Merge tag 'sched-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / f2fs / segment.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30                                                 unsigned short seg_type)
31 {
32         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg)                                             \
40         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
41          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
42          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
43          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
44          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
45          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
46          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
47          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno)                                           \
50         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
51           SEGS_PER_SEC(sbi)) || \
52          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
53           SEGS_PER_SEC(sbi)) || \
54          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
55           SEGS_PER_SEC(sbi)) || \
56          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
57           SEGS_PER_SEC(sbi)) || \
58          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
59           SEGS_PER_SEC(sbi)) || \
60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
61           SEGS_PER_SEC(sbi)) || \
62          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
63           SEGS_PER_SEC(sbi)) || \
64          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
65           SEGS_PER_SEC(sbi)))
66
67 #define MAIN_BLKADDR(sbi)                                               \
68         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
69                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)                                               \
71         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
72                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi)                                                 \
78         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
79                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
81
82 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
84                                         (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
87          (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
90         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
94         (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
96         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
97
98 #define GET_SEGNO(sbi, blk_addr)                                        \
99         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
100         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
101                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define CAP_BLKS_PER_SEC(sbi)                                   \
103         (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104 #define CAP_SEGS_PER_SEC(sbi)                                   \
105         (SEGS_PER_SEC(sbi) -                                    \
106         BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107 #define GET_SEC_FROM_SEG(sbi, segno)                            \
108         (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno)                            \
110         ((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
112         (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
114         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116 #define GET_SUM_BLOCK(sbi, segno)                               \
117         ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
123         ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)                                 \
125         ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno)              \
127         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)                        \
129         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)                    \
131         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
134         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)                                        \
136         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138 /*
139  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140  * LFS writes data sequentially with cleaning operations.
141  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143  * fragmented segment which has similar aging degree.
144  */
145 enum {
146         LFS = 0,
147         SSR,
148         AT_SSR,
149 };
150
151 /*
152  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153  * GC_CB is based on cost-benefit algorithm.
154  * GC_GREEDY is based on greedy algorithm.
155  * GC_AT is based on age-threshold algorithm.
156  */
157 enum {
158         GC_CB = 0,
159         GC_GREEDY,
160         GC_AT,
161         ALLOC_NEXT,
162         FLUSH_DEVICE,
163         MAX_GC_POLICY,
164 };
165
166 /*
167  * BG_GC means the background cleaning job.
168  * FG_GC means the on-demand cleaning job.
169  */
170 enum {
171         BG_GC = 0,
172         FG_GC,
173 };
174
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177         int alloc_mode;                 /* LFS or SSR */
178         int gc_mode;                    /* GC_CB or GC_GREEDY */
179         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
180         unsigned int max_search;        /*
181                                          * maximum # of segments/sections
182                                          * to search
183                                          */
184         unsigned int offset;            /* last scanned bitmap offset */
185         unsigned int ofs_unit;          /* bitmap search unit */
186         unsigned int min_cost;          /* minimum cost */
187         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
188         unsigned int min_segno;         /* segment # having min. cost */
189         unsigned long long age;         /* mtime of GCed section*/
190         unsigned long long age_threshold;/* age threshold */
191 };
192
193 struct seg_entry {
194         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
195         unsigned int valid_blocks:10;   /* # of valid blocks */
196         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
197         unsigned int padding:6;         /* padding */
198         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
199 #ifdef CONFIG_F2FS_CHECK_FS
200         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
201 #endif
202         /*
203          * # of valid blocks and the validity bitmap stored in the last
204          * checkpoint pack. This information is used by the SSR mode.
205          */
206         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
207         unsigned char *discard_map;
208         unsigned long long mtime;       /* modification time of the segment */
209 };
210
211 struct sec_entry {
212         unsigned int valid_blocks;      /* # of valid blocks in a section */
213 };
214
215 #define MAX_SKIP_GC_COUNT                       16
216
217 struct revoke_entry {
218         struct list_head list;
219         block_t old_addr;               /* for revoking when fail to commit */
220         pgoff_t index;
221 };
222
223 struct sit_info {
224         block_t sit_base_addr;          /* start block address of SIT area */
225         block_t sit_blocks;             /* # of blocks used by SIT area */
226         block_t written_valid_blocks;   /* # of valid blocks in main area */
227         char *bitmap;                   /* all bitmaps pointer */
228         char *sit_bitmap;               /* SIT bitmap pointer */
229 #ifdef CONFIG_F2FS_CHECK_FS
230         char *sit_bitmap_mir;           /* SIT bitmap mirror */
231
232         /* bitmap of segments to be ignored by GC in case of errors */
233         unsigned long *invalid_segmap;
234 #endif
235         unsigned int bitmap_size;       /* SIT bitmap size */
236
237         unsigned long *tmp_map;                 /* bitmap for temporal use */
238         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
239         unsigned int dirty_sentries;            /* # of dirty sentries */
240         unsigned int sents_per_block;           /* # of SIT entries per block */
241         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
242         struct seg_entry *sentries;             /* SIT segment-level cache */
243         struct sec_entry *sec_entries;          /* SIT section-level cache */
244
245         /* for cost-benefit algorithm in cleaning procedure */
246         unsigned long long elapsed_time;        /* elapsed time after mount */
247         unsigned long long mounted_time;        /* mount time */
248         unsigned long long min_mtime;           /* min. modification time */
249         unsigned long long max_mtime;           /* max. modification time */
250         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
251         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
252
253         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254 };
255
256 struct free_segmap_info {
257         unsigned int start_segno;       /* start segment number logically */
258         unsigned int free_segments;     /* # of free segments */
259         unsigned int free_sections;     /* # of free sections */
260         spinlock_t segmap_lock;         /* free segmap lock */
261         unsigned long *free_segmap;     /* free segment bitmap */
262         unsigned long *free_secmap;     /* free section bitmap */
263 };
264
265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266 enum dirty_type {
267         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
268         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
269         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
270         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
271         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
272         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
273         DIRTY,                  /* to count # of dirty segments */
274         PRE,                    /* to count # of entirely obsolete segments */
275         NR_DIRTY_TYPE
276 };
277
278 struct dirty_seglist_info {
279         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280         unsigned long *dirty_secmap;
281         struct mutex seglist_lock;              /* lock for segment bitmaps */
282         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
283         unsigned long *victim_secmap;           /* background GC victims */
284         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
285         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
286         bool enable_pin_section;                /* enable pinning section */
287 };
288
289 /* for active log information */
290 struct curseg_info {
291         struct mutex curseg_mutex;              /* lock for consistency */
292         struct f2fs_summary_block *sum_blk;     /* cached summary block */
293         struct rw_semaphore journal_rwsem;      /* protect journal area */
294         struct f2fs_journal *journal;           /* cached journal info */
295         unsigned char alloc_type;               /* current allocation type */
296         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
297         unsigned int segno;                     /* current segment number */
298         unsigned short next_blkoff;             /* next block offset to write */
299         unsigned int zone;                      /* current zone number */
300         unsigned int next_segno;                /* preallocated segment */
301         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
302         bool inited;                            /* indicate inmem log is inited */
303 };
304
305 struct sit_entry_set {
306         struct list_head set_list;      /* link with all sit sets */
307         unsigned int start_segno;       /* start segno of sits in set */
308         unsigned int entry_cnt;         /* the # of sit entries in set */
309 };
310
311 /*
312  * inline functions
313  */
314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315 {
316         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317 }
318
319 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320                                                 unsigned int segno)
321 {
322         struct sit_info *sit_i = SIT_I(sbi);
323         return &sit_i->sentries[segno];
324 }
325
326 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327                                                 unsigned int segno)
328 {
329         struct sit_info *sit_i = SIT_I(sbi);
330         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331 }
332
333 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334                                 unsigned int segno, bool use_section)
335 {
336         /*
337          * In order to get # of valid blocks in a section instantly from many
338          * segments, f2fs manages two counting structures separately.
339          */
340         if (use_section && __is_large_section(sbi))
341                 return get_sec_entry(sbi, segno)->valid_blocks;
342         else
343                 return get_seg_entry(sbi, segno)->valid_blocks;
344 }
345
346 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347                                 unsigned int segno, bool use_section)
348 {
349         if (use_section && __is_large_section(sbi)) {
350                 unsigned int start_segno = START_SEGNO(segno);
351                 unsigned int blocks = 0;
352                 int i;
353
354                 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355                         struct seg_entry *se = get_seg_entry(sbi, start_segno);
356
357                         blocks += se->ckpt_valid_blocks;
358                 }
359                 return blocks;
360         }
361         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362 }
363
364 static inline void seg_info_from_raw_sit(struct seg_entry *se,
365                                         struct f2fs_sit_entry *rs)
366 {
367         se->valid_blocks = GET_SIT_VBLOCKS(rs);
368         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371 #ifdef CONFIG_F2FS_CHECK_FS
372         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373 #endif
374         se->type = GET_SIT_TYPE(rs);
375         se->mtime = le64_to_cpu(rs->mtime);
376 }
377
378 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379                                         struct f2fs_sit_entry *rs)
380 {
381         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382                                         se->valid_blocks;
383         rs->vblocks = cpu_to_le16(raw_vblocks);
384         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385         rs->mtime = cpu_to_le64(se->mtime);
386 }
387
388 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389                                 struct page *page, unsigned int start)
390 {
391         struct f2fs_sit_block *raw_sit;
392         struct seg_entry *se;
393         struct f2fs_sit_entry *rs;
394         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395                                         (unsigned long)MAIN_SEGS(sbi));
396         int i;
397
398         raw_sit = (struct f2fs_sit_block *)page_address(page);
399         memset(raw_sit, 0, PAGE_SIZE);
400         for (i = 0; i < end - start; i++) {
401                 rs = &raw_sit->entries[i];
402                 se = get_seg_entry(sbi, start + i);
403                 __seg_info_to_raw_sit(se, rs);
404         }
405 }
406
407 static inline void seg_info_to_raw_sit(struct seg_entry *se,
408                                         struct f2fs_sit_entry *rs)
409 {
410         __seg_info_to_raw_sit(se, rs);
411
412         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413         se->ckpt_valid_blocks = se->valid_blocks;
414 }
415
416 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417                 unsigned int max, unsigned int segno)
418 {
419         unsigned int ret;
420         spin_lock(&free_i->segmap_lock);
421         ret = find_next_bit(free_i->free_segmap, max, segno);
422         spin_unlock(&free_i->segmap_lock);
423         return ret;
424 }
425
426 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427 {
428         struct free_segmap_info *free_i = FREE_I(sbi);
429         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431         unsigned int next;
432         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
433
434         spin_lock(&free_i->segmap_lock);
435         clear_bit(segno, free_i->free_segmap);
436         free_i->free_segments++;
437
438         next = find_next_bit(free_i->free_segmap,
439                         start_segno + SEGS_PER_SEC(sbi), start_segno);
440         if (next >= start_segno + usable_segs) {
441                 clear_bit(secno, free_i->free_secmap);
442                 free_i->free_sections++;
443         }
444         spin_unlock(&free_i->segmap_lock);
445 }
446
447 static inline void __set_inuse(struct f2fs_sb_info *sbi,
448                 unsigned int segno)
449 {
450         struct free_segmap_info *free_i = FREE_I(sbi);
451         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452
453         set_bit(segno, free_i->free_segmap);
454         free_i->free_segments--;
455         if (!test_and_set_bit(secno, free_i->free_secmap))
456                 free_i->free_sections--;
457 }
458
459 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460                 unsigned int segno, bool inmem)
461 {
462         struct free_segmap_info *free_i = FREE_I(sbi);
463         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465         unsigned int next;
466         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
467
468         spin_lock(&free_i->segmap_lock);
469         if (test_and_clear_bit(segno, free_i->free_segmap)) {
470                 free_i->free_segments++;
471
472                 if (!inmem && IS_CURSEC(sbi, secno))
473                         goto skip_free;
474                 next = find_next_bit(free_i->free_segmap,
475                                 start_segno + SEGS_PER_SEC(sbi), start_segno);
476                 if (next >= start_segno + usable_segs) {
477                         if (test_and_clear_bit(secno, free_i->free_secmap))
478                                 free_i->free_sections++;
479                 }
480         }
481 skip_free:
482         spin_unlock(&free_i->segmap_lock);
483 }
484
485 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486                 unsigned int segno)
487 {
488         struct free_segmap_info *free_i = FREE_I(sbi);
489         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490
491         spin_lock(&free_i->segmap_lock);
492         if (!test_and_set_bit(segno, free_i->free_segmap)) {
493                 free_i->free_segments--;
494                 if (!test_and_set_bit(secno, free_i->free_secmap))
495                         free_i->free_sections--;
496         }
497         spin_unlock(&free_i->segmap_lock);
498 }
499
500 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501                 void *dst_addr)
502 {
503         struct sit_info *sit_i = SIT_I(sbi);
504
505 #ifdef CONFIG_F2FS_CHECK_FS
506         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507                                                 sit_i->bitmap_size))
508                 f2fs_bug_on(sbi, 1);
509 #endif
510         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511 }
512
513 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514 {
515         return SIT_I(sbi)->written_valid_blocks;
516 }
517
518 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519 {
520         return FREE_I(sbi)->free_segments;
521 }
522
523 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524 {
525         return SM_I(sbi)->reserved_segments +
526                         SM_I(sbi)->additional_reserved_segments;
527 }
528
529 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
530 {
531         return FREE_I(sbi)->free_sections;
532 }
533
534 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
535 {
536         return DIRTY_I(sbi)->nr_dirty[PRE];
537 }
538
539 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
540 {
541         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
542                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
543                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
544                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
545                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
546                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
547 }
548
549 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
550 {
551         return SM_I(sbi)->ovp_segments;
552 }
553
554 static inline int reserved_sections(struct f2fs_sb_info *sbi)
555 {
556         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
557 }
558
559 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
560                         unsigned int node_blocks, unsigned int dent_blocks)
561 {
562
563         unsigned segno, left_blocks;
564         int i;
565
566         /* check current node sections in the worst case. */
567         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
568                 segno = CURSEG_I(sbi, i)->segno;
569                 left_blocks = CAP_BLKS_PER_SEC(sbi) -
570                                 get_ckpt_valid_blocks(sbi, segno, true);
571                 if (node_blocks > left_blocks)
572                         return false;
573         }
574
575         /* check current data section for dentry blocks. */
576         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
577         left_blocks = CAP_BLKS_PER_SEC(sbi) -
578                         get_ckpt_valid_blocks(sbi, segno, true);
579         if (dent_blocks > left_blocks)
580                 return false;
581         return true;
582 }
583
584 /*
585  * calculate needed sections for dirty node/dentry
586  * and call has_curseg_enough_space
587  */
588 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
589                 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
590 {
591         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
592                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
593                                         get_pages(sbi, F2FS_DIRTY_IMETA);
594         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
595         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
596         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
597         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
598         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
599
600         if (lower_p)
601                 *lower_p = node_secs + dent_secs;
602         if (upper_p)
603                 *upper_p = node_secs + dent_secs +
604                         (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
605         if (curseg_p)
606                 *curseg_p = has_curseg_enough_space(sbi,
607                                 node_blocks, dent_blocks);
608 }
609
610 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
611                                         int freed, int needed)
612 {
613         unsigned int free_secs, lower_secs, upper_secs;
614         bool curseg_space;
615
616         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
617                 return false;
618
619         __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
620
621         free_secs = free_sections(sbi) + freed;
622         lower_secs += needed + reserved_sections(sbi);
623         upper_secs += needed + reserved_sections(sbi);
624
625         if (free_secs > upper_secs)
626                 return false;
627         if (free_secs <= lower_secs)
628                 return true;
629         return !curseg_space;
630 }
631
632 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
633                                         int freed, int needed)
634 {
635         return !has_not_enough_free_secs(sbi, freed, needed);
636 }
637
638 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
639 {
640         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
641                 return true;
642         if (likely(has_enough_free_secs(sbi, 0, 0)))
643                 return true;
644         return false;
645 }
646
647 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
648 {
649         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
650 }
651
652 static inline int utilization(struct f2fs_sb_info *sbi)
653 {
654         return div_u64((u64)valid_user_blocks(sbi) * 100,
655                                         sbi->user_block_count);
656 }
657
658 /*
659  * Sometimes f2fs may be better to drop out-of-place update policy.
660  * And, users can control the policy through sysfs entries.
661  * There are five policies with triggering conditions as follows.
662  * F2FS_IPU_FORCE - all the time,
663  * F2FS_IPU_SSR - if SSR mode is activated,
664  * F2FS_IPU_UTIL - if FS utilization is over threashold,
665  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
666  *                     threashold,
667  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
668  *                     storages. IPU will be triggered only if the # of dirty
669  *                     pages over min_fsync_blocks. (=default option)
670  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
671  * F2FS_IPU_NOCACHE - disable IPU bio cache.
672  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
673  *                            FI_OPU_WRITE flag.
674  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
675  */
676 #define DEF_MIN_IPU_UTIL        70
677 #define DEF_MIN_FSYNC_BLOCKS    8
678 #define DEF_MIN_HOT_BLOCKS      16
679
680 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
681
682 #define F2FS_IPU_DISABLE        0
683
684 /* Modification on enum should be synchronized with ipu_mode_names array */
685 enum {
686         F2FS_IPU_FORCE,
687         F2FS_IPU_SSR,
688         F2FS_IPU_UTIL,
689         F2FS_IPU_SSR_UTIL,
690         F2FS_IPU_FSYNC,
691         F2FS_IPU_ASYNC,
692         F2FS_IPU_NOCACHE,
693         F2FS_IPU_HONOR_OPU_WRITE,
694         F2FS_IPU_MAX,
695 };
696
697 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
698 {
699         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
700 }
701
702 #define F2FS_IPU_POLICY(name)                                   \
703 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
704 {                                                               \
705         return SM_I(sbi)->ipu_policy & BIT(name);               \
706 }
707
708 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
709 F2FS_IPU_POLICY(F2FS_IPU_SSR);
710 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
711 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
712 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
713 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
714 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
715 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
716
717 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
718                 int type)
719 {
720         struct curseg_info *curseg = CURSEG_I(sbi, type);
721         return curseg->segno;
722 }
723
724 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
725                 int type)
726 {
727         struct curseg_info *curseg = CURSEG_I(sbi, type);
728         return curseg->alloc_type;
729 }
730
731 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
732                 unsigned int segno)
733 {
734         return segno <= (MAIN_SEGS(sbi) - 1);
735 }
736
737 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
738 {
739         struct f2fs_sb_info *sbi = fio->sbi;
740
741         if (__is_valid_data_blkaddr(fio->old_blkaddr))
742                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
743                                         META_GENERIC : DATA_GENERIC);
744         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
745                                         META_GENERIC : DATA_GENERIC_ENHANCE);
746 }
747
748 /*
749  * Summary block is always treated as an invalid block
750  */
751 static inline int check_block_count(struct f2fs_sb_info *sbi,
752                 int segno, struct f2fs_sit_entry *raw_sit)
753 {
754         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
755         int valid_blocks = 0;
756         int cur_pos = 0, next_pos;
757         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
758
759         /* check bitmap with valid block count */
760         do {
761                 if (is_valid) {
762                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
763                                         usable_blks_per_seg,
764                                         cur_pos);
765                         valid_blocks += next_pos - cur_pos;
766                 } else
767                         next_pos = find_next_bit_le(&raw_sit->valid_map,
768                                         usable_blks_per_seg,
769                                         cur_pos);
770                 cur_pos = next_pos;
771                 is_valid = !is_valid;
772         } while (cur_pos < usable_blks_per_seg);
773
774         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
775                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
776                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
777                 set_sbi_flag(sbi, SBI_NEED_FSCK);
778                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
779                 return -EFSCORRUPTED;
780         }
781
782         if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
783                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
784                                 BLKS_PER_SEG(sbi),
785                                 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
786
787         /* check segment usage, and check boundary of a given segment number */
788         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
789                                         || !valid_main_segno(sbi, segno))) {
790                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
791                          GET_SIT_VBLOCKS(raw_sit), segno);
792                 set_sbi_flag(sbi, SBI_NEED_FSCK);
793                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
794                 return -EFSCORRUPTED;
795         }
796         return 0;
797 }
798
799 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
800                                                 unsigned int start)
801 {
802         struct sit_info *sit_i = SIT_I(sbi);
803         unsigned int offset = SIT_BLOCK_OFFSET(start);
804         block_t blk_addr = sit_i->sit_base_addr + offset;
805
806         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
807
808 #ifdef CONFIG_F2FS_CHECK_FS
809         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
810                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
811                 f2fs_bug_on(sbi, 1);
812 #endif
813
814         /* calculate sit block address */
815         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
816                 blk_addr += sit_i->sit_blocks;
817
818         return blk_addr;
819 }
820
821 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
822                                                 pgoff_t block_addr)
823 {
824         struct sit_info *sit_i = SIT_I(sbi);
825         block_addr -= sit_i->sit_base_addr;
826         if (block_addr < sit_i->sit_blocks)
827                 block_addr += sit_i->sit_blocks;
828         else
829                 block_addr -= sit_i->sit_blocks;
830
831         return block_addr + sit_i->sit_base_addr;
832 }
833
834 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
835 {
836         unsigned int block_off = SIT_BLOCK_OFFSET(start);
837
838         f2fs_change_bit(block_off, sit_i->sit_bitmap);
839 #ifdef CONFIG_F2FS_CHECK_FS
840         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
841 #endif
842 }
843
844 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
845                                                 bool base_time)
846 {
847         struct sit_info *sit_i = SIT_I(sbi);
848         time64_t diff, now = ktime_get_boottime_seconds();
849
850         if (now >= sit_i->mounted_time)
851                 return sit_i->elapsed_time + now - sit_i->mounted_time;
852
853         /* system time is set to the past */
854         if (!base_time) {
855                 diff = sit_i->mounted_time - now;
856                 if (sit_i->elapsed_time >= diff)
857                         return sit_i->elapsed_time - diff;
858                 return 0;
859         }
860         return sit_i->elapsed_time;
861 }
862
863 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
864                         unsigned int ofs_in_node, unsigned char version)
865 {
866         sum->nid = cpu_to_le32(nid);
867         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
868         sum->version = version;
869 }
870
871 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
872 {
873         return __start_cp_addr(sbi) +
874                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
875 }
876
877 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
878 {
879         return __start_cp_addr(sbi) +
880                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
881                                 - (base + 1) + type;
882 }
883
884 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
885 {
886         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
887                 return true;
888         return false;
889 }
890
891 /*
892  * It is very important to gather dirty pages and write at once, so that we can
893  * submit a big bio without interfering other data writes.
894  * By default, 512 pages for directory data,
895  * 512 pages (2MB) * 8 for nodes, and
896  * 256 pages * 8 for meta are set.
897  */
898 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
899 {
900         if (sbi->sb->s_bdi->wb.dirty_exceeded)
901                 return 0;
902
903         if (type == DATA)
904                 return BLKS_PER_SEG(sbi);
905         else if (type == NODE)
906                 return SEGS_TO_BLKS(sbi, 8);
907         else if (type == META)
908                 return 8 * BIO_MAX_VECS;
909         else
910                 return 0;
911 }
912
913 /*
914  * When writing pages, it'd better align nr_to_write for segment size.
915  */
916 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
917                                         struct writeback_control *wbc)
918 {
919         long nr_to_write, desired;
920
921         if (wbc->sync_mode != WB_SYNC_NONE)
922                 return 0;
923
924         nr_to_write = wbc->nr_to_write;
925         desired = BIO_MAX_VECS;
926         if (type == NODE)
927                 desired <<= 1;
928
929         wbc->nr_to_write = desired;
930         return desired - nr_to_write;
931 }
932
933 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
934 {
935         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936         bool wakeup = false;
937         int i;
938
939         if (force)
940                 goto wake_up;
941
942         mutex_lock(&dcc->cmd_lock);
943         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
944                 if (i + 1 < dcc->discard_granularity)
945                         break;
946                 if (!list_empty(&dcc->pend_list[i])) {
947                         wakeup = true;
948                         break;
949                 }
950         }
951         mutex_unlock(&dcc->cmd_lock);
952         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
953                 return;
954 wake_up:
955         dcc->discard_wake = true;
956         wake_up_interruptible_all(&dcc->discard_wait_queue);
957 }
958
959 static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
960 {
961         int devi;
962
963         for (devi = 0; devi < sbi->s_ndevs; devi++)
964                 if (bdev_is_zoned(FDEV(devi).bdev))
965                         return GET_SEGNO(sbi, FDEV(devi).start_blk);
966         return 0;
967 }