NULL, 0);
1493 }
1494
1495 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1496 {
1497         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1498         nid_t nid = get_nid(parent, start, false);
1499
1500         return __get_node_page(sbi, nid, parent, start);
1501 }
1502
1503 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1504 {
1505         struct inode *inode;
1506         struct page *page;
1507         int ret;
1508
1509         /* should flush inline_data before evict_inode */
1510         inode = ilookup(sbi->sb, ino);
1511         if (!inode)
1512                 return;
1513
1514         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1515                                         FGP_LOCK|FGP_NOWAIT, 0);
1516         if (!page)
1517                 goto iput_out;
1518
1519         if (!PageUptodate(page))
1520                 goto page_out;
1521
1522         if (!PageDirty(page))
1523                 goto page_out;
1524
1525         if (!clear_page_dirty_for_io(page))
1526                 goto page_out;
1527
1528         ret = f2fs_write_inline_data(inode, page);
1529         inode_dec_dirty_pages(inode);
1530         f2fs_remove_dirty_inode(inode);
1531         if (ret)
1532                 set_page_dirty(page);
1533 page_out:
1534         f2fs_put_page(page, 1);
1535 iput_out:
1536         iput(inode);
1537 }
1538
1539 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1540 {
1541         pgoff_t index;
1542         struct folio_batch fbatch;
1543         struct page *last_page = NULL;
1544         int nr_folios;
1545
1546         folio_batch_init(&fbatch);
1547         index = 0;
1548
1549         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1550                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1551                                         &fbatch))) {
1552                 int i;
1553
1554                 for (i = 0; i < nr_folios; i++) {
1555                         struct page *page = &fbatch.folios[i]->page;
1556
1557                         if (unlikely(f2fs_cp_error(sbi))) {
1558                                 f2fs_put_page(last_page, 0);
1559                                 folio_batch_release(&fbatch);
1560                                 return ERR_PTR(-EIO);
1561                         }
1562
1563                         if (!IS_DNODE(page) || !is_cold_node(page))
1564                                 continue;
1565                         if (ino_of_node(page) != ino)
1566                                 continue;
1567
1568                         lock_page(page);
1569
1570                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1571 continue_unlock:
1572                                 unlock_page(page);
1573                                 continue;
1574                         }
1575                         if (ino_of_node(page) != ino)
1576                                 goto continue_unlock;
1577
1578                         if (!PageDirty(page)) {
1579                                 /* someone wrote it for us */
1580                                 goto continue_unlock;
1581                         }
1582
1583                         if (last_page)
1584                                 f2fs_put_page(last_page, 0);
1585
1586                         get_page(page);
1587                         last_page = page;
1588                         unlock_page(page);
1589                 }
1590                 folio_batch_release(&fbatch);
1591                 cond_resched();
1592         }
1593         return last_page;
1594 }
1595
1596 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1597                                 struct writeback_control *wbc, bool do_balance,
1598                                 enum iostat_type io_type, unsigned int *seq_id)
1599 {
1600         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1601         nid_t nid;
1602         struct node_info ni;
1603         struct f2fs_io_info fio = {
1604                 .sbi = sbi,
1605                 .ino = ino_of_node(page),
1606                 .type = NODE,
1607                 .op = REQ_OP_WRITE,
1608                 .op_flags = wbc_to_write_flags(wbc),
1609                 .page = page,
1610                 .encrypted_page = NULL,
1611                 .submitted = 0,
1612                 .io_type = io_type,
1613                 .io_wbc = wbc,
1614         };
1615         unsigned int seq;
1616
1617         trace_f2fs_writepage(page, NODE);
1618
1619         if (unlikely(f2fs_cp_error(sbi))) {
1620                 /* keep node pages in remount-ro mode */
1621                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1622                         goto redirty_out;
1623                 ClearPageUptodate(page);
1624                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1625                 unlock_page(page);
1626                 return 0;
1627         }
1628
1629         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1630                 goto redirty_out;
1631
1632         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1633                         wbc->sync_mode == WB_SYNC_NONE &&
1634                         IS_DNODE(page) && is_cold_node(page))
1635                 goto redirty_out;
1636
1637         /* get old block addr of this node page */
1638         nid = nid_of_node(page);
1639         f2fs_bug_on(sbi, page->index != nid);
1640
1641         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1642                 goto redirty_out;
1643
1644         if (wbc->for_reclaim) {
1645                 if (!f2fs_down_read_trylock(&sbi->node_write))
1646                         goto redirty_out;
1647         } else {
1648                 f2fs_down_read(&sbi->node_write);
1649         }
1650
1651         /* This page is already truncated */
1652         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1653                 ClearPageUptodate(page);
1654                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1655                 f2fs_up_read(&sbi->node_write);
1656                 unlock_page(page);
1657                 return 0;
1658         }
1659
1660         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1661                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1662                                         DATA_GENERIC_ENHANCE)) {
1663                 f2fs_up_read(&sbi->node_write);
1664                 goto redirty_out;
1665         }
1666
1667         if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1668                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1669
1670         /* should add to global list before clearing PAGECACHE status */
1671         if (f2fs_in_warm_node_list(sbi, page)) {
1672                 seq = f2fs_add_fsync_node_entry(sbi, page);
1673                 if (seq_id)
1674                         *seq_id = seq;
1675         }
1676
1677         set_page_writeback(page);
1678
1679         fio.old_blkaddr = ni.blk_addr;
1680         f2fs_do_write_node_page(nid, &fio);
1681         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1682         dec_page_count(sbi, F2FS_DIRTY_NODES);
1683         f2fs_up_read(&sbi->node_write);
1684
1685         if (wbc->for_reclaim) {
1686                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1687                 submitted = NULL;
1688         }
1689
1690         unlock_page(page);
1691
1692         if (unlikely(f2fs_cp_error(sbi))) {
1693                 f2fs_submit_merged_write(sbi, NODE);
1694                 submitted = NULL;
1695         }
1696         if (submitted)
1697                 *submitted = fio.submitted;
1698
1699         if (do_balance)
1700                 f2fs_balance_fs(sbi, false);
1701         return 0;
1702
1703 redirty_out:
1704         redirty_page_for_writepage(wbc, page);
1705         return AOP_WRITEPAGE_ACTIVATE;
1706 }
1707
1708 int f2fs_move_node_page(struct page *node_page, int gc_type)
1709 {
1710         int err = 0;
1711
1712         if (gc_type == FG_GC) {
1713                 struct writeback_control wbc = {
1714                         .sync_mode = WB_SYNC_ALL,
1715                         .nr_to_write = 1,
1716                         .for_reclaim = 0,
1717                 };
1718
1719                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1720
1721                 set_page_dirty(node_page);
1722
1723                 if (!clear_page_dirty_for_io(node_page)) {
1724                         err = -EAGAIN;
1725                         goto out_page;
1726                 }
1727
1728                 if (__write_node_page(node_page, false, NULL,
1729                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1730                         err = -EAGAIN;
1731                         unlock_page(node_page);
1732                 }
1733                 goto release_page;
1734         } else {
1735                 /* set page dirty and write it */
1736                 if (!PageWriteback(node_page))
1737                         set_page_dirty(node_page);
1738         }
1739 out_page:
1740         unlock_page(node_page);
1741 release_page:
1742         f2fs_put_page(node_page, 0);
1743         return err;
1744 }
1745
1746 static int f2fs_write_node_page(struct page *page,
1747                                 struct writeback_control *wbc)
1748 {
1749         return __write_node_page(page, false, NULL, wbc, false,
1750                                                 FS_NODE_IO, NULL);
1751 }
1752
1753 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1754                         struct writeback_control *wbc, bool atomic,
1755                         unsigned int *seq_id)
1756 {
1757         pgoff_t index;
1758         struct folio_batch fbatch;
1759         int ret = 0;
1760         struct page *last_page = NULL;
1761         bool marked = false;
1762         nid_t ino = inode->i_ino;
1763         int nr_folios;
1764         int nwritten = 0;
1765
1766         if (atomic) {
1767                 last_page = last_fsync_dnode(sbi, ino);
1768                 if (IS_ERR_OR_NULL(last_page))
1769                         return PTR_ERR_OR_ZERO(last_page);
1770         }
1771 retry:
1772         folio_batch_init(&fbatch);
1773         index = 0;
1774
1775         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1776                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1777                                         &fbatch))) {
1778                 int i;
1779
1780                 for (i = 0; i < nr_folios; i++) {
1781                         struct page *page = &fbatch.folios[i]->page;
1782                         bool submitted = false;
1783
1784                         if (unlikely(f2fs_cp_error(sbi))) {
1785                                 f2fs_put_page(last_page, 0);
1786                                 folio_batch_release(&fbatch);
1787                                 ret = -EIO;
1788                                 goto out;
1789                         }
1790
1791                         if (!IS_DNODE(page) || !is_cold_node(page))
1792                                 continue;
1793                         if (ino_of_node(page) != ino)
1794                                 continue;
1795
1796                         lock_page(page);
1797
1798                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1799 continue_unlock:
1800                                 unlock_page(page);
1801                                 continue;
1802                         }
1803                         if (ino_of_node(page) != ino)
1804                                 goto continue_unlock;
1805
1806                         if (!PageDirty(page) && page != last_page) {
1807                                 /* someone wrote it for us */
1808                                 goto continue_unlock;
1809                         }
1810
1811                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1812
1813                         set_fsync_mark(page, 0);
1814                         set_dentry_mark(page, 0);
1815
1816                         if (!atomic || page == last_page) {
1817                                 set_fsync_mark(page, 1);
1818                                 percpu_counter_inc(&sbi->rf_node_block_count);
1819                                 if (IS_INODE(page)) {
1820                                         if (is_inode_flag_set(inode,
1821                                                                 FI_DIRTY_INODE))
1822                                                 f2fs_update_inode(inode, page);
1823                                         set_dentry_mark(page,
1824                                                 f2fs_need_dentry_mark(sbi, ino));
1825                                 }
1826                                 /* may be written by other thread */
1827                                 if (!PageDirty(page))
1828                                         set_page_dirty(page);
1829                         }
1830
1831                         if (!clear_page_dirty_for_io(page))
1832                                 goto continue_unlock;
1833
1834                         ret = __write_node_page(page, atomic &&
1835                                                 page == last_page,
1836                                                 &submitted, wbc, true,
1837                                                 FS_NODE_IO, seq_id);
1838                         if (ret) {
1839                                 unlock_page(page);
1840                                 f2fs_put_page(last_page, 0);
1841                                 break;
1842                         } else if (submitted) {
1843                                 nwritten++;
1844                         }
1845
1846                         if (page == last_page) {
1847                                 f2fs_put_page(page, 0);
1848                                 marked = true;
1849                                 break;
1850                         }
1851                 }
1852                 folio_batch_release(&fbatch);
1853                 cond_resched();
1854
1855                 if (ret || marked)
1856                         break;
1857         }
1858         if (!ret && atomic && !marked) {
1859                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1860                            ino, last_page->index);
1861                 lock_page(last_page);
1862                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1863                 set_page_dirty(last_page);
1864                 unlock_page(last_page);
1865                 goto retry;
1866         }
1867 out:
1868         if (nwritten)
1869                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1870         return ret ? -EIO : 0;
1871 }
1872
1873 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1874 {
1875         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876         bool clean;
1877
1878         if (inode->i_ino != ino)
1879                 return 0;
1880
1881         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1882                 return 0;
1883
1884         spin_lock(&sbi->inode_lock[DIRTY_META]);
1885         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1886         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887
1888         if (clean)
1889                 return 0;
1890
1891         inode = igrab(inode);
1892         if (!inode)
1893                 return 0;
1894         return 1;
1895 }
1896
1897 static bool flush_dirty_inode(struct page *page)
1898 {
1899         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1900         struct inode *inode;
1901         nid_t ino = ino_of_node(page);
1902
1903         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1904         if (!inode)
1905                 return false;
1906
1907         f2fs_update_inode(inode, page);
1908         unlock_page(page);
1909
1910         iput(inode);
1911         return true;
1912 }
1913
1914 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1915 {
1916         pgoff_t index = 0;
1917         struct folio_batch fbatch;
1918         int nr_folios;
1919
1920         folio_batch_init(&fbatch);
1921
1922         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1923                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1924                                         &fbatch))) {
1925                 int i;
1926
1927                 for (i = 0; i < nr_folios; i++) {
1928                         struct page *page = &fbatch.folios[i]->page;
1929
1930                         if (!IS_INODE(page))
1931                                 continue;
1932
1933                         lock_page(page);
1934
1935                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1936 continue_unlock:
1937                                 unlock_page(page);
1938                                 continue;
1939                         }
1940
1941                         if (!PageDirty(page)) {
1942                                 /* someone wrote it for us */
1943                                 goto continue_unlock;
1944                         }
1945
1946                         /* flush inline_data, if it's async context. */
1947                         if (page_private_inline(page)) {
1948                                 clear_page_private_inline(page);
1949                                 unlock_page(page);
1950                                 flush_inline_data(sbi, ino_of_node(page));
1951                                 continue;
1952                         }
1953                         unlock_page(page);
1954                 }
1955                 folio_batch_release(&fbatch);
1956                 cond_resched();
1957         }
1958 }
1959
1960 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1961                                 struct writeback_control *wbc,
1962                                 bool do_balance, enum iostat_type io_type)
1963 {
1964         pgoff_t index;
1965         struct folio_batch fbatch;
1966         int step = 0;
1967         int nwritten = 0;
1968         int ret = 0;
1969         int nr_folios, done = 0;
1970
1971         folio_batch_init(&fbatch);
1972
1973 next_step:
1974         index = 0;
1975
1976         while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1977                                 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1978                                 &fbatch))) {
1979                 int i;
1980
1981                 for (i = 0; i < nr_folios; i++) {
1982                         struct page *page = &fbatch.folios[i]->page;
1983                         bool submitted = false;
1984
1985                         /* give a priority to WB_SYNC threads */
1986                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1987                                         wbc->sync_mode == WB_SYNC_NONE) {
1988                                 done = 1;
1989                                 break;
1990                         }
1991
1992                         /*
1993                          * flushing sequence with step:
1994                          * 0. indirect nodes
1995                          * 1. dentry dnodes
1996                          * 2. file dnodes
1997                          */
1998                         if (step == 0 && IS_DNODE(page))
1999                                 continue;
2000                         if (step == 1 && (!IS_DNODE(page) ||
2001                                                 is_cold_node(page)))
2002                                 continue;
2003                         if (step == 2 && (!IS_DNODE(page) ||
2004                                                 !is_cold_node(page)))
2005                                 continue;
2006 lock_node:
2007                         if (wbc->sync_mode == WB_SYNC_ALL)
2008                                 lock_page(page);
2009                         else if (!trylock_page(page))
2010                                 continue;
2011
2012                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2013 continue_unlock:
2014                                 unlock_page(page);
2015                                 continue;
2016                         }
2017
2018                         if (!PageDirty(page)) {
2019                                 /* someone wrote it for us */
2020                                 goto continue_unlock;
2021                         }
2022
2023                         /* flush inline_data/inode, if it's async context. */
2024                         if (!do_balance)
2025                                 goto write_node;
2026
2027                         /* flush inline_data */
2028                         if (page_private_inline(page)) {
2029                                 clear_page_private_inline(page);
2030                                 unlock_page(page);
2031                                 flush_inline_data(sbi, ino_of_node(page));
2032                                 goto lock_node;
2033                         }
2034
2035                         /* flush dirty inode */
2036                         if (IS_INODE(page) && flush_dirty_inode(page))
2037                                 goto lock_node;
2038 write_node:
2039                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2040
2041                         if (!clear_page_dirty_for_io(page))
2042                                 goto continue_unlock;
2043
2044                         set_fsync_mark(page, 0);
2045                         set_dentry_mark(page, 0);
2046
2047                         ret = __write_node_page(page, false, &submitted,
2048                                                 wbc, do_balance, io_type, NULL);
2049                         if (ret)
2050                                 unlock_page(page);
2051                         else if (submitted)
2052                                 nwritten++;
2053
2054                         if (--wbc->nr_to_write == 0)
2055                                 break;
2056                 }
2057                 folio_batch_release(&fbatch);
2058                 cond_resched();
2059
2060                 if (wbc->nr_to_write == 0) {
2061                         step = 2;
2062                         break;
2063                 }
2064         }
2065
2066         if (step < 2) {
2067                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2068                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2069                         goto out;
2070                 step++;
2071                 goto next_step;
2072         }
2073 out:
2074         if (nwritten)
2075                 f2fs_submit_merged_write(sbi, NODE);
2076
2077         if (unlikely(f2fs_cp_error(sbi)))
2078                 return -EIO;
2079         return ret;
2080 }
2081
2082 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2083                                                 unsigned int seq_id)
2084 {
2085         struct fsync_node_entry *fn;
2086         struct page *page;
2087         struct list_head *head = &sbi->fsync_node_list;
2088         unsigned long flags;
2089         unsigned int cur_seq_id = 0;
2090
2091         while (seq_id && cur_seq_id < seq_id) {
2092                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2093                 if (list_empty(head)) {
2094                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2095                         break;
2096                 }
2097                 fn = list_first_entry(head, struct fsync_node_entry, list);
2098                 if (fn->seq_id > seq_id) {
2099                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2100                         break;
2101                 }
2102                 cur_seq_id = fn->seq_id;
2103                 page = fn->page;
2104                 get_page(page);
2105                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2106
2107                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2108
2109                 put_page(page);
2110         }
2111
2112         return filemap_check_errors(NODE_MAPPING(sbi));
2113 }
2114
2115 static int f2fs_write_node_pages(struct address_space *mapping,
2116                             struct writeback_control *wbc)
2117 {
2118         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119         struct blk_plug plug;
2120         long diff;
2121
2122         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2123                 goto skip_write;
2124
2125         /* balancing f2fs's metadata in background */
2126         f2fs_balance_fs_bg(sbi, true);
2127
2128         /* collect a number of dirty node pages and write together */
2129         if (wbc->sync_mode != WB_SYNC_ALL &&
2130                         get_pages(sbi, F2FS_DIRTY_NODES) <
2131                                         nr_pages_to_skip(sbi, NODE))
2132                 goto skip_write;
2133
2134         if (wbc->sync_mode == WB_SYNC_ALL)
2135                 atomic_inc(&sbi->wb_sync_req[NODE]);
2136         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2137                 /* to avoid potential deadlock */
2138                 if (current->plug)
2139                         blk_finish_plug(current->plug);
2140                 goto skip_write;
2141         }
2142
2143         trace_f2fs_writepages(mapping->host, wbc, NODE);
2144
2145         diff = nr_pages_to_write(sbi, NODE, wbc);
2146         blk_start_plug(&plug);
2147         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2148         blk_finish_plug(&plug);
2149         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2150
2151         if (wbc->sync_mode == WB_SYNC_ALL)
2152                 atomic_dec(&sbi->wb_sync_req[NODE]);
2153         return 0;
2154
2155 skip_write:
2156         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2157         trace_f2fs_writepages(mapping->host, wbc, NODE);
2158         return 0;
2159 }
2160
2161 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2162                 struct folio *folio)
2163 {
2164         trace_f2fs_set_page_dirty(&folio->page, NODE);
2165
2166         if (!folio_test_uptodate(folio))
2167                 folio_mark_uptodate(folio);
2168 #ifdef CONFIG_F2FS_CHECK_FS
2169         if (IS_INODE(&folio->page))
2170                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2171 #endif
2172         if (filemap_dirty_folio(mapping, folio)) {
2173                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2174                 set_page_private_reference(&folio->page);
2175                 return true;
2176         }
2177         return false;
2178 }
2179
2180 /*
2181  * Structure of the f2fs node operations
2182  */
2183 const struct address_space_operations f2fs_node_aops = {
2184         .writepage      = f2fs_write_node_page,
2185         .writepages     = f2fs_write_node_pages,
2186         .dirty_folio    = f2fs_dirty_node_folio,
2187         .invalidate_folio = f2fs_invalidate_folio,
2188         .release_folio  = f2fs_release_folio,
2189         .migrate_folio  = filemap_migrate_folio,
2190 };
2191
2192 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2193                                                 nid_t n)
2194 {
2195         return radix_tree_lookup(&nm_i->free_nid_root, n);
2196 }
2197
2198 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2199                                 struct free_nid *i)
2200 {
2201         struct f2fs_nm_info *nm_i = NM_I(sbi);
2202         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2203
2204         if (err)
2205                 return err;
2206
2207         nm_i->nid_cnt[FREE_NID]++;
2208         list_add_tail(&i->list, &nm_i->free_nid_list);
2209         return 0;
2210 }
2211
2212 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2213                         struct free_nid *i, enum nid_state state)
2214 {
2215         struct f2fs_nm_info *nm_i = NM_I(sbi);
2216
2217         f2fs_bug_on(sbi, state != i->state);
2218         nm_i->nid_cnt[state]--;
2219         if (state == FREE_NID)
2220                 list_del(&i->list);
2221         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2222 }
2223
2224 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2225                         enum nid_state org_state, enum nid_state dst_state)
2226 {
2227         struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229         f2fs_bug_on(sbi, org_state != i->state);
2230         i->state = dst_state;
2231         nm_i->nid_cnt[org_state]--;
2232         nm_i->nid_cnt[dst_state]++;
2233
2234         switch (dst_state) {
2235         case PREALLOC_NID:
2236                 list_del(&i->list);
2237                 break;
2238         case FREE_NID:
2239                 list_add_tail(&i->list, &nm_i->free_nid_list);
2240                 break;
2241         default:
2242                 BUG_ON(1);
2243         }
2244 }
2245
2246 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2247 {
2248         struct f2fs_nm_info *nm_i = NM_I(sbi);
2249         unsigned int i;
2250         bool ret = true;
2251
2252         f2fs_down_read(&nm_i->nat_tree_lock);
2253         for (i = 0; i < nm_i->nat_blocks; i++) {
2254                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2255                         ret = false;
2256                         break;
2257                 }
2258         }
2259         f2fs_up_read(&nm_i->nat_tree_lock);
2260
2261         return ret;
2262 }
2263
2264 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2265                                                         bool set, bool build)
2266 {
2267         struct f2fs_nm_info *nm_i = NM_I(sbi);
2268         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2269         unsigned int nid_ofs = nid - START_NID(nid);
2270
2271         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2272                 return;
2273
2274         if (set) {
2275                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2276                         return;
2277                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2278                 nm_i->free_nid_count[nat_ofs]++;
2279         } else {
2280                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2281                         return;
2282                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2283                 if (!build)
2284                         nm_i->free_nid_count[nat_ofs]--;
2285         }
2286 }
2287
2288 /* return if the nid is recognized as free */
2289 static bool add_free_nid(struct f2fs_sb_info *sbi,
2290                                 nid_t nid, bool build, bool update)
2291 {
2292         struct f2fs_nm_info *nm_i = NM_I(sbi);
2293         struct free_nid *i, *e;
2294         struct nat_entry *ne;
2295         int err = -EINVAL;
2296         bool ret = false;
2297
2298         /* 0 nid should not be used */
2299         if (unlikely(nid == 0))
2300                 return false;
2301
2302         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2303                 return false;
2304
2305         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2306         i->nid = nid;
2307         i->state = FREE_NID;
2308
2309         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2310
2311         spin_lock(&nm_i->nid_list_lock);
2312
2313         if (build) {
2314                 /*
2315                  *   Thread A             Thread B
2316                  *  - f2fs_create
2317                  *   - f2fs_new_inode
2318                  *    - f2fs_alloc_nid
2319                  *     - __insert_nid_to_list(PREALLOC_NID)
2320                  *                     - f2fs_balance_fs_bg
2321                  *                      - f2fs_build_free_nids
2322                  *                       - __f2fs_build_free_nids
2323                  *                        - scan_nat_page
2324                  *                         - add_free_nid
2325                  *                          - __lookup_nat_cache
2326                  *  - f2fs_add_link
2327                  *   - f2fs_init_inode_metadata
2328                  *    - f2fs_new_inode_page
2329                  *     - f2fs_new_node_page
2330                  *      - set_node_addr
2331                  *  - f2fs_alloc_nid_done
2332                  *   - __remove_nid_from_list(PREALLOC_NID)
2333                  *                         - __insert_nid_to_list(FREE_NID)
2334                  */
2335                 ne = __lookup_nat_cache(nm_i, nid);
2336                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2337                                 nat_get_blkaddr(ne) != NULL_ADDR))
2338                         goto err_out;
2339
2340                 e = __lookup_free_nid_list(nm_i, nid);
2341                 if (e) {
2342                         if (e->state == FREE_NID)
2343                                 ret = true;
2344                         goto err_out;
2345                 }
2346         }
2347         ret = true;
2348         err = __insert_free_nid(sbi, i);
2349 err_out:
2350         if (update) {
2351                 update_free_nid_bitmap(sbi, nid, ret, build);
2352                 if (!build)
2353                         nm_i->available_nids++;
2354         }
2355         spin_unlock(&nm_i->nid_list_lock);
2356         radix_tree_preload_end();
2357
2358         if (err)
2359                 kmem_cache_free(free_nid_slab, i);
2360         return ret;
2361 }
2362
2363 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2364 {
2365         struct f2fs_nm_info *nm_i = NM_I(sbi);
2366         struct free_nid *i;
2367         bool need_free = false;
2368
2369         spin_lock(&nm_i->nid_list_lock);
2370         i = __lookup_free_nid_list(nm_i, nid);
2371         if (i && i->state == FREE_NID) {
2372                 __remove_free_nid(sbi, i, FREE_NID);
2373                 need_free = true;
2374         }
2375         spin_unlock(&nm_i->nid_list_lock);
2376
2377         if (need_free)
2378                 kmem_cache_free(free_nid_slab, i);
2379 }
2380
2381 static int scan_nat_page(struct f2fs_sb_info *sbi,
2382                         struct page *nat_page, nid_t start_nid)
2383 {
2384         struct f2fs_nm_info *nm_i = NM_I(sbi);
2385         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2386         block_t blk_addr;
2387         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2388         int i;
2389
2390         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2391
2392         i = start_nid % NAT_ENTRY_PER_BLOCK;
2393
2394         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2395                 if (unlikely(start_nid >= nm_i->max_nid))
2396                         break;
2397
2398                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2399
2400                 if (blk_addr == NEW_ADDR)
2401                         return -EFSCORRUPTED;
2402
2403                 if (blk_addr == NULL_ADDR) {
2404                         add_free_nid(sbi, start_nid, true, true);
2405                 } else {
2406                         spin_lock(&NM_I(sbi)->nid_list_lock);
2407                         update_free_nid_bitmap(sbi, start_nid, false, true);
2408                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2409                 }
2410         }
2411
2412         return 0;
2413 }
2414
2415 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2416 {
2417         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2418         struct f2fs_journal *journal = curseg->journal;
2419         int i;
2420
2421         down_read(&curseg->journal_rwsem);
2422         for (i = 0; i < nats_in_cursum(journal); i++) {
2423                 block_t addr;
2424                 nid_t nid;
2425
2426                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2427                 nid = le32_to_cpu(nid_in_journal(journal, i));
2428                 if (addr == NULL_ADDR)
2429                         add_free_nid(sbi, nid, true, false);
2430                 else
2431                         remove_free_nid(sbi, nid);
2432         }
2433         up_read(&curseg->journal_rwsem);
2434 }
2435
2436 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2437 {
2438         struct f2fs_nm_info *nm_i = NM_I(sbi);
2439         unsigned int i, idx;
2440         nid_t nid;
2441
2442         f2fs_down_read(&nm_i->nat_tree_lock);
2443
2444         for (i = 0; i < nm_i->nat_blocks; i++) {
2445                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2446                         continue;
2447                 if (!nm_i->free_nid_count[i])
2448                         continue;
2449                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2450                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2451                                                 NAT_ENTRY_PER_BLOCK, idx);
2452                         if (idx >= NAT_ENTRY_PER_BLOCK)
2453                                 break;
2454
2455                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2456                         add_free_nid(sbi, nid, true, false);
2457
2458                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2459                                 goto out;
2460                 }
2461         }
2462 out:
2463         scan_curseg_cache(sbi);
2464
2465         f2fs_up_read(&nm_i->nat_tree_lock);
2466 }
2467
2468 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2469                                                 bool sync, bool mount)
2470 {
2471         struct f2fs_nm_info *nm_i = NM_I(sbi);
2472         int i = 0, ret;
2473         nid_t nid = nm_i->next_scan_nid;
2474
2475         if (unlikely(nid >= nm_i->max_nid))
2476                 nid = 0;
2477
2478         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2479                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2480
2481         /* Enough entries */
2482         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2483                 return 0;
2484
2485         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2486                 return 0;
2487
2488         if (!mount) {
2489                 /* try to find free nids in free_nid_bitmap */
2490                 scan_free_nid_bits(sbi);
2491
2492                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493                         return 0;
2494         }
2495
2496         /* readahead nat pages to be scanned */
2497         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2498                                                         META_NAT, true);
2499
2500         f2fs_down_read(&nm_i->nat_tree_lock);
2501
2502         while (1) {
2503                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2504                                                 nm_i->nat_block_bitmap)) {
2505                         struct page *page = get_current_nat_page(sbi, nid);
2506
2507                         if (IS_ERR(page)) {
2508                                 ret = PTR_ERR(page);
2509                         } else {
2510                                 ret = scan_nat_page(sbi, page, nid);
2511                                 f2fs_put_page(page, 1);
2512                         }
2513
2514                         if (ret) {
2515                                 f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517                                 if (ret == -EFSCORRUPTED) {
2518                                         f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2519                                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2520                                         f2fs_handle_error(sbi,
2521                                                 ERROR_INCONSISTENT_NAT);
2522                                 }
2523
2524                                 return ret;
2525                         }
2526                 }
2527
2528                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2529                 if (unlikely(nid >= nm_i->max_nid))
2530                         nid = 0;
2531
2532                 if (++i >= FREE_NID_PAGES)
2533                         break;
2534         }
2535
2536         /* go to the next free nat pages to find free nids abundantly */
2537         nm_i->next_scan_nid = nid;
2538
2539         /* find free nids from current sum_pages */
2540         scan_curseg_cache(sbi);
2541
2542         f2fs_up_read(&nm_i->nat_tree_lock);
2543
2544         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2545                                         nm_i->ra_nid_pages, META_NAT, false);
2546
2547         return 0;
2548 }
2549
2550 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2551 {
2552         int ret;
2553
2554         mutex_lock(&NM_I(sbi)->build_lock);
2555         ret = __f2fs_build_free_nids(sbi, sync, mount);
2556         mutex_unlock(&NM_I(sbi)->build_lock);
2557
2558         return ret;
2559 }
2560
2561 /*
2562  * If this function returns success, caller can obtain a new nid
2563  * from second parameter of this function.
2564  * The returned nid could be used ino as well as nid when inode is created.
2565  */
2566 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2567 {
2568         struct f2fs_nm_info *nm_i = NM_I(sbi);
2569         struct free_nid *i = NULL;
2570 retry:
2571         if (time_to_inject(sbi, FAULT_ALLOC_NID))
2572                 return false;
2573
2574         spin_lock(&nm_i->nid_list_lock);
2575
2576         if (unlikely(nm_i->available_nids == 0)) {
2577                 spin_unlock(&nm_i->nid_list_lock);
2578                 return false;
2579         }
2580
2581         /* We should not use stale free nids created by f2fs_build_free_nids */
2582         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2583                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2584                 i = list_first_entry(&nm_i->free_nid_list,
2585                                         struct free_nid, list);
2586                 *nid = i->nid;
2587
2588                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2589                 nm_i->available_nids--;
2590
2591                 update_free_nid_bitmap(sbi, *nid, false, false);
2592
2593                 spin_unlock(&nm_i->nid_list_lock);
2594                 return true;
2595         }
2596         spin_unlock(&nm_i->nid_list_lock);
2597
2598         /* Let's scan nat pages and its caches to get free nids */
2599         if (!f2fs_build_free_nids(sbi, true, false))
2600                 goto retry;
2601         return false;
2602 }
2603
2604 /*
2605  * f2fs_alloc_nid() should be called prior to this function.
2606  */
2607 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2608 {
2609         struct f2fs_nm_info *nm_i = NM_I(sbi);
2610         struct free_nid *i;
2611
2612         spin_lock(&nm_i->nid_list_lock);
2613         i = __lookup_free_nid_list(nm_i, nid);
2614         f2fs_bug_on(sbi, !i);
2615         __remove_free_nid(sbi, i, PREALLOC_NID);
2616         spin_unlock(&nm_i->nid_list_lock);
2617
2618         kmem_cache_free(free_nid_slab, i);
2619 }
2620
2621 /*
2622  * f2fs_alloc_nid() should be called prior to this function.
2623  */
2624 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2625 {
2626         struct f2fs_nm_info *nm_i = NM_I(sbi);
2627         struct free_nid *i;
2628         bool need_free = false;
2629
2630         if (!nid)
2631                 return;
2632
2633         spin_lock(&nm_i->nid_list_lock);
2634         i = __lookup_free_nid_list(nm_i, nid);
2635         f2fs_bug_on(sbi, !i);
2636
2637         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2638                 __remove_free_nid(sbi, i, PREALLOC_NID);
2639                 need_free = true;
2640         } else {
2641                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2642         }
2643
2644         nm_i->available_nids++;
2645
2646         update_free_nid_bitmap(sbi, nid, true, false);
2647
2648         spin_unlock(&nm_i->nid_list_lock);
2649
2650         if (need_free)
2651                 kmem_cache_free(free_nid_slab, i);
2652 }
2653
2654 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2655 {
2656         struct f2fs_nm_info *nm_i = NM_I(sbi);
2657         int nr = nr_shrink;
2658
2659         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2660                 return 0;
2661
2662         if (!mutex_trylock(&nm_i->build_lock))
2663                 return 0;
2664
2665         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2666                 struct free_nid *i, *next;
2667                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2668
2669                 spin_lock(&nm_i->nid_list_lock);
2670                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2671                         if (!nr_shrink || !batch ||
2672                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2673                                 break;
2674                         __remove_free_nid(sbi, i, FREE_NID);
2675                         kmem_cache_free(free_nid_slab, i);
2676                         nr_shrink--;
2677                         batch--;
2678                 }
2679                 spin_unlock(&nm_i->nid_list_lock);
2680         }
2681
2682         mutex_unlock(&nm_i->build_lock);
2683
2684         return nr - nr_shrink;
2685 }
2686
2687 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2688 {
2689         void *src_addr, *dst_addr;
2690         size_t inline_size;
2691         struct page *ipage;
2692         struct f2fs_inode *ri;
2693
2694         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2695         if (IS_ERR(ipage))
2696                 return PTR_ERR(ipage);
2697
2698         ri = F2FS_INODE(page);
2699         if (ri->i_inline & F2FS_INLINE_XATTR) {
2700                 if (!f2fs_has_inline_xattr(inode)) {
2701                         set_inode_flag(inode, FI_INLINE_XATTR);
2702                         stat_inc_inline_xattr(inode);
2703                 }
2704         } else {
2705                 if (f2fs_has_inline_xattr(inode)) {
2706                         stat_dec_inline_xattr(inode);
2707                         clear_inode_flag(inode, FI_INLINE_XATTR);
2708                 }
2709                 goto update_inode;
2710         }
2711
2712         dst_addr = inline_xattr_addr(inode, ipage);
2713         src_addr = inline_xattr_addr(inode, page);
2714         inline_size = inline_xattr_size(inode);
2715
2716         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2717         memcpy(dst_addr, src_addr, inline_size);
2718 update_inode:
2719         f2fs_update_inode(inode, ipage);
2720         f2fs_put_page(ipage, 1);
2721         return 0;
2722 }
2723
2724 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2725 {
2726         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2727         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2728         nid_t new_xnid;
2729         struct dnode_of_data dn;
2730         struct node_info ni;
2731         struct page *xpage;
2732         int err;
2733
2734         if (!prev_xnid)
2735                 goto recover_xnid;
2736
2737         /* 1: invalidate the previous xattr nid */
2738         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2739         if (err)
2740                 return err;
2741
2742         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2743         dec_valid_node_count(sbi, inode, false);
2744         set_node_addr(sbi, &ni, NULL_ADDR, false);
2745
2746 recover_xnid:
2747         /* 2: update xattr nid in inode */
2748         if (!f2fs_alloc_nid(sbi, &new_xnid))
2749                 return -ENOSPC;
2750
2751         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2752         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2753         if (IS_ERR(xpage)) {
2754                 f2fs_alloc_nid_failed(sbi, new_xnid);
2755                 return PTR_ERR(xpage);
2756         }
2757
2758         f2fs_alloc_nid_done(sbi, new_xnid);
2759         f2fs_update_inode_page(inode);
2760
2761         /* 3: update and set xattr node page dirty */
2762         if (page) {
2763                 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2764                                 VALID_XATTR_BLOCK_SIZE);
2765                 set_page_dirty(xpage);
2766         }
2767         f2fs_put_page(xpage, 1);
2768
2769         return 0;
2770 }
2771
2772 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2773 {
2774         struct f2fs_inode *src, *dst;
2775         nid_t ino = ino_of_node(page);
2776         struct node_info old_ni, new_ni;
2777         struct page *ipage;
2778         int err;
2779
2780         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2781         if (err)
2782                 return err;
2783
2784         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2785                 return -EINVAL;
2786 retry:
2787         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2788         if (!ipage) {
2789                 memalloc_retry_wait(GFP_NOFS);
2790                 goto retry;
2791         }
2792
2793         /* Should not use this inode from free nid list */
2794         remove_free_nid(sbi, ino);
2795
2796         if (!PageUptodate(ipage))
2797                 SetPageUptodate(ipage);
2798         fill_node_footer(ipage, ino, ino, 0, true);
2799         set_cold_node(ipage, false);
2800
2801         src = F2FS_INODE(page);
2802         dst = F2FS_INODE(ipage);
2803
2804         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2805         dst->i_size = 0;
2806         dst->i_blocks = cpu_to_le64(1);
2807         dst->i_links = cpu_to_le32(1);
2808         dst->i_xattr_nid = 0;
2809         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2810         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2811                 dst->i_extra_isize = src->i_extra_isize;
2812
2813                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2814                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2815                                                         i_inline_xattr_size))
2816                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2817
2818                 if (f2fs_sb_has_project_quota(sbi) &&
2819                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2820                                                                 i_projid))
2821                         dst->i_projid = src->i_projid;
2822
2823                 if (f2fs_sb_has_inode_crtime(sbi) &&
2824                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825                                                         i_crtime_nsec)) {
2826                         dst->i_crtime = src->i_crtime;
2827                         dst->i_crtime_nsec = src->i_crtime_nsec;
2828                 }
2829         }
2830
2831         new_ni = old_ni;
2832         new_ni.ino = ino;
2833
2834         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2835                 WARN_ON(1);
2836         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2837         inc_valid_inode_count(sbi);
2838         set_page_dirty(ipage);
2839         f2fs_put_page(ipage, 1);
2840         return 0;
2841 }
2842
2843 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2844                         unsigned int segno, struct f2fs_summary_block *sum)
2845 {
2846         struct f2fs_node *rn;
2847         struct f2fs_summary *sum_entry;
2848         block_t addr;
2849         int i, idx, last_offset, nrpages;
2850
2851         /* scan the node segment */
2852         last_offset = BLKS_PER_SEG(sbi);
2853         addr = START_BLOCK(sbi, segno);
2854         sum_entry = &sum->entries[0];
2855
2856         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2857                 nrpages = bio_max_segs(last_offset - i);
2858
2859                 /* readahead node pages */
2860                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2861
2862                 for (idx = addr; idx < addr + nrpages; idx++) {
2863                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2864
2865                         if (IS_ERR(page))
2866                                 return PTR_ERR(page);
2867
2868                         rn = F2FS_NODE(page);
2869                         sum_entry->nid = rn->footer.nid;
2870                         sum_entry->version = 0;
2871                         sum_entry->ofs_in_node = 0;
2872                         sum_entry++;
2873                         f2fs_put_page(page, 1);
2874                 }
2875
2876                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2877                                                         addr + nrpages);
2878         }
2879         return 0;
2880 }
2881
2882 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2883 {
2884         struct f2fs_nm_info *nm_i = NM_I(sbi);
2885         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2886         struct f2fs_journal *journal = curseg->journal;
2887         int i;
2888
2889         down_write(&curseg->journal_rwsem);
2890         for (i = 0; i < nats_in_cursum(journal); i++) {
2891                 struct nat_entry *ne;
2892                 struct f2fs_nat_entry raw_ne;
2893                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2894
2895                 if (f2fs_check_nid_range(sbi, nid))
2896                         continue;
2897
2898                 raw_ne = nat_in_journal(journal, i);
2899
2900                 ne = __lookup_nat_cache(nm_i, nid);
2901                 if (!ne) {
2902                         ne = __alloc_nat_entry(sbi, nid, true);
2903                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2904                 }
2905
2906                 /*
2907                  * if a free nat in journal has not been used after last
2908                  * checkpoint, we should remove it from available nids,
2909                  * since later we will add it again.
2910                  */
2911                 if (!get_nat_flag(ne, IS_DIRTY) &&
2912                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2913                         spin_lock(&nm_i->nid_list_lock);
2914                         nm_i->available_nids--;
2915                         spin_unlock(&nm_i->nid_list_lock);
2916                 }
2917
2918                 __set_nat_cache_dirty(nm_i, ne);
2919         }
2920         update_nats_in_cursum(journal, -i);
2921         up_write(&curseg->journal_rwsem);
2922 }
2923
2924 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2925                                                 struct list_head *head, int max)
2926 {
2927         struct nat_entry_set *cur;
2928
2929         if (nes->entry_cnt >= max)
2930                 goto add_out;
2931
2932         list_for_each_entry(cur, head, set_list) {
2933                 if (cur->entry_cnt >= nes->entry_cnt) {
2934                         list_add(&nes->set_list, cur->set_list.prev);
2935                         return;
2936                 }
2937         }
2938 add_out:
2939         list_add_tail(&nes->set_list, head);
2940 }
2941
2942 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2943                                                         unsigned int valid)
2944 {
2945         if (valid == 0) {
2946                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2947                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948                 return;
2949         }
2950
2951         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2952         if (valid == NAT_ENTRY_PER_BLOCK)
2953                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2954         else
2955                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2956 }
2957
2958 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2959                                                 struct page *page)
2960 {
2961         struct f2fs_nm_info *nm_i = NM_I(sbi);
2962         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2963         struct f2fs_nat_block *nat_blk = page_address(page);
2964         int valid = 0;
2965         int i = 0;
2966
2967         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2968                 return;
2969
2970         if (nat_index == 0) {
2971                 valid = 1;
2972                 i = 1;
2973         }
2974         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2975                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2976                         valid++;
2977         }
2978
2979         __update_nat_bits(nm_i, nat_index, valid);
2980 }
2981
2982 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2983 {
2984         struct f2fs_nm_info *nm_i = NM_I(sbi);
2985         unsigned int nat_ofs;
2986
2987         f2fs_down_read(&nm_i->nat_tree_lock);
2988
2989         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2990                 unsigned int valid = 0, nid_ofs = 0;
2991
2992                 /* handle nid zero due to it should never be used */
2993                 if (unlikely(nat_ofs == 0)) {
2994                         valid = 1;
2995                         nid_ofs = 1;
2996                 }
2997
2998                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2999                         if (!test_bit_le(nid_ofs,
3000                                         nm_i->free_nid_bitmap[nat_ofs]))
3001                                 valid++;
3002                 }
3003
3004                 __update_nat_bits(nm_i, nat_ofs, valid);
3005         }
3006
3007         f2fs_up_read(&nm_i->nat_tree_lock);
3008 }
3009
3010 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3011                 struct nat_entry_set *set, struct cp_control *cpc)
3012 {
3013         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3014         struct f2fs_journal *journal = curseg->journal;
3015         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3016         bool to_journal = true;
3017         struct f2fs_nat_block *nat_blk;
3018         struct nat_entry *ne, *cur;
3019         struct page *page = NULL;
3020
3021         /*
3022          * there are two steps to flush nat entries:
3023          * #1, flush nat entries to journal in current hot data summary block.
3024          * #2, flush nat entries to nat page.
3025          */
3026         if ((cpc->reason & CP_UMOUNT) ||
3027                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3028                 to_journal = false;
3029
3030         if (to_journal) {
3031                 down_write(&curseg->journal_rwsem);
3032         } else {
3033                 page = get_next_nat_page(sbi, start_nid);
3034                 if (IS_ERR(page))
3035                         return PTR_ERR(page);
3036
3037                 nat_blk = page_address(page);
3038                 f2fs_bug_on(sbi, !nat_blk);
3039         }
3040
3041         /* flush dirty nats in nat entry set */
3042         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3043                 struct f2fs_nat_entry *raw_ne;
3044                 nid_t nid = nat_get_nid(ne);
3045                 int offset;
3046
3047                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3048
3049                 if (to_journal) {
3050                         offset = f2fs_lookup_journal_in_cursum(journal,
3051                                                         NAT_JOURNAL, nid, 1);
3052                         f2fs_bug_on(sbi, offset < 0);
3053                         raw_ne = &nat_in_journal(journal, offset);
3054                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3055                 } else {
3056                         raw_ne = &nat_blk->entries[nid - start_nid];
3057                 }
3058                 raw_nat_from_node_info(raw_ne, &ne->ni);
3059                 nat_reset_flag(ne);
3060                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3061                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3062                         add_free_nid(sbi, nid, false, true);
3063                 } else {
3064                         spin_lock(&NM_I(sbi)->nid_list_lock);
3065                         update_free_nid_bitmap(sbi, nid, false, false);
3066                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3067                 }
3068         }
3069
3070         if (to_journal) {
3071                 up_write(&curseg->journal_rwsem);
3072         } else {
3073                 update_nat_bits(sbi, start_nid, page);
3074                 f2fs_put_page(page, 1);
3075         }
3076
3077         /* Allow dirty nats by node block allocation in write_begin */
3078         if (!set->entry_cnt) {
3079                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3080                 kmem_cache_free(nat_entry_set_slab, set);
3081         }
3082         return 0;
3083 }
3084
3085 /*
3086  * This function is called during the checkpointing process.
3087  */
3088 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3089 {
3090         struct f2fs_nm_info *nm_i = NM_I(sbi);
3091         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3092         struct f2fs_journal *journal = curseg->journal;
3093         struct nat_entry_set *setvec[NAT_VEC_SIZE];
3094         struct nat_entry_set *set, *tmp;
3095         unsigned int found;
3096         nid_t set_idx = 0;
3097         LIST_HEAD(sets);
3098         int err = 0;
3099
3100         /*
3101          * during unmount, let's flush nat_bits before checking
3102          * nat_cnt[DIRTY_NAT].
3103          */
3104         if (cpc->reason & CP_UMOUNT) {
3105                 f2fs_down_write(&nm_i->nat_tree_lock);
3106                 remove_nats_in_journal(sbi);
3107                 f2fs_up_write(&nm_i->nat_tree_lock);
3108         }
3109
3110         if (!nm_i->nat_cnt[DIRTY_NAT])
3111                 return 0;
3112
3113         f2fs_down_write(&nm_i->nat_tree_lock);
3114
3115         /*
3116          * if there are no enough space in journal to store dirty nat
3117          * entries, remove all entries from journal and merge them
3118          * into nat entry set.
3119          */
3120         if (cpc->reason & CP_UMOUNT ||
3121                 !__has_cursum_space(journal,
3122                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3123                 remove_nats_in_journal(sbi);
3124
3125         while ((found = __gang_lookup_nat_set(nm_i,
3126                                         set_idx, NAT_VEC_SIZE, setvec))) {
3127                 unsigned idx;
3128
3129                 set_idx = setvec[found - 1]->set + 1;
3130                 for (idx = 0; idx < found; idx++)
3131                         __adjust_nat_entry_set(setvec[idx], &sets,
3132                                                 MAX_NAT_JENTRIES(journal));
3133         }
3134
3135         /* flush dirty nats in nat entry set */
3136         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3137                 err = __flush_nat_entry_set(sbi, set, cpc);
3138                 if (err)
3139                         break;
3140         }
3141
3142         f2fs_up_write(&nm_i->nat_tree_lock);
3143         /* Allow dirty nats by node block allocation in write_begin */
3144
3145         return err;
3146 }
3147
3148 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3149 {
3150         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3151         struct f2fs_nm_info *nm_i = NM_I(sbi);
3152         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3153         unsigned int i;
3154         __u64 cp_ver = cur_cp_version(ckpt);
3155         block_t nat_bits_addr;
3156
3157         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3158         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3159                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3160         if (!nm_i->nat_bits)
3161                 return -ENOMEM;
3162
3163         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3164         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3165
3166         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3167                 return 0;
3168
3169         nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3170                                                 nm_i->nat_bits_blocks;
3171         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3172                 struct page *page;
3173
3174                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3175                 if (IS_ERR(page))
3176                         return PTR_ERR(page);
3177
3178                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3179                                         page_address(page), F2FS_BLKSIZE);
3180                 f2fs_put_page(page, 1);
3181         }
3182
3183         cp_ver |= (cur_cp_crc(ckpt) << 32);
3184         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3185                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3186                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3187                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3188                 return 0;
3189         }
3190
3191         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3192         return 0;
3193 }
3194
3195 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3196 {
3197         struct f2fs_nm_info *nm_i = NM_I(sbi);
3198         unsigned int i = 0;
3199         nid_t nid, last_nid;
3200
3201         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3202                 return;
3203
3204         for (i = 0; i < nm_i->nat_blocks; i++) {
3205                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3206                 if (i >= nm_i->nat_blocks)
3207                         break;
3208
3209                 __set_bit_le(i, nm_i->nat_block_bitmap);
3210
3211                 nid = i * NAT_ENTRY_PER_BLOCK;
3212                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3213
3214                 spin_lock(&NM_I(sbi)->nid_list_lock);
3215                 for (; nid < last_nid; nid++)
3216                         update_free_nid_bitmap(sbi, nid, true, true);
3217                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3218         }
3219
3220         for (i = 0; i < nm_i->nat_blocks; i++) {
3221                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3222                 if (i >= nm_i->nat_blocks)
3223                         break;
3224
3225                 __set_bit_le(i, nm_i->nat_block_bitmap);
3226         }
3227 }
3228
3229 static int init_node_manager(struct f2fs_sb_info *sbi)
3230 {
3231         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3232         struct f2fs_nm_info *nm_i = NM_I(sbi);
3233         unsigned char *version_bitmap;
3234         unsigned int nat_segs;
3235         int err;
3236
3237         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3238
3239         /* segment_count_nat includes pair segment so divide to 2. */
3240         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3241         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3242         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3243
3244         /* not used nids: 0, node, meta, (and root counted as valid node) */
3245         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3246                                                 F2FS_RESERVED_NODE_NUM;
3247         nm_i->nid_cnt[FREE_NID] = 0;
3248         nm_i->nid_cnt[PREALLOC_NID] = 0;
3249         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3250         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3251         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3252         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3253
3254         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3255         INIT_LIST_HEAD(&nm_i->free_nid_list);
3256         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3257         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3258         INIT_LIST_HEAD(&nm_i->nat_entries);
3259         spin_lock_init(&nm_i->nat_list_lock);
3260
3261         mutex_init(&nm_i->build_lock);
3262         spin_lock_init(&nm_i->nid_list_lock);
3263         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3264
3265         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3266         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3267         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3268         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3269                                         GFP_KERNEL);
3270         if (!nm_i->nat_bitmap)
3271                 return -ENOMEM;
3272
3273         err = __get_nat_bitmaps(sbi);
3274         if (err)
3275                 return err;
3276
3277 #ifdef CONFIG_F2FS_CHECK_FS
3278         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3279                                         GFP_KERNEL);
3280         if (!nm_i->nat_bitmap_mir)
3281                 return -ENOMEM;
3282 #endif
3283
3284         return 0;
3285 }
3286
3287 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3288 {
3289         struct f2fs_nm_info *nm_i = NM_I(sbi);
3290         int i;
3291
3292         nm_i->free_nid_bitmap =
3293                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3294                                               nm_i->nat_blocks),
3295                               GFP_KERNEL);
3296         if (!nm_i->free_nid_bitmap)
3297                 return -ENOMEM;
3298
3299         for (i = 0; i < nm_i->nat_blocks; i++) {
3300                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3301                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3302                 if (!nm_i->free_nid_bitmap[i])
3303                         return -ENOMEM;
3304         }
3305
3306         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3307                                                                 GFP_KERNEL);
3308         if (!nm_i->nat_block_bitmap)
3309                 return -ENOMEM;
3310
3311         nm_i->free_nid_count =
3312                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3313                                               nm_i->nat_blocks),
3314                               GFP_KERNEL);
3315         if (!nm_i->free_nid_count)
3316                 return -ENOMEM;
3317         return 0;
3318 }
3319
3320 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3321 {
3322         int err;
3323
3324         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3325                                                         GFP_KERNEL);
3326         if (!sbi->nm_info)
3327                 return -ENOMEM;
3328
3329         err = init_node_manager(sbi);
3330         if (err)
3331                 return err;
3332
3333         err = init_free_nid_cache(sbi);
3334         if (err)
3335                 return err;
3336
3337         /* load free nid status from nat_bits table */
3338         load_free_nid_bitmap(sbi);
3339
3340         return f2fs_build_free_nids(sbi, true, true);
3341 }
3342
3343 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3344 {
3345         struct f2fs_nm_info *nm_i = NM_I(sbi);
3346         struct free_nid *i, *next_i;
3347         void *vec[NAT_VEC_SIZE];
3348         struct nat_entry **natvec = (struct nat_entry **)vec;
3349         struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3350         nid_t nid = 0;
3351         unsigned int found;
3352
3353         if (!nm_i)
3354                 return;
3355
3356         /* destroy free nid list */
3357         spin_lock(&nm_i->nid_list_lock);
3358         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3359                 __remove_free_nid(sbi, i, FREE_NID);
3360                 spin_unlock(&nm_i->nid_list_lock);
3361                 kmem_cache_free(free_nid_slab, i);
3362                 spin_lock(&nm_i->nid_list_lock);
3363         }
3364         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3365         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3366         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3367         spin_unlock(&nm_i->nid_list_lock);
3368
3369         /* destroy nat cache */
3370         f2fs_down_write(&nm_i->nat_tree_lock);
3371         while ((found = __gang_lookup_nat_cache(nm_i,
3372                                         nid, NAT_VEC_SIZE, natvec))) {
3373                 unsigned idx;
3374
3375                 nid = nat_get_nid(natvec[found - 1]) + 1;
3376                 for (idx = 0; idx < found; idx++) {
3377                         spin_lock(&nm_i->nat_list_lock);
3378                         list_del(&natvec[idx]->list);
3379                         spin_unlock(&nm_i->nat_list_lock);
3380
3381                         __del_from_nat_cache(nm_i, natvec[idx]);
3382                 }
3383         }
3384         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3385
3386         /* destroy nat set cache */
3387         nid = 0;
3388         memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3389         while ((found = __gang_lookup_nat_set(nm_i,
3390                                         nid, NAT_VEC_SIZE, setvec))) {
3391                 unsigned idx;
3392
3393                 nid = setvec[found - 1]->set + 1;
3394                 for (idx = 0; idx < found; idx++) {
3395                         /* entry_cnt is not zero, when cp_error was occurred */
3396                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3397                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3398                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3399                 }
3400         }
3401         f2fs_up_write(&nm_i->nat_tree_lock);
3402
3403         kvfree(nm_i->nat_block_bitmap);
3404         if (nm_i->free_nid_bitmap) {
3405                 int i;
3406
3407                 for (i = 0; i < nm_i->nat_blocks; i++)
3408                         kvfree(nm_i->free_nid_bitmap[i]);
3409                 kvfree(nm_i->free_nid_bitmap);
3410         }
3411         kvfree(nm_i->free_nid_count);
3412
3413         kvfree(nm_i->nat_bitmap);
3414         kvfree(nm_i->nat_bits);
3415 #ifdef CONFIG_F2FS_CHECK_FS
3416         kvfree(nm_i->nat_bitmap_mir);
3417 #endif
3418         sbi->nm_info = NULL;
3419         kfree(nm_i);
3420 }
3421
3422 int __init f2fs_create_node_manager_caches(void)
3423 {
3424         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3425                         sizeof(struct nat_entry));
3426         if (!nat_entry_slab)
3427                 goto fail;
3428
3429         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3430                         sizeof(struct free_nid));
3431         if (!free_nid_slab)
3432                 goto destroy_nat_entry;
3433
3434         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3435                         sizeof(struct nat_entry_set));
3436         if (!nat_entry_set_slab)
3437                 goto destroy_free_nid;
3438
3439         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3440                         sizeof(struct fsync_node_entry));
3441         if (!fsync_node_entry_slab)
3442                 goto destroy_nat_entry_set;
3443         return 0;
3444
3445 destroy_nat_entry_set:
3446         kmem_cache_destroy(nat_entry_set_slab);
3447 destroy_free_nid:
3448         kmem_cache_destroy(free_nid_slab);
3449 destroy_nat_entry:
3450         kmem_cache_destroy(nat_entry_slab);
3451 fail:
3452         return -ENOMEM;
3453 }
3454
3455 void f2fs_destroy_node_manager_caches(void)
3456 {
3457         kmem_cache_destroy(fsync_node_entry_slab);
3458         kmem_cache_destroy(nat_entry_set_slab);
3459         kmem_cache_destroy(free_nid_slab);
3460         kmem_cache_destroy(nat_entry_slab);
3461 }