sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
[sfrench/cifs-2.6.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42         unsigned int xid;
43
44         spin_lock(&GlobalMid_Lock);
45         GlobalTotalActiveXid++;
46
47         /* keep high water mark for number of simultaneous ops in filesystem */
48         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49                 GlobalMaxActiveXid = GlobalTotalActiveXid;
50         if (GlobalTotalActiveXid > 65000)
51                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52         xid = GlobalCurrentXid++;
53         spin_unlock(&GlobalMid_Lock);
54         return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60         spin_lock(&GlobalMid_Lock);
61         /* if (GlobalTotalActiveXid == 0)
62                 BUG(); */
63         GlobalTotalActiveXid--;
64         spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70         struct cifs_ses *ret_buf;
71
72         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73         if (ret_buf) {
74                 atomic_inc(&sesInfoAllocCount);
75                 spin_lock_init(&ret_buf->ses_lock);
76                 ret_buf->ses_status = SES_NEW;
77                 ++ret_buf->ses_count;
78                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79                 INIT_LIST_HEAD(&ret_buf->tcon_list);
80                 mutex_init(&ret_buf->session_mutex);
81                 spin_lock_init(&ret_buf->iface_lock);
82                 INIT_LIST_HEAD(&ret_buf->iface_list);
83                 spin_lock_init(&ret_buf->chan_lock);
84         }
85         return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91         struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93         if (buf_to_free == NULL) {
94                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95                 return;
96         }
97
98         unload_nls(buf_to_free->local_nls);
99         atomic_dec(&sesInfoAllocCount);
100         kfree(buf_to_free->serverOS);
101         kfree(buf_to_free->serverDomain);
102         kfree(buf_to_free->serverNOS);
103         kfree_sensitive(buf_to_free->password);
104         kfree(buf_to_free->user_name);
105         kfree(buf_to_free->domainName);
106         kfree_sensitive(buf_to_free->auth_key.response);
107         spin_lock(&buf_to_free->iface_lock);
108         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109                                  iface_head)
110                 kref_put(&iface->refcount, release_iface);
111         spin_unlock(&buf_to_free->iface_lock);
112         kfree_sensitive(buf_to_free);
113 }
114
115 struct cifs_tcon *
116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118         struct cifs_tcon *ret_buf;
119
120         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121         if (!ret_buf)
122                 return NULL;
123
124         if (dir_leases_enabled == true) {
125                 ret_buf->cfids = init_cached_dirs();
126                 if (!ret_buf->cfids) {
127                         kfree(ret_buf);
128                         return NULL;
129                 }
130         }
131         /* else ret_buf->cfids is already set to NULL above */
132
133         atomic_inc(&tconInfoAllocCount);
134         ret_buf->status = TID_NEW;
135         ++ret_buf->tc_count;
136         spin_lock_init(&ret_buf->tc_lock);
137         INIT_LIST_HEAD(&ret_buf->openFileList);
138         INIT_LIST_HEAD(&ret_buf->tcon_list);
139         spin_lock_init(&ret_buf->open_file_lock);
140         spin_lock_init(&ret_buf->stat_lock);
141         atomic_set(&ret_buf->num_local_opens, 0);
142         atomic_set(&ret_buf->num_remote_opens, 0);
143         ret_buf->stats_from_time = ktime_get_real_seconds();
144 #ifdef CONFIG_CIFS_DFS_UPCALL
145         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
146 #endif
147
148         return ret_buf;
149 }
150
151 void
152 tconInfoFree(struct cifs_tcon *tcon)
153 {
154         if (tcon == NULL) {
155                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
156                 return;
157         }
158         free_cached_dirs(tcon->cfids);
159         atomic_dec(&tconInfoAllocCount);
160         kfree(tcon->nativeFileSystem);
161         kfree_sensitive(tcon->password);
162 #ifdef CONFIG_CIFS_DFS_UPCALL
163         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
164 #endif
165         kfree(tcon->origin_fullpath);
166         kfree(tcon);
167 }
168
169 struct smb_hdr *
170 cifs_buf_get(void)
171 {
172         struct smb_hdr *ret_buf = NULL;
173         /*
174          * SMB2 header is bigger than CIFS one - no problems to clean some
175          * more bytes for CIFS.
176          */
177         size_t buf_size = sizeof(struct smb2_hdr);
178
179         /*
180          * We could use negotiated size instead of max_msgsize -
181          * but it may be more efficient to always alloc same size
182          * albeit slightly larger than necessary and maxbuffersize
183          * defaults to this and can not be bigger.
184          */
185         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
186
187         /* clear the first few header bytes */
188         /* for most paths, more is cleared in header_assemble */
189         memset(ret_buf, 0, buf_size + 3);
190         atomic_inc(&buf_alloc_count);
191 #ifdef CONFIG_CIFS_STATS2
192         atomic_inc(&total_buf_alloc_count);
193 #endif /* CONFIG_CIFS_STATS2 */
194
195         return ret_buf;
196 }
197
198 void
199 cifs_buf_release(void *buf_to_free)
200 {
201         if (buf_to_free == NULL) {
202                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
203                 return;
204         }
205         mempool_free(buf_to_free, cifs_req_poolp);
206
207         atomic_dec(&buf_alloc_count);
208         return;
209 }
210
211 struct smb_hdr *
212 cifs_small_buf_get(void)
213 {
214         struct smb_hdr *ret_buf = NULL;
215
216 /* We could use negotiated size instead of max_msgsize -
217    but it may be more efficient to always alloc same size
218    albeit slightly larger than necessary and maxbuffersize
219    defaults to this and can not be bigger */
220         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
221         /* No need to clear memory here, cleared in header assemble */
222         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
223         atomic_inc(&small_buf_alloc_count);
224 #ifdef CONFIG_CIFS_STATS2
225         atomic_inc(&total_small_buf_alloc_count);
226 #endif /* CONFIG_CIFS_STATS2 */
227
228         return ret_buf;
229 }
230
231 void
232 cifs_small_buf_release(void *buf_to_free)
233 {
234
235         if (buf_to_free == NULL) {
236                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
237                 return;
238         }
239         mempool_free(buf_to_free, cifs_sm_req_poolp);
240
241         atomic_dec(&small_buf_alloc_count);
242         return;
243 }
244
245 void
246 free_rsp_buf(int resp_buftype, void *rsp)
247 {
248         if (resp_buftype == CIFS_SMALL_BUFFER)
249                 cifs_small_buf_release(rsp);
250         else if (resp_buftype == CIFS_LARGE_BUFFER)
251                 cifs_buf_release(rsp);
252 }
253
254 /* NB: MID can not be set if treeCon not passed in, in that
255    case it is responsbility of caller to set the mid */
256 void
257 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
258                 const struct cifs_tcon *treeCon, int word_count
259                 /* length of fixed section (word count) in two byte units  */)
260 {
261         char *temp = (char *) buffer;
262
263         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
264
265         buffer->smb_buf_length = cpu_to_be32(
266             (2 * word_count) + sizeof(struct smb_hdr) -
267             4 /*  RFC 1001 length field does not count */  +
268             2 /* for bcc field itself */) ;
269
270         buffer->Protocol[0] = 0xFF;
271         buffer->Protocol[1] = 'S';
272         buffer->Protocol[2] = 'M';
273         buffer->Protocol[3] = 'B';
274         buffer->Command = smb_command;
275         buffer->Flags = 0x00;   /* case sensitive */
276         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
277         buffer->Pid = cpu_to_le16((__u16)current->tgid);
278         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
279         if (treeCon) {
280                 buffer->Tid = treeCon->tid;
281                 if (treeCon->ses) {
282                         if (treeCon->ses->capabilities & CAP_UNICODE)
283                                 buffer->Flags2 |= SMBFLG2_UNICODE;
284                         if (treeCon->ses->capabilities & CAP_STATUS32)
285                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
286
287                         /* Uid is not converted */
288                         buffer->Uid = treeCon->ses->Suid;
289                         if (treeCon->ses->server)
290                                 buffer->Mid = get_next_mid(treeCon->ses->server);
291                 }
292                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
293                         buffer->Flags2 |= SMBFLG2_DFS;
294                 if (treeCon->nocase)
295                         buffer->Flags  |= SMBFLG_CASELESS;
296                 if ((treeCon->ses) && (treeCon->ses->server))
297                         if (treeCon->ses->server->sign)
298                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
299         }
300
301 /*  endian conversion of flags is now done just before sending */
302         buffer->WordCount = (char) word_count;
303         return;
304 }
305
306 static int
307 check_smb_hdr(struct smb_hdr *smb)
308 {
309         /* does it have the right SMB "signature" ? */
310         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
311                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
312                          *(unsigned int *)smb->Protocol);
313                 return 1;
314         }
315
316         /* if it's a response then accept */
317         if (smb->Flags & SMBFLG_RESPONSE)
318                 return 0;
319
320         /* only one valid case where server sends us request */
321         if (smb->Command == SMB_COM_LOCKING_ANDX)
322                 return 0;
323
324         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
325                  get_mid(smb));
326         return 1;
327 }
328
329 int
330 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
331 {
332         struct smb_hdr *smb = (struct smb_hdr *)buf;
333         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
334         __u32 clc_len;  /* calculated length */
335         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
336                  total_read, rfclen);
337
338         /* is this frame too small to even get to a BCC? */
339         if (total_read < 2 + sizeof(struct smb_hdr)) {
340                 if ((total_read >= sizeof(struct smb_hdr) - 1)
341                             && (smb->Status.CifsError != 0)) {
342                         /* it's an error return */
343                         smb->WordCount = 0;
344                         /* some error cases do not return wct and bcc */
345                         return 0;
346                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
347                                 (smb->WordCount == 0)) {
348                         char *tmp = (char *)smb;
349                         /* Need to work around a bug in two servers here */
350                         /* First, check if the part of bcc they sent was zero */
351                         if (tmp[sizeof(struct smb_hdr)] == 0) {
352                                 /* some servers return only half of bcc
353                                  * on simple responses (wct, bcc both zero)
354                                  * in particular have seen this on
355                                  * ulogoffX and FindClose. This leaves
356                                  * one byte of bcc potentially unitialized
357                                  */
358                                 /* zero rest of bcc */
359                                 tmp[sizeof(struct smb_hdr)+1] = 0;
360                                 return 0;
361                         }
362                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
363                 } else {
364                         cifs_dbg(VFS, "Length less than smb header size\n");
365                 }
366                 return -EIO;
367         } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
368                 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
369                          __func__, smb->WordCount);
370                 return -EIO;
371         }
372
373         /* otherwise, there is enough to get to the BCC */
374         if (check_smb_hdr(smb))
375                 return -EIO;
376         clc_len = smbCalcSize(smb);
377
378         if (4 + rfclen != total_read) {
379                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
380                          rfclen);
381                 return -EIO;
382         }
383
384         if (4 + rfclen != clc_len) {
385                 __u16 mid = get_mid(smb);
386                 /* check if bcc wrapped around for large read responses */
387                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
388                         /* check if lengths match mod 64K */
389                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
390                                 return 0; /* bcc wrapped */
391                 }
392                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
393                          clc_len, 4 + rfclen, mid);
394
395                 if (4 + rfclen < clc_len) {
396                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
397                                  rfclen, mid);
398                         return -EIO;
399                 } else if (rfclen > clc_len + 512) {
400                         /*
401                          * Some servers (Windows XP in particular) send more
402                          * data than the lengths in the SMB packet would
403                          * indicate on certain calls (byte range locks and
404                          * trans2 find first calls in particular). While the
405                          * client can handle such a frame by ignoring the
406                          * trailing data, we choose limit the amount of extra
407                          * data to 512 bytes.
408                          */
409                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
410                                  rfclen, mid);
411                         return -EIO;
412                 }
413         }
414         return 0;
415 }
416
417 bool
418 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
419 {
420         struct smb_hdr *buf = (struct smb_hdr *)buffer;
421         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
422         struct TCP_Server_Info *pserver;
423         struct cifs_ses *ses;
424         struct cifs_tcon *tcon;
425         struct cifsInodeInfo *pCifsInode;
426         struct cifsFileInfo *netfile;
427
428         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
429         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
430            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
431                 struct smb_com_transaction_change_notify_rsp *pSMBr =
432                         (struct smb_com_transaction_change_notify_rsp *)buf;
433                 struct file_notify_information *pnotify;
434                 __u32 data_offset = 0;
435                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
436
437                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
438                         data_offset = le32_to_cpu(pSMBr->DataOffset);
439
440                         if (data_offset >
441                             len - sizeof(struct file_notify_information)) {
442                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
443                                          data_offset);
444                                 return true;
445                         }
446                         pnotify = (struct file_notify_information *)
447                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
448                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
449                                  pnotify->FileName, pnotify->Action);
450                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
451                                 sizeof(struct smb_hdr)+60); */
452                         return true;
453                 }
454                 if (pSMBr->hdr.Status.CifsError) {
455                         cifs_dbg(FYI, "notify err 0x%x\n",
456                                  pSMBr->hdr.Status.CifsError);
457                         return true;
458                 }
459                 return false;
460         }
461         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
462                 return false;
463         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
464                 /* no sense logging error on invalid handle on oplock
465                    break - harmless race between close request and oplock
466                    break response is expected from time to time writing out
467                    large dirty files cached on the client */
468                 if ((NT_STATUS_INVALID_HANDLE) ==
469                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
470                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
471                         return true;
472                 } else if (ERRbadfid ==
473                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
474                         return true;
475                 } else {
476                         return false; /* on valid oplock brk we get "request" */
477                 }
478         }
479         if (pSMB->hdr.WordCount != 8)
480                 return false;
481
482         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
483                  pSMB->LockType, pSMB->OplockLevel);
484         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
485                 return false;
486
487         /* If server is a channel, select the primary channel */
488         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
489
490         /* look up tcon based on tid & uid */
491         spin_lock(&cifs_tcp_ses_lock);
492         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
493                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
494                         if (tcon->tid != buf->Tid)
495                                 continue;
496
497                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
498                         spin_lock(&tcon->open_file_lock);
499                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
500                                 if (pSMB->Fid != netfile->fid.netfid)
501                                         continue;
502
503                                 cifs_dbg(FYI, "file id match, oplock break\n");
504                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
505
506                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
507                                         &pCifsInode->flags);
508
509                                 netfile->oplock_epoch = 0;
510                                 netfile->oplock_level = pSMB->OplockLevel;
511                                 netfile->oplock_break_cancelled = false;
512                                 cifs_queue_oplock_break(netfile);
513
514                                 spin_unlock(&tcon->open_file_lock);
515                                 spin_unlock(&cifs_tcp_ses_lock);
516                                 return true;
517                         }
518                         spin_unlock(&tcon->open_file_lock);
519                         spin_unlock(&cifs_tcp_ses_lock);
520                         cifs_dbg(FYI, "No matching file for oplock break\n");
521                         return true;
522                 }
523         }
524         spin_unlock(&cifs_tcp_ses_lock);
525         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
526         return true;
527 }
528
529 void
530 dump_smb(void *buf, int smb_buf_length)
531 {
532         if (traceSMB == 0)
533                 return;
534
535         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
536                        smb_buf_length, true);
537 }
538
539 void
540 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
541 {
542         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
543                 struct cifs_tcon *tcon = NULL;
544
545                 if (cifs_sb->master_tlink)
546                         tcon = cifs_sb_master_tcon(cifs_sb);
547
548                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
549                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
550                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
551                          tcon ? tcon->tree_name : "new server");
552                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
553                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
554
555         }
556 }
557
558 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
559 {
560         oplock &= 0xF;
561
562         if (oplock == OPLOCK_EXCLUSIVE) {
563                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
564                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
565                          &cinode->netfs.inode);
566         } else if (oplock == OPLOCK_READ) {
567                 cinode->oplock = CIFS_CACHE_READ_FLG;
568                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
569                          &cinode->netfs.inode);
570         } else
571                 cinode->oplock = 0;
572 }
573
574 /*
575  * We wait for oplock breaks to be processed before we attempt to perform
576  * writes.
577  */
578 int cifs_get_writer(struct cifsInodeInfo *cinode)
579 {
580         int rc;
581
582 start:
583         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
584                          TASK_KILLABLE);
585         if (rc)
586                 return rc;
587
588         spin_lock(&cinode->writers_lock);
589         if (!cinode->writers)
590                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
591         cinode->writers++;
592         /* Check to see if we have started servicing an oplock break */
593         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
594                 cinode->writers--;
595                 if (cinode->writers == 0) {
596                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
597                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
598                 }
599                 spin_unlock(&cinode->writers_lock);
600                 goto start;
601         }
602         spin_unlock(&cinode->writers_lock);
603         return 0;
604 }
605
606 void cifs_put_writer(struct cifsInodeInfo *cinode)
607 {
608         spin_lock(&cinode->writers_lock);
609         cinode->writers--;
610         if (cinode->writers == 0) {
611                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
612                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
613         }
614         spin_unlock(&cinode->writers_lock);
615 }
616
617 /**
618  * cifs_queue_oplock_break - queue the oplock break handler for cfile
619  * @cfile: The file to break the oplock on
620  *
621  * This function is called from the demultiplex thread when it
622  * receives an oplock break for @cfile.
623  *
624  * Assumes the tcon->open_file_lock is held.
625  * Assumes cfile->file_info_lock is NOT held.
626  */
627 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
628 {
629         /*
630          * Bump the handle refcount now while we hold the
631          * open_file_lock to enforce the validity of it for the oplock
632          * break handler. The matching put is done at the end of the
633          * handler.
634          */
635         cifsFileInfo_get(cfile);
636
637         queue_work(cifsoplockd_wq, &cfile->oplock_break);
638 }
639
640 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
641 {
642         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
643         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
644 }
645
646 bool
647 backup_cred(struct cifs_sb_info *cifs_sb)
648 {
649         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
650                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
651                         return true;
652         }
653         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
654                 if (in_group_p(cifs_sb->ctx->backupgid))
655                         return true;
656         }
657
658         return false;
659 }
660
661 void
662 cifs_del_pending_open(struct cifs_pending_open *open)
663 {
664         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
665         list_del(&open->olist);
666         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
667 }
668
669 void
670 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
671                              struct cifs_pending_open *open)
672 {
673         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
674         open->oplock = CIFS_OPLOCK_NO_CHANGE;
675         open->tlink = tlink;
676         fid->pending_open = open;
677         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
678 }
679
680 void
681 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
682                       struct cifs_pending_open *open)
683 {
684         spin_lock(&tlink_tcon(tlink)->open_file_lock);
685         cifs_add_pending_open_locked(fid, tlink, open);
686         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
687 }
688
689 /*
690  * Critical section which runs after acquiring deferred_lock.
691  * As there is no reference count on cifs_deferred_close, pdclose
692  * should not be used outside deferred_lock.
693  */
694 bool
695 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
696 {
697         struct cifs_deferred_close *dclose;
698
699         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
700                 if ((dclose->netfid == cfile->fid.netfid) &&
701                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
702                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
703                         *pdclose = dclose;
704                         return true;
705                 }
706         }
707         return false;
708 }
709
710 /*
711  * Critical section which runs after acquiring deferred_lock.
712  */
713 void
714 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
715 {
716         bool is_deferred = false;
717         struct cifs_deferred_close *pdclose;
718
719         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
720         if (is_deferred) {
721                 kfree(dclose);
722                 return;
723         }
724
725         dclose->tlink = cfile->tlink;
726         dclose->netfid = cfile->fid.netfid;
727         dclose->persistent_fid = cfile->fid.persistent_fid;
728         dclose->volatile_fid = cfile->fid.volatile_fid;
729         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
730 }
731
732 /*
733  * Critical section which runs after acquiring deferred_lock.
734  */
735 void
736 cifs_del_deferred_close(struct cifsFileInfo *cfile)
737 {
738         bool is_deferred = false;
739         struct cifs_deferred_close *dclose;
740
741         is_deferred = cifs_is_deferred_close(cfile, &dclose);
742         if (!is_deferred)
743                 return;
744         list_del(&dclose->dlist);
745         kfree(dclose);
746 }
747
748 void
749 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
750 {
751         struct cifsFileInfo *cfile = NULL;
752         struct file_list *tmp_list, *tmp_next_list;
753         struct list_head file_head;
754
755         if (cifs_inode == NULL)
756                 return;
757
758         INIT_LIST_HEAD(&file_head);
759         spin_lock(&cifs_inode->open_file_lock);
760         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
761                 if (delayed_work_pending(&cfile->deferred)) {
762                         if (cancel_delayed_work(&cfile->deferred)) {
763                                 spin_lock(&cifs_inode->deferred_lock);
764                                 cifs_del_deferred_close(cfile);
765                                 spin_unlock(&cifs_inode->deferred_lock);
766
767                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
768                                 if (tmp_list == NULL)
769                                         break;
770                                 tmp_list->cfile = cfile;
771                                 list_add_tail(&tmp_list->list, &file_head);
772                         }
773                 }
774         }
775         spin_unlock(&cifs_inode->open_file_lock);
776
777         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
778                 _cifsFileInfo_put(tmp_list->cfile, false, false);
779                 list_del(&tmp_list->list);
780                 kfree(tmp_list);
781         }
782 }
783
784 void
785 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
786 {
787         struct cifsFileInfo *cfile;
788         struct file_list *tmp_list, *tmp_next_list;
789         struct list_head file_head;
790
791         INIT_LIST_HEAD(&file_head);
792         spin_lock(&tcon->open_file_lock);
793         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
794                 if (delayed_work_pending(&cfile->deferred)) {
795                         if (cancel_delayed_work(&cfile->deferred)) {
796                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
797                                 cifs_del_deferred_close(cfile);
798                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
799
800                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
801                                 if (tmp_list == NULL)
802                                         break;
803                                 tmp_list->cfile = cfile;
804                                 list_add_tail(&tmp_list->list, &file_head);
805                         }
806                 }
807         }
808         spin_unlock(&tcon->open_file_lock);
809
810         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
811                 _cifsFileInfo_put(tmp_list->cfile, true, false);
812                 list_del(&tmp_list->list);
813                 kfree(tmp_list);
814         }
815 }
816 void
817 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
818 {
819         struct cifsFileInfo *cfile;
820         struct file_list *tmp_list, *tmp_next_list;
821         struct list_head file_head;
822         void *page;
823         const char *full_path;
824
825         INIT_LIST_HEAD(&file_head);
826         page = alloc_dentry_path();
827         spin_lock(&tcon->open_file_lock);
828         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
829                 full_path = build_path_from_dentry(cfile->dentry, page);
830                 if (strstr(full_path, path)) {
831                         if (delayed_work_pending(&cfile->deferred)) {
832                                 if (cancel_delayed_work(&cfile->deferred)) {
833                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
834                                         cifs_del_deferred_close(cfile);
835                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
836
837                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
838                                         if (tmp_list == NULL)
839                                                 break;
840                                         tmp_list->cfile = cfile;
841                                         list_add_tail(&tmp_list->list, &file_head);
842                                 }
843                         }
844                 }
845         }
846         spin_unlock(&tcon->open_file_lock);
847
848         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
849                 _cifsFileInfo_put(tmp_list->cfile, true, false);
850                 list_del(&tmp_list->list);
851                 kfree(tmp_list);
852         }
853         free_dentry_path(page);
854 }
855
856 /*
857  * If a dentry has been deleted, all corresponding open handles should know that
858  * so that we do not defer close them.
859  */
860 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
861                                              const char *path)
862 {
863         struct cifsFileInfo *cfile;
864         void *page;
865         const char *full_path;
866         struct cifsInodeInfo *cinode = CIFS_I(inode);
867
868         page = alloc_dentry_path();
869         spin_lock(&cinode->open_file_lock);
870
871         /*
872          * note: we need to construct path from dentry and compare only if the
873          * inode has any hardlinks. When number of hardlinks is 1, we can just
874          * mark all open handles since they are going to be from the same file.
875          */
876         if (inode->i_nlink > 1) {
877                 list_for_each_entry(cfile, &cinode->openFileList, flist) {
878                         full_path = build_path_from_dentry(cfile->dentry, page);
879                         if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
880                                 cfile->status_file_deleted = true;
881                 }
882         } else {
883                 list_for_each_entry(cfile, &cinode->openFileList, flist)
884                         cfile->status_file_deleted = true;
885         }
886         spin_unlock(&cinode->open_file_lock);
887         free_dentry_path(page);
888 }
889
890 /* parses DFS referral V3 structure
891  * caller is responsible for freeing target_nodes
892  * returns:
893  * - on success - 0
894  * - on failure - errno
895  */
896 int
897 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
898                     unsigned int *num_of_nodes,
899                     struct dfs_info3_param **target_nodes,
900                     const struct nls_table *nls_codepage, int remap,
901                     const char *searchName, bool is_unicode)
902 {
903         int i, rc = 0;
904         char *data_end;
905         struct dfs_referral_level_3 *ref;
906
907         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
908
909         if (*num_of_nodes < 1) {
910                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
911                          *num_of_nodes);
912                 rc = -EINVAL;
913                 goto parse_DFS_referrals_exit;
914         }
915
916         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
917         if (ref->VersionNumber != cpu_to_le16(3)) {
918                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
919                          le16_to_cpu(ref->VersionNumber));
920                 rc = -EINVAL;
921                 goto parse_DFS_referrals_exit;
922         }
923
924         /* get the upper boundary of the resp buffer */
925         data_end = (char *)rsp + rsp_size;
926
927         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
928                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
929
930         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
931                                 GFP_KERNEL);
932         if (*target_nodes == NULL) {
933                 rc = -ENOMEM;
934                 goto parse_DFS_referrals_exit;
935         }
936
937         /* collect necessary data from referrals */
938         for (i = 0; i < *num_of_nodes; i++) {
939                 char *temp;
940                 int max_len;
941                 struct dfs_info3_param *node = (*target_nodes)+i;
942
943                 node->flags = le32_to_cpu(rsp->DFSFlags);
944                 if (is_unicode) {
945                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
946                                                 GFP_KERNEL);
947                         if (tmp == NULL) {
948                                 rc = -ENOMEM;
949                                 goto parse_DFS_referrals_exit;
950                         }
951                         cifsConvertToUTF16((__le16 *) tmp, searchName,
952                                            PATH_MAX, nls_codepage, remap);
953                         node->path_consumed = cifs_utf16_bytes(tmp,
954                                         le16_to_cpu(rsp->PathConsumed),
955                                         nls_codepage);
956                         kfree(tmp);
957                 } else
958                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
959
960                 node->server_type = le16_to_cpu(ref->ServerType);
961                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
962
963                 /* copy DfsPath */
964                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
965                 max_len = data_end - temp;
966                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
967                                                 is_unicode, nls_codepage);
968                 if (!node->path_name) {
969                         rc = -ENOMEM;
970                         goto parse_DFS_referrals_exit;
971                 }
972
973                 /* copy link target UNC */
974                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
975                 max_len = data_end - temp;
976                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
977                                                 is_unicode, nls_codepage);
978                 if (!node->node_name) {
979                         rc = -ENOMEM;
980                         goto parse_DFS_referrals_exit;
981                 }
982
983                 node->ttl = le32_to_cpu(ref->TimeToLive);
984
985                 ref++;
986         }
987
988 parse_DFS_referrals_exit:
989         if (rc) {
990                 free_dfs_info_array(*target_nodes, *num_of_nodes);
991                 *target_nodes = NULL;
992                 *num_of_nodes = 0;
993         }
994         return rc;
995 }
996
997 struct cifs_aio_ctx *
998 cifs_aio_ctx_alloc(void)
999 {
1000         struct cifs_aio_ctx *ctx;
1001
1002         /*
1003          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
1004          * to false so that we know when we have to unreference pages within
1005          * cifs_aio_ctx_release()
1006          */
1007         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1008         if (!ctx)
1009                 return NULL;
1010
1011         INIT_LIST_HEAD(&ctx->list);
1012         mutex_init(&ctx->aio_mutex);
1013         init_completion(&ctx->done);
1014         kref_init(&ctx->refcount);
1015         return ctx;
1016 }
1017
1018 void
1019 cifs_aio_ctx_release(struct kref *refcount)
1020 {
1021         struct cifs_aio_ctx *ctx = container_of(refcount,
1022                                         struct cifs_aio_ctx, refcount);
1023
1024         cifsFileInfo_put(ctx->cfile);
1025
1026         /*
1027          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1028          * which means that iov_iter_extract_pages() was a success and thus
1029          * that we may have references or pins on pages that we need to
1030          * release.
1031          */
1032         if (ctx->bv) {
1033                 if (ctx->should_dirty || ctx->bv_need_unpin) {
1034                         unsigned int i;
1035
1036                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
1037                                 struct page *page = ctx->bv[i].bv_page;
1038
1039                                 if (ctx->should_dirty)
1040                                         set_page_dirty(page);
1041                                 if (ctx->bv_need_unpin)
1042                                         unpin_user_page(page);
1043                         }
1044                 }
1045                 kvfree(ctx->bv);
1046         }
1047
1048         kfree(ctx);
1049 }
1050
1051 /**
1052  * cifs_alloc_hash - allocate hash and hash context together
1053  * @name: The name of the crypto hash algo
1054  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1055  *
1056  * The caller has to make sure @sdesc is initialized to either NULL or
1057  * a valid context. It can be freed via cifs_free_hash().
1058  */
1059 int
1060 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1061 {
1062         int rc = 0;
1063         struct crypto_shash *alg = NULL;
1064
1065         if (*sdesc)
1066                 return 0;
1067
1068         alg = crypto_alloc_shash(name, 0, 0);
1069         if (IS_ERR(alg)) {
1070                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1071                 rc = PTR_ERR(alg);
1072                 *sdesc = NULL;
1073                 return rc;
1074         }
1075
1076         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1077         if (*sdesc == NULL) {
1078                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1079                 crypto_free_shash(alg);
1080                 return -ENOMEM;
1081         }
1082
1083         (*sdesc)->tfm = alg;
1084         return 0;
1085 }
1086
1087 /**
1088  * cifs_free_hash - free hash and hash context together
1089  * @sdesc: Where to find the pointer to the hash TFM
1090  *
1091  * Freeing a NULL descriptor is safe.
1092  */
1093 void
1094 cifs_free_hash(struct shash_desc **sdesc)
1095 {
1096         if (unlikely(!sdesc) || !*sdesc)
1097                 return;
1098
1099         if ((*sdesc)->tfm) {
1100                 crypto_free_shash((*sdesc)->tfm);
1101                 (*sdesc)->tfm = NULL;
1102         }
1103
1104         kfree_sensitive(*sdesc);
1105         *sdesc = NULL;
1106 }
1107
1108 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1109 {
1110         const char *end;
1111
1112         /* skip initial slashes */
1113         while (*unc && (*unc == '\\' || *unc == '/'))
1114                 unc++;
1115
1116         end = unc;
1117
1118         while (*end && !(*end == '\\' || *end == '/'))
1119                 end++;
1120
1121         *h = unc;
1122         *len = end - unc;
1123 }
1124
1125 /**
1126  * copy_path_name - copy src path to dst, possibly truncating
1127  * @dst: The destination buffer
1128  * @src: The source name
1129  *
1130  * returns number of bytes written (including trailing nul)
1131  */
1132 int copy_path_name(char *dst, const char *src)
1133 {
1134         int name_len;
1135
1136         /*
1137          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1138          * will truncate and strlen(dst) will be PATH_MAX-1
1139          */
1140         name_len = strscpy(dst, src, PATH_MAX);
1141         if (WARN_ON_ONCE(name_len < 0))
1142                 name_len = PATH_MAX-1;
1143
1144         /* we count the trailing nul */
1145         name_len++;
1146         return name_len;
1147 }
1148
1149 struct super_cb_data {
1150         void *data;
1151         struct super_block *sb;
1152 };
1153
1154 static void tcon_super_cb(struct super_block *sb, void *arg)
1155 {
1156         struct super_cb_data *sd = arg;
1157         struct cifs_sb_info *cifs_sb;
1158         struct cifs_tcon *t1 = sd->data, *t2;
1159
1160         if (sd->sb)
1161                 return;
1162
1163         cifs_sb = CIFS_SB(sb);
1164         t2 = cifs_sb_master_tcon(cifs_sb);
1165
1166         spin_lock(&t2->tc_lock);
1167         if (t1->ses == t2->ses &&
1168             t1->ses->server == t2->ses->server &&
1169             t2->origin_fullpath &&
1170             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1171                 sd->sb = sb;
1172         spin_unlock(&t2->tc_lock);
1173 }
1174
1175 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1176                                             void *data)
1177 {
1178         struct super_cb_data sd = {
1179                 .data = data,
1180                 .sb = NULL,
1181         };
1182         struct file_system_type **fs_type = (struct file_system_type *[]) {
1183                 &cifs_fs_type, &smb3_fs_type, NULL,
1184         };
1185
1186         for (; *fs_type; fs_type++) {
1187                 iterate_supers_type(*fs_type, f, &sd);
1188                 if (sd.sb) {
1189                         /*
1190                          * Grab an active reference in order to prevent automounts (DFS links)
1191                          * of expiring and then freeing up our cifs superblock pointer while
1192                          * we're doing failover.
1193                          */
1194                         cifs_sb_active(sd.sb);
1195                         return sd.sb;
1196                 }
1197         }
1198         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1199         return ERR_PTR(-EINVAL);
1200 }
1201
1202 static void __cifs_put_super(struct super_block *sb)
1203 {
1204         if (!IS_ERR_OR_NULL(sb))
1205                 cifs_sb_deactive(sb);
1206 }
1207
1208 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1209 {
1210         spin_lock(&tcon->tc_lock);
1211         if (!tcon->origin_fullpath) {
1212                 spin_unlock(&tcon->tc_lock);
1213                 return ERR_PTR(-ENOENT);
1214         }
1215         spin_unlock(&tcon->tc_lock);
1216         return __cifs_get_super(tcon_super_cb, tcon);
1217 }
1218
1219 void cifs_put_tcp_super(struct super_block *sb)
1220 {
1221         __cifs_put_super(sb);
1222 }
1223
1224 #ifdef CONFIG_CIFS_DFS_UPCALL
1225 int match_target_ip(struct TCP_Server_Info *server,
1226                     const char *share, size_t share_len,
1227                     bool *result)
1228 {
1229         int rc;
1230         char *target;
1231         struct sockaddr_storage ss;
1232
1233         *result = false;
1234
1235         target = kzalloc(share_len + 3, GFP_KERNEL);
1236         if (!target)
1237                 return -ENOMEM;
1238
1239         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1240
1241         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1242
1243         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1244         kfree(target);
1245
1246         if (rc < 0)
1247                 return rc;
1248
1249         spin_lock(&server->srv_lock);
1250         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1251         spin_unlock(&server->srv_lock);
1252         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1253         return 0;
1254 }
1255
1256 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1257 {
1258         int rc;
1259
1260         kfree(cifs_sb->prepath);
1261         cifs_sb->prepath = NULL;
1262
1263         if (prefix && *prefix) {
1264                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1265                 if (IS_ERR(cifs_sb->prepath)) {
1266                         rc = PTR_ERR(cifs_sb->prepath);
1267                         cifs_sb->prepath = NULL;
1268                         return rc;
1269                 }
1270                 if (cifs_sb->prepath)
1271                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1272         }
1273
1274         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1275         return 0;
1276 }
1277
1278 /*
1279  * Handle weird Windows SMB server behaviour. It responds with
1280  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1281  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1282  * non-ASCII unicode symbols.
1283  */
1284 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1285                                    struct cifs_tcon *tcon,
1286                                    struct cifs_sb_info *cifs_sb,
1287                                    const char *full_path,
1288                                    bool *islink)
1289 {
1290         struct cifs_ses *ses = tcon->ses;
1291         size_t len;
1292         char *path;
1293         char *ref_path;
1294
1295         *islink = false;
1296
1297         /*
1298          * Fast path - skip check when @full_path doesn't have a prefix path to
1299          * look up or tcon is not DFS.
1300          */
1301         if (strlen(full_path) < 2 || !cifs_sb ||
1302             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1303             !is_tcon_dfs(tcon))
1304                 return 0;
1305
1306         spin_lock(&tcon->tc_lock);
1307         if (!tcon->origin_fullpath) {
1308                 spin_unlock(&tcon->tc_lock);
1309                 return 0;
1310         }
1311         spin_unlock(&tcon->tc_lock);
1312
1313         /*
1314          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1315          * to get a referral to figure out whether it is an DFS link.
1316          */
1317         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1318         path = kmalloc(len, GFP_KERNEL);
1319         if (!path)
1320                 return -ENOMEM;
1321
1322         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1323         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1324                                             cifs_remap(cifs_sb));
1325         kfree(path);
1326
1327         if (IS_ERR(ref_path)) {
1328                 if (PTR_ERR(ref_path) != -EINVAL)
1329                         return PTR_ERR(ref_path);
1330         } else {
1331                 struct dfs_info3_param *refs = NULL;
1332                 int num_refs = 0;
1333
1334                 /*
1335                  * XXX: we are not using dfs_cache_find() here because we might
1336                  * end up filling all the DFS cache and thus potentially
1337                  * removing cached DFS targets that the client would eventually
1338                  * need during failover.
1339                  */
1340                 ses = CIFS_DFS_ROOT_SES(ses);
1341                 if (ses->server->ops->get_dfs_refer &&
1342                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1343                                                      &num_refs, cifs_sb->local_nls,
1344                                                      cifs_remap(cifs_sb)))
1345                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1346                 free_dfs_info_array(refs, num_refs);
1347                 kfree(ref_path);
1348         }
1349         return 0;
1350 }
1351 #endif
1352
1353 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1354 {
1355         int timeout = 10;
1356         int rc;
1357
1358         spin_lock(&server->srv_lock);
1359         if (server->tcpStatus != CifsNeedReconnect) {
1360                 spin_unlock(&server->srv_lock);
1361                 return 0;
1362         }
1363         timeout *= server->nr_targets;
1364         spin_unlock(&server->srv_lock);
1365
1366         /*
1367          * Give demultiplex thread up to 10 seconds to each target available for
1368          * reconnect -- should be greater than cifs socket timeout which is 7
1369          * seconds.
1370          *
1371          * On "soft" mounts we wait once. Hard mounts keep retrying until
1372          * process is killed or server comes back on-line.
1373          */
1374         do {
1375                 rc = wait_event_interruptible_timeout(server->response_q,
1376                                                       (server->tcpStatus != CifsNeedReconnect),
1377                                                       timeout * HZ);
1378                 if (rc < 0) {
1379                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1380                                  __func__);
1381                         return -ERESTARTSYS;
1382                 }
1383
1384                 /* are we still trying to reconnect? */
1385                 spin_lock(&server->srv_lock);
1386                 if (server->tcpStatus != CifsNeedReconnect) {
1387                         spin_unlock(&server->srv_lock);
1388                         return 0;
1389                 }
1390                 spin_unlock(&server->srv_lock);
1391         } while (retry);
1392
1393         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1394         return -EHOSTDOWN;
1395 }