Merge tag 'exfat-for-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linkin...
[sfrench/cifs-2.6.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39         {
40                 .procname       = "unprivileged_userfaultfd",
41                 .data           = &sysctl_unprivileged_userfaultfd,
42                 .maxlen         = sizeof(sysctl_unprivileged_userfaultfd),
43                 .mode           = 0644,
44                 .proc_handler   = proc_dointvec_minmax,
45                 .extra1         = SYSCTL_ZERO,
46                 .extra2         = SYSCTL_ONE,
47         },
48 };
49 #endif
50
51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
52
53 struct userfaultfd_fork_ctx {
54         struct userfaultfd_ctx *orig;
55         struct userfaultfd_ctx *new;
56         struct list_head list;
57 };
58
59 struct userfaultfd_unmap_ctx {
60         struct userfaultfd_ctx *ctx;
61         unsigned long start;
62         unsigned long end;
63         struct list_head list;
64 };
65
66 struct userfaultfd_wait_queue {
67         struct uffd_msg msg;
68         wait_queue_entry_t wq;
69         struct userfaultfd_ctx *ctx;
70         bool waken;
71 };
72
73 struct userfaultfd_wake_range {
74         unsigned long start;
75         unsigned long len;
76 };
77
78 /* internal indication that UFFD_API ioctl was successfully executed */
79 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
80
81 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
82 {
83         return ctx->features & UFFD_FEATURE_INITIALIZED;
84 }
85
86 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
87 {
88         return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
89 }
90
91 /*
92  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
93  * meaningful when userfaultfd_wp()==true on the vma and when it's
94  * anonymous.
95  */
96 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
97 {
98         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
99
100         if (!ctx)
101                 return false;
102
103         return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
104 }
105
106 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
107                                      vm_flags_t flags)
108 {
109         const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
110
111         vm_flags_reset(vma, flags);
112         /*
113          * For shared mappings, we want to enable writenotify while
114          * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115          * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
116          */
117         if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118                 vma_set_page_prot(vma);
119 }
120
121 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
122                                      int wake_flags, void *key)
123 {
124         struct userfaultfd_wake_range *range = key;
125         int ret;
126         struct userfaultfd_wait_queue *uwq;
127         unsigned long start, len;
128
129         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
130         ret = 0;
131         /* len == 0 means wake all */
132         start = range->start;
133         len = range->len;
134         if (len && (start > uwq->msg.arg.pagefault.address ||
135                     start + len <= uwq->msg.arg.pagefault.address))
136                 goto out;
137         WRITE_ONCE(uwq->waken, true);
138         /*
139          * The Program-Order guarantees provided by the scheduler
140          * ensure uwq->waken is visible before the task is woken.
141          */
142         ret = wake_up_state(wq->private, mode);
143         if (ret) {
144                 /*
145                  * Wake only once, autoremove behavior.
146                  *
147                  * After the effect of list_del_init is visible to the other
148                  * CPUs, the waitqueue may disappear from under us, see the
149                  * !list_empty_careful() in handle_userfault().
150                  *
151                  * try_to_wake_up() has an implicit smp_mb(), and the
152                  * wq->private is read before calling the extern function
153                  * "wake_up_state" (which in turns calls try_to_wake_up).
154                  */
155                 list_del_init(&wq->entry);
156         }
157 out:
158         return ret;
159 }
160
161 /**
162  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
163  * context.
164  * @ctx: [in] Pointer to the userfaultfd context.
165  */
166 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
167 {
168         refcount_inc(&ctx->refcount);
169 }
170
171 /**
172  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
173  * context.
174  * @ctx: [in] Pointer to userfaultfd context.
175  *
176  * The userfaultfd context reference must have been previously acquired either
177  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
178  */
179 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
180 {
181         if (refcount_dec_and_test(&ctx->refcount)) {
182                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
186                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
188                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
190                 mmdrop(ctx->mm);
191                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
192         }
193 }
194
195 static inline void msg_init(struct uffd_msg *msg)
196 {
197         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
198         /*
199          * Must use memset to zero out the paddings or kernel data is
200          * leaked to userland.
201          */
202         memset(msg, 0, sizeof(struct uffd_msg));
203 }
204
205 static inline struct uffd_msg userfault_msg(unsigned long address,
206                                             unsigned long real_address,
207                                             unsigned int flags,
208                                             unsigned long reason,
209                                             unsigned int features)
210 {
211         struct uffd_msg msg;
212
213         msg_init(&msg);
214         msg.event = UFFD_EVENT_PAGEFAULT;
215
216         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217                                     real_address : address;
218
219         /*
220          * These flags indicate why the userfault occurred:
221          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223          * - Neither of these flags being set indicates a MISSING fault.
224          *
225          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226          * fault. Otherwise, it was a read fault.
227          */
228         if (flags & FAULT_FLAG_WRITE)
229                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
230         if (reason & VM_UFFD_WP)
231                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
232         if (reason & VM_UFFD_MINOR)
233                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
234         if (features & UFFD_FEATURE_THREAD_ID)
235                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
236         return msg;
237 }
238
239 #ifdef CONFIG_HUGETLB_PAGE
240 /*
241  * Same functionality as userfaultfd_must_wait below with modifications for
242  * hugepmd ranges.
243  */
244 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
245                                               struct vm_fault *vmf,
246                                               unsigned long reason)
247 {
248         struct vm_area_struct *vma = vmf->vma;
249         pte_t *ptep, pte;
250         bool ret = true;
251
252         assert_fault_locked(vmf);
253
254         ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
255         if (!ptep)
256                 goto out;
257
258         ret = false;
259         pte = huge_ptep_get(ptep);
260
261         /*
262          * Lockless access: we're in a wait_event so it's ok if it
263          * changes under us.  PTE markers should be handled the same as none
264          * ptes here.
265          */
266         if (huge_pte_none_mostly(pte))
267                 ret = true;
268         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
269                 ret = true;
270 out:
271         return ret;
272 }
273 #else
274 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
275                                               struct vm_fault *vmf,
276                                               unsigned long reason)
277 {
278         return false;   /* should never get here */
279 }
280 #endif /* CONFIG_HUGETLB_PAGE */
281
282 /*
283  * Verify the pagetables are still not ok after having reigstered into
284  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285  * userfault that has already been resolved, if userfaultfd_read and
286  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
287  * threads.
288  */
289 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
290                                          struct vm_fault *vmf,
291                                          unsigned long reason)
292 {
293         struct mm_struct *mm = ctx->mm;
294         unsigned long address = vmf->address;
295         pgd_t *pgd;
296         p4d_t *p4d;
297         pud_t *pud;
298         pmd_t *pmd, _pmd;
299         pte_t *pte;
300         pte_t ptent;
301         bool ret = true;
302
303         assert_fault_locked(vmf);
304
305         pgd = pgd_offset(mm, address);
306         if (!pgd_present(*pgd))
307                 goto out;
308         p4d = p4d_offset(pgd, address);
309         if (!p4d_present(*p4d))
310                 goto out;
311         pud = pud_offset(p4d, address);
312         if (!pud_present(*pud))
313                 goto out;
314         pmd = pmd_offset(pud, address);
315 again:
316         _pmd = pmdp_get_lockless(pmd);
317         if (pmd_none(_pmd))
318                 goto out;
319
320         ret = false;
321         if (!pmd_present(_pmd) || pmd_devmap(_pmd))
322                 goto out;
323
324         if (pmd_trans_huge(_pmd)) {
325                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326                         ret = true;
327                 goto out;
328         }
329
330         pte = pte_offset_map(pmd, address);
331         if (!pte) {
332                 ret = true;
333                 goto again;
334         }
335         /*
336          * Lockless access: we're in a wait_event so it's ok if it
337          * changes under us.  PTE markers should be handled the same as none
338          * ptes here.
339          */
340         ptent = ptep_get(pte);
341         if (pte_none_mostly(ptent))
342                 ret = true;
343         if (!pte_write(ptent) && (reason & VM_UFFD_WP))
344                 ret = true;
345         pte_unmap(pte);
346
347 out:
348         return ret;
349 }
350
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352 {
353         if (flags & FAULT_FLAG_INTERRUPTIBLE)
354                 return TASK_INTERRUPTIBLE;
355
356         if (flags & FAULT_FLAG_KILLABLE)
357                 return TASK_KILLABLE;
358
359         return TASK_UNINTERRUPTIBLE;
360 }
361
362 /*
363  * The locking rules involved in returning VM_FAULT_RETRY depending on
364  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366  * recommendation in __lock_page_or_retry is not an understatement.
367  *
368  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370  * not set.
371  *
372  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373  * set, VM_FAULT_RETRY can still be returned if and only if there are
374  * fatal_signal_pending()s, and the mmap_lock must be released before
375  * returning it.
376  */
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378 {
379         struct vm_area_struct *vma = vmf->vma;
380         struct mm_struct *mm = vma->vm_mm;
381         struct userfaultfd_ctx *ctx;
382         struct userfaultfd_wait_queue uwq;
383         vm_fault_t ret = VM_FAULT_SIGBUS;
384         bool must_wait;
385         unsigned int blocking_state;
386
387         /*
388          * We don't do userfault handling for the final child pid update.
389          *
390          * We also don't do userfault handling during
391          * coredumping. hugetlbfs has the special
392          * hugetlb_follow_page_mask() to skip missing pages in the
393          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394          * the no_page_table() helper in follow_page_mask(), but the
395          * shmem_vm_ops->fault method is invoked even during
396          * coredumping and it ends up here.
397          */
398         if (current->flags & (PF_EXITING|PF_DUMPCORE))
399                 goto out;
400
401         assert_fault_locked(vmf);
402
403         ctx = vma->vm_userfaultfd_ctx.ctx;
404         if (!ctx)
405                 goto out;
406
407         BUG_ON(ctx->mm != mm);
408
409         /* Any unrecognized flag is a bug. */
410         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412         VM_BUG_ON(!reason || (reason & (reason - 1)));
413
414         if (ctx->features & UFFD_FEATURE_SIGBUS)
415                 goto out;
416         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
417                 goto out;
418
419         /*
420          * If it's already released don't get it. This avoids to loop
421          * in __get_user_pages if userfaultfd_release waits on the
422          * caller of handle_userfault to release the mmap_lock.
423          */
424         if (unlikely(READ_ONCE(ctx->released))) {
425                 /*
426                  * Don't return VM_FAULT_SIGBUS in this case, so a non
427                  * cooperative manager can close the uffd after the
428                  * last UFFDIO_COPY, without risking to trigger an
429                  * involuntary SIGBUS if the process was starting the
430                  * userfaultfd while the userfaultfd was still armed
431                  * (but after the last UFFDIO_COPY). If the uffd
432                  * wasn't already closed when the userfault reached
433                  * this point, that would normally be solved by
434                  * userfaultfd_must_wait returning 'false'.
435                  *
436                  * If we were to return VM_FAULT_SIGBUS here, the non
437                  * cooperative manager would be instead forced to
438                  * always call UFFDIO_UNREGISTER before it can safely
439                  * close the uffd.
440                  */
441                 ret = VM_FAULT_NOPAGE;
442                 goto out;
443         }
444
445         /*
446          * Check that we can return VM_FAULT_RETRY.
447          *
448          * NOTE: it should become possible to return VM_FAULT_RETRY
449          * even if FAULT_FLAG_TRIED is set without leading to gup()
450          * -EBUSY failures, if the userfaultfd is to be extended for
451          * VM_UFFD_WP tracking and we intend to arm the userfault
452          * without first stopping userland access to the memory. For
453          * VM_UFFD_MISSING userfaults this is enough for now.
454          */
455         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
456                 /*
457                  * Validate the invariant that nowait must allow retry
458                  * to be sure not to return SIGBUS erroneously on
459                  * nowait invocations.
460                  */
461                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
462 #ifdef CONFIG_DEBUG_VM
463                 if (printk_ratelimit()) {
464                         printk(KERN_WARNING
465                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
466                                vmf->flags);
467                         dump_stack();
468                 }
469 #endif
470                 goto out;
471         }
472
473         /*
474          * Handle nowait, not much to do other than tell it to retry
475          * and wait.
476          */
477         ret = VM_FAULT_RETRY;
478         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
479                 goto out;
480
481         /* take the reference before dropping the mmap_lock */
482         userfaultfd_ctx_get(ctx);
483
484         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485         uwq.wq.private = current;
486         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487                                 reason, ctx->features);
488         uwq.ctx = ctx;
489         uwq.waken = false;
490
491         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
492
493         /*
494          * Take the vma lock now, in order to safely call
495          * userfaultfd_huge_must_wait() later. Since acquiring the
496          * (sleepable) vma lock can modify the current task state, that
497          * must be before explicitly calling set_current_state().
498          */
499         if (is_vm_hugetlb_page(vma))
500                 hugetlb_vma_lock_read(vma);
501
502         spin_lock_irq(&ctx->fault_pending_wqh.lock);
503         /*
504          * After the __add_wait_queue the uwq is visible to userland
505          * through poll/read().
506          */
507         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
508         /*
509          * The smp_mb() after __set_current_state prevents the reads
510          * following the spin_unlock to happen before the list_add in
511          * __add_wait_queue.
512          */
513         set_current_state(blocking_state);
514         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
515
516         if (!is_vm_hugetlb_page(vma))
517                 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
518         else
519                 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
520         if (is_vm_hugetlb_page(vma))
521                 hugetlb_vma_unlock_read(vma);
522         release_fault_lock(vmf);
523
524         if (likely(must_wait && !READ_ONCE(ctx->released))) {
525                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
526                 schedule();
527         }
528
529         __set_current_state(TASK_RUNNING);
530
531         /*
532          * Here we race with the list_del; list_add in
533          * userfaultfd_ctx_read(), however because we don't ever run
534          * list_del_init() to refile across the two lists, the prev
535          * and next pointers will never point to self. list_add also
536          * would never let any of the two pointers to point to
537          * self. So list_empty_careful won't risk to see both pointers
538          * pointing to self at any time during the list refile. The
539          * only case where list_del_init() is called is the full
540          * removal in the wake function and there we don't re-list_add
541          * and it's fine not to block on the spinlock. The uwq on this
542          * kernel stack can be released after the list_del_init.
543          */
544         if (!list_empty_careful(&uwq.wq.entry)) {
545                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
546                 /*
547                  * No need of list_del_init(), the uwq on the stack
548                  * will be freed shortly anyway.
549                  */
550                 list_del(&uwq.wq.entry);
551                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
552         }
553
554         /*
555          * ctx may go away after this if the userfault pseudo fd is
556          * already released.
557          */
558         userfaultfd_ctx_put(ctx);
559
560 out:
561         return ret;
562 }
563
564 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565                                               struct userfaultfd_wait_queue *ewq)
566 {
567         struct userfaultfd_ctx *release_new_ctx;
568
569         if (WARN_ON_ONCE(current->flags & PF_EXITING))
570                 goto out;
571
572         ewq->ctx = ctx;
573         init_waitqueue_entry(&ewq->wq, current);
574         release_new_ctx = NULL;
575
576         spin_lock_irq(&ctx->event_wqh.lock);
577         /*
578          * After the __add_wait_queue the uwq is visible to userland
579          * through poll/read().
580          */
581         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
582         for (;;) {
583                 set_current_state(TASK_KILLABLE);
584                 if (ewq->msg.event == 0)
585                         break;
586                 if (READ_ONCE(ctx->released) ||
587                     fatal_signal_pending(current)) {
588                         /*
589                          * &ewq->wq may be queued in fork_event, but
590                          * __remove_wait_queue ignores the head
591                          * parameter. It would be a problem if it
592                          * didn't.
593                          */
594                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
595                         if (ewq->msg.event == UFFD_EVENT_FORK) {
596                                 struct userfaultfd_ctx *new;
597
598                                 new = (struct userfaultfd_ctx *)
599                                         (unsigned long)
600                                         ewq->msg.arg.reserved.reserved1;
601                                 release_new_ctx = new;
602                         }
603                         break;
604                 }
605
606                 spin_unlock_irq(&ctx->event_wqh.lock);
607
608                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
609                 schedule();
610
611                 spin_lock_irq(&ctx->event_wqh.lock);
612         }
613         __set_current_state(TASK_RUNNING);
614         spin_unlock_irq(&ctx->event_wqh.lock);
615
616         if (release_new_ctx) {
617                 struct vm_area_struct *vma;
618                 struct mm_struct *mm = release_new_ctx->mm;
619                 VMA_ITERATOR(vmi, mm, 0);
620
621                 /* the various vma->vm_userfaultfd_ctx still points to it */
622                 mmap_write_lock(mm);
623                 for_each_vma(vmi, vma) {
624                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
625                                 vma_start_write(vma);
626                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
627                                 userfaultfd_set_vm_flags(vma,
628                                                          vma->vm_flags & ~__VM_UFFD_FLAGS);
629                         }
630                 }
631                 mmap_write_unlock(mm);
632
633                 userfaultfd_ctx_put(release_new_ctx);
634         }
635
636         /*
637          * ctx may go away after this if the userfault pseudo fd is
638          * already released.
639          */
640 out:
641         atomic_dec(&ctx->mmap_changing);
642         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
643         userfaultfd_ctx_put(ctx);
644 }
645
646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647                                        struct userfaultfd_wait_queue *ewq)
648 {
649         ewq->msg.event = 0;
650         wake_up_locked(&ctx->event_wqh);
651         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652 }
653
654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655 {
656         struct userfaultfd_ctx *ctx = NULL, *octx;
657         struct userfaultfd_fork_ctx *fctx;
658
659         octx = vma->vm_userfaultfd_ctx.ctx;
660         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661                 vma_start_write(vma);
662                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
664                 return 0;
665         }
666
667         list_for_each_entry(fctx, fcs, list)
668                 if (fctx->orig == octx) {
669                         ctx = fctx->new;
670                         break;
671                 }
672
673         if (!ctx) {
674                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675                 if (!fctx)
676                         return -ENOMEM;
677
678                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679                 if (!ctx) {
680                         kfree(fctx);
681                         return -ENOMEM;
682                 }
683
684                 refcount_set(&ctx->refcount, 1);
685                 ctx->flags = octx->flags;
686                 ctx->features = octx->features;
687                 ctx->released = false;
688                 init_rwsem(&ctx->map_changing_lock);
689                 atomic_set(&ctx->mmap_changing, 0);
690                 ctx->mm = vma->vm_mm;
691                 mmgrab(ctx->mm);
692
693                 userfaultfd_ctx_get(octx);
694                 down_write(&octx->map_changing_lock);
695                 atomic_inc(&octx->mmap_changing);
696                 up_write(&octx->map_changing_lock);
697                 fctx->orig = octx;
698                 fctx->new = ctx;
699                 list_add_tail(&fctx->list, fcs);
700         }
701
702         vma->vm_userfaultfd_ctx.ctx = ctx;
703         return 0;
704 }
705
706 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
707 {
708         struct userfaultfd_ctx *ctx = fctx->orig;
709         struct userfaultfd_wait_queue ewq;
710
711         msg_init(&ewq.msg);
712
713         ewq.msg.event = UFFD_EVENT_FORK;
714         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
715
716         userfaultfd_event_wait_completion(ctx, &ewq);
717 }
718
719 void dup_userfaultfd_complete(struct list_head *fcs)
720 {
721         struct userfaultfd_fork_ctx *fctx, *n;
722
723         list_for_each_entry_safe(fctx, n, fcs, list) {
724                 dup_fctx(fctx);
725                 list_del(&fctx->list);
726                 kfree(fctx);
727         }
728 }
729
730 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731                              struct vm_userfaultfd_ctx *vm_ctx)
732 {
733         struct userfaultfd_ctx *ctx;
734
735         ctx = vma->vm_userfaultfd_ctx.ctx;
736
737         if (!ctx)
738                 return;
739
740         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
741                 vm_ctx->ctx = ctx;
742                 userfaultfd_ctx_get(ctx);
743                 down_write(&ctx->map_changing_lock);
744                 atomic_inc(&ctx->mmap_changing);
745                 up_write(&ctx->map_changing_lock);
746         } else {
747                 /* Drop uffd context if remap feature not enabled */
748                 vma_start_write(vma);
749                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
750                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
751         }
752 }
753
754 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
755                                  unsigned long from, unsigned long to,
756                                  unsigned long len)
757 {
758         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
759         struct userfaultfd_wait_queue ewq;
760
761         if (!ctx)
762                 return;
763
764         if (to & ~PAGE_MASK) {
765                 userfaultfd_ctx_put(ctx);
766                 return;
767         }
768
769         msg_init(&ewq.msg);
770
771         ewq.msg.event = UFFD_EVENT_REMAP;
772         ewq.msg.arg.remap.from = from;
773         ewq.msg.arg.remap.to = to;
774         ewq.msg.arg.remap.len = len;
775
776         userfaultfd_event_wait_completion(ctx, &ewq);
777 }
778
779 bool userfaultfd_remove(struct vm_area_struct *vma,
780                         unsigned long start, unsigned long end)
781 {
782         struct mm_struct *mm = vma->vm_mm;
783         struct userfaultfd_ctx *ctx;
784         struct userfaultfd_wait_queue ewq;
785
786         ctx = vma->vm_userfaultfd_ctx.ctx;
787         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
788                 return true;
789
790         userfaultfd_ctx_get(ctx);
791         down_write(&ctx->map_changing_lock);
792         atomic_inc(&ctx->mmap_changing);
793         up_write(&ctx->map_changing_lock);
794         mmap_read_unlock(mm);
795
796         msg_init(&ewq.msg);
797
798         ewq.msg.event = UFFD_EVENT_REMOVE;
799         ewq.msg.arg.remove.start = start;
800         ewq.msg.arg.remove.end = end;
801
802         userfaultfd_event_wait_completion(ctx, &ewq);
803
804         return false;
805 }
806
807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808                           unsigned long start, unsigned long end)
809 {
810         struct userfaultfd_unmap_ctx *unmap_ctx;
811
812         list_for_each_entry(unmap_ctx, unmaps, list)
813                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814                     unmap_ctx->end == end)
815                         return true;
816
817         return false;
818 }
819
820 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
821                            unsigned long end, struct list_head *unmaps)
822 {
823         struct userfaultfd_unmap_ctx *unmap_ctx;
824         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
825
826         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827             has_unmap_ctx(ctx, unmaps, start, end))
828                 return 0;
829
830         unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
831         if (!unmap_ctx)
832                 return -ENOMEM;
833
834         userfaultfd_ctx_get(ctx);
835         down_write(&ctx->map_changing_lock);
836         atomic_inc(&ctx->mmap_changing);
837         up_write(&ctx->map_changing_lock);
838         unmap_ctx->ctx = ctx;
839         unmap_ctx->start = start;
840         unmap_ctx->end = end;
841         list_add_tail(&unmap_ctx->list, unmaps);
842
843         return 0;
844 }
845
846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847 {
848         struct userfaultfd_unmap_ctx *ctx, *n;
849         struct userfaultfd_wait_queue ewq;
850
851         list_for_each_entry_safe(ctx, n, uf, list) {
852                 msg_init(&ewq.msg);
853
854                 ewq.msg.event = UFFD_EVENT_UNMAP;
855                 ewq.msg.arg.remove.start = ctx->start;
856                 ewq.msg.arg.remove.end = ctx->end;
857
858                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859
860                 list_del(&ctx->list);
861                 kfree(ctx);
862         }
863 }
864
865 static int userfaultfd_release(struct inode *inode, struct file *file)
866 {
867         struct userfaultfd_ctx *ctx = file->private_data;
868         struct mm_struct *mm = ctx->mm;
869         struct vm_area_struct *vma, *prev;
870         /* len == 0 means wake all */
871         struct userfaultfd_wake_range range = { .len = 0, };
872         unsigned long new_flags;
873         VMA_ITERATOR(vmi, mm, 0);
874
875         WRITE_ONCE(ctx->released, true);
876
877         if (!mmget_not_zero(mm))
878                 goto wakeup;
879
880         /*
881          * Flush page faults out of all CPUs. NOTE: all page faults
882          * must be retried without returning VM_FAULT_SIGBUS if
883          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
884          * changes while handle_userfault released the mmap_lock. So
885          * it's critical that released is set to true (above), before
886          * taking the mmap_lock for writing.
887          */
888         mmap_write_lock(mm);
889         prev = NULL;
890         for_each_vma(vmi, vma) {
891                 cond_resched();
892                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
893                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
894                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
895                         prev = vma;
896                         continue;
897                 }
898                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
899                 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
900                                             vma->vm_end, new_flags,
901                                             NULL_VM_UFFD_CTX);
902
903                 vma_start_write(vma);
904                 userfaultfd_set_vm_flags(vma, new_flags);
905                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
906
907                 prev = vma;
908         }
909         mmap_write_unlock(mm);
910         mmput(mm);
911 wakeup:
912         /*
913          * After no new page faults can wait on this fault_*wqh, flush
914          * the last page faults that may have been already waiting on
915          * the fault_*wqh.
916          */
917         spin_lock_irq(&ctx->fault_pending_wqh.lock);
918         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
919         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
920         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
921
922         /* Flush pending events that may still wait on event_wqh */
923         wake_up_all(&ctx->event_wqh);
924
925         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
926         userfaultfd_ctx_put(ctx);
927         return 0;
928 }
929
930 /* fault_pending_wqh.lock must be hold by the caller */
931 static inline struct userfaultfd_wait_queue *find_userfault_in(
932                 wait_queue_head_t *wqh)
933 {
934         wait_queue_entry_t *wq;
935         struct userfaultfd_wait_queue *uwq;
936
937         lockdep_assert_held(&wqh->lock);
938
939         uwq = NULL;
940         if (!waitqueue_active(wqh))
941                 goto out;
942         /* walk in reverse to provide FIFO behavior to read userfaults */
943         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
944         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
945 out:
946         return uwq;
947 }
948
949 static inline struct userfaultfd_wait_queue *find_userfault(
950                 struct userfaultfd_ctx *ctx)
951 {
952         return find_userfault_in(&ctx->fault_pending_wqh);
953 }
954
955 static inline struct userfaultfd_wait_queue *find_userfault_evt(
956                 struct userfaultfd_ctx *ctx)
957 {
958         return find_userfault_in(&ctx->event_wqh);
959 }
960
961 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
962 {
963         struct userfaultfd_ctx *ctx = file->private_data;
964         __poll_t ret;
965
966         poll_wait(file, &ctx->fd_wqh, wait);
967
968         if (!userfaultfd_is_initialized(ctx))
969                 return EPOLLERR;
970
971         /*
972          * poll() never guarantees that read won't block.
973          * userfaults can be waken before they're read().
974          */
975         if (unlikely(!(file->f_flags & O_NONBLOCK)))
976                 return EPOLLERR;
977         /*
978          * lockless access to see if there are pending faults
979          * __pollwait last action is the add_wait_queue but
980          * the spin_unlock would allow the waitqueue_active to
981          * pass above the actual list_add inside
982          * add_wait_queue critical section. So use a full
983          * memory barrier to serialize the list_add write of
984          * add_wait_queue() with the waitqueue_active read
985          * below.
986          */
987         ret = 0;
988         smp_mb();
989         if (waitqueue_active(&ctx->fault_pending_wqh))
990                 ret = EPOLLIN;
991         else if (waitqueue_active(&ctx->event_wqh))
992                 ret = EPOLLIN;
993
994         return ret;
995 }
996
997 static const struct file_operations userfaultfd_fops;
998
999 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1000                                   struct inode *inode,
1001                                   struct uffd_msg *msg)
1002 {
1003         int fd;
1004
1005         fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1006                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1007         if (fd < 0)
1008                 return fd;
1009
1010         msg->arg.reserved.reserved1 = 0;
1011         msg->arg.fork.ufd = fd;
1012         return 0;
1013 }
1014
1015 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1016                                     struct uffd_msg *msg, struct inode *inode)
1017 {
1018         ssize_t ret;
1019         DECLARE_WAITQUEUE(wait, current);
1020         struct userfaultfd_wait_queue *uwq;
1021         /*
1022          * Handling fork event requires sleeping operations, so
1023          * we drop the event_wqh lock, then do these ops, then
1024          * lock it back and wake up the waiter. While the lock is
1025          * dropped the ewq may go away so we keep track of it
1026          * carefully.
1027          */
1028         LIST_HEAD(fork_event);
1029         struct userfaultfd_ctx *fork_nctx = NULL;
1030
1031         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1032         spin_lock_irq(&ctx->fd_wqh.lock);
1033         __add_wait_queue(&ctx->fd_wqh, &wait);
1034         for (;;) {
1035                 set_current_state(TASK_INTERRUPTIBLE);
1036                 spin_lock(&ctx->fault_pending_wqh.lock);
1037                 uwq = find_userfault(ctx);
1038                 if (uwq) {
1039                         /*
1040                          * Use a seqcount to repeat the lockless check
1041                          * in wake_userfault() to avoid missing
1042                          * wakeups because during the refile both
1043                          * waitqueue could become empty if this is the
1044                          * only userfault.
1045                          */
1046                         write_seqcount_begin(&ctx->refile_seq);
1047
1048                         /*
1049                          * The fault_pending_wqh.lock prevents the uwq
1050                          * to disappear from under us.
1051                          *
1052                          * Refile this userfault from
1053                          * fault_pending_wqh to fault_wqh, it's not
1054                          * pending anymore after we read it.
1055                          *
1056                          * Use list_del() by hand (as
1057                          * userfaultfd_wake_function also uses
1058                          * list_del_init() by hand) to be sure nobody
1059                          * changes __remove_wait_queue() to use
1060                          * list_del_init() in turn breaking the
1061                          * !list_empty_careful() check in
1062                          * handle_userfault(). The uwq->wq.head list
1063                          * must never be empty at any time during the
1064                          * refile, or the waitqueue could disappear
1065                          * from under us. The "wait_queue_head_t"
1066                          * parameter of __remove_wait_queue() is unused
1067                          * anyway.
1068                          */
1069                         list_del(&uwq->wq.entry);
1070                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1071
1072                         write_seqcount_end(&ctx->refile_seq);
1073
1074                         /* careful to always initialize msg if ret == 0 */
1075                         *msg = uwq->msg;
1076                         spin_unlock(&ctx->fault_pending_wqh.lock);
1077                         ret = 0;
1078                         break;
1079                 }
1080                 spin_unlock(&ctx->fault_pending_wqh.lock);
1081
1082                 spin_lock(&ctx->event_wqh.lock);
1083                 uwq = find_userfault_evt(ctx);
1084                 if (uwq) {
1085                         *msg = uwq->msg;
1086
1087                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1088                                 fork_nctx = (struct userfaultfd_ctx *)
1089                                         (unsigned long)
1090                                         uwq->msg.arg.reserved.reserved1;
1091                                 list_move(&uwq->wq.entry, &fork_event);
1092                                 /*
1093                                  * fork_nctx can be freed as soon as
1094                                  * we drop the lock, unless we take a
1095                                  * reference on it.
1096                                  */
1097                                 userfaultfd_ctx_get(fork_nctx);
1098                                 spin_unlock(&ctx->event_wqh.lock);
1099                                 ret = 0;
1100                                 break;
1101                         }
1102
1103                         userfaultfd_event_complete(ctx, uwq);
1104                         spin_unlock(&ctx->event_wqh.lock);
1105                         ret = 0;
1106                         break;
1107                 }
1108                 spin_unlock(&ctx->event_wqh.lock);
1109
1110                 if (signal_pending(current)) {
1111                         ret = -ERESTARTSYS;
1112                         break;
1113                 }
1114                 if (no_wait) {
1115                         ret = -EAGAIN;
1116                         break;
1117                 }
1118                 spin_unlock_irq(&ctx->fd_wqh.lock);
1119                 schedule();
1120                 spin_lock_irq(&ctx->fd_wqh.lock);
1121         }
1122         __remove_wait_queue(&ctx->fd_wqh, &wait);
1123         __set_current_state(TASK_RUNNING);
1124         spin_unlock_irq(&ctx->fd_wqh.lock);
1125
1126         if (!ret && msg->event == UFFD_EVENT_FORK) {
1127                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1128                 spin_lock_irq(&ctx->event_wqh.lock);
1129                 if (!list_empty(&fork_event)) {
1130                         /*
1131                          * The fork thread didn't abort, so we can
1132                          * drop the temporary refcount.
1133                          */
1134                         userfaultfd_ctx_put(fork_nctx);
1135
1136                         uwq = list_first_entry(&fork_event,
1137                                                typeof(*uwq),
1138                                                wq.entry);
1139                         /*
1140                          * If fork_event list wasn't empty and in turn
1141                          * the event wasn't already released by fork
1142                          * (the event is allocated on fork kernel
1143                          * stack), put the event back to its place in
1144                          * the event_wq. fork_event head will be freed
1145                          * as soon as we return so the event cannot
1146                          * stay queued there no matter the current
1147                          * "ret" value.
1148                          */
1149                         list_del(&uwq->wq.entry);
1150                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1151
1152                         /*
1153                          * Leave the event in the waitqueue and report
1154                          * error to userland if we failed to resolve
1155                          * the userfault fork.
1156                          */
1157                         if (likely(!ret))
1158                                 userfaultfd_event_complete(ctx, uwq);
1159                 } else {
1160                         /*
1161                          * Here the fork thread aborted and the
1162                          * refcount from the fork thread on fork_nctx
1163                          * has already been released. We still hold
1164                          * the reference we took before releasing the
1165                          * lock above. If resolve_userfault_fork
1166                          * failed we've to drop it because the
1167                          * fork_nctx has to be freed in such case. If
1168                          * it succeeded we'll hold it because the new
1169                          * uffd references it.
1170                          */
1171                         if (ret)
1172                                 userfaultfd_ctx_put(fork_nctx);
1173                 }
1174                 spin_unlock_irq(&ctx->event_wqh.lock);
1175         }
1176
1177         return ret;
1178 }
1179
1180 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1181                                 size_t count, loff_t *ppos)
1182 {
1183         struct userfaultfd_ctx *ctx = file->private_data;
1184         ssize_t _ret, ret = 0;
1185         struct uffd_msg msg;
1186         int no_wait = file->f_flags & O_NONBLOCK;
1187         struct inode *inode = file_inode(file);
1188
1189         if (!userfaultfd_is_initialized(ctx))
1190                 return -EINVAL;
1191
1192         for (;;) {
1193                 if (count < sizeof(msg))
1194                         return ret ? ret : -EINVAL;
1195                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1196                 if (_ret < 0)
1197                         return ret ? ret : _ret;
1198                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1199                         return ret ? ret : -EFAULT;
1200                 ret += sizeof(msg);
1201                 buf += sizeof(msg);
1202                 count -= sizeof(msg);
1203                 /*
1204                  * Allow to read more than one fault at time but only
1205                  * block if waiting for the very first one.
1206                  */
1207                 no_wait = O_NONBLOCK;
1208         }
1209 }
1210
1211 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1212                              struct userfaultfd_wake_range *range)
1213 {
1214         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1215         /* wake all in the range and autoremove */
1216         if (waitqueue_active(&ctx->fault_pending_wqh))
1217                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1218                                      range);
1219         if (waitqueue_active(&ctx->fault_wqh))
1220                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1221         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1222 }
1223
1224 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1225                                            struct userfaultfd_wake_range *range)
1226 {
1227         unsigned seq;
1228         bool need_wakeup;
1229
1230         /*
1231          * To be sure waitqueue_active() is not reordered by the CPU
1232          * before the pagetable update, use an explicit SMP memory
1233          * barrier here. PT lock release or mmap_read_unlock(mm) still
1234          * have release semantics that can allow the
1235          * waitqueue_active() to be reordered before the pte update.
1236          */
1237         smp_mb();
1238
1239         /*
1240          * Use waitqueue_active because it's very frequent to
1241          * change the address space atomically even if there are no
1242          * userfaults yet. So we take the spinlock only when we're
1243          * sure we've userfaults to wake.
1244          */
1245         do {
1246                 seq = read_seqcount_begin(&ctx->refile_seq);
1247                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1248                         waitqueue_active(&ctx->fault_wqh);
1249                 cond_resched();
1250         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1251         if (need_wakeup)
1252                 __wake_userfault(ctx, range);
1253 }
1254
1255 static __always_inline int validate_unaligned_range(
1256         struct mm_struct *mm, __u64 start, __u64 len)
1257 {
1258         __u64 task_size = mm->task_size;
1259
1260         if (len & ~PAGE_MASK)
1261                 return -EINVAL;
1262         if (!len)
1263                 return -EINVAL;
1264         if (start < mmap_min_addr)
1265                 return -EINVAL;
1266         if (start >= task_size)
1267                 return -EINVAL;
1268         if (len > task_size - start)
1269                 return -EINVAL;
1270         if (start + len <= start)
1271                 return -EINVAL;
1272         return 0;
1273 }
1274
1275 static __always_inline int validate_range(struct mm_struct *mm,
1276                                           __u64 start, __u64 len)
1277 {
1278         if (start & ~PAGE_MASK)
1279                 return -EINVAL;
1280
1281         return validate_unaligned_range(mm, start, len);
1282 }
1283
1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1285                                 unsigned long arg)
1286 {
1287         struct mm_struct *mm = ctx->mm;
1288         struct vm_area_struct *vma, *prev, *cur;
1289         int ret;
1290         struct uffdio_register uffdio_register;
1291         struct uffdio_register __user *user_uffdio_register;
1292         unsigned long vm_flags, new_flags;
1293         bool found;
1294         bool basic_ioctls;
1295         unsigned long start, end, vma_end;
1296         struct vma_iterator vmi;
1297         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1298
1299         user_uffdio_register = (struct uffdio_register __user *) arg;
1300
1301         ret = -EFAULT;
1302         if (copy_from_user(&uffdio_register, user_uffdio_register,
1303                            sizeof(uffdio_register)-sizeof(__u64)))
1304                 goto out;
1305
1306         ret = -EINVAL;
1307         if (!uffdio_register.mode)
1308                 goto out;
1309         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1310                 goto out;
1311         vm_flags = 0;
1312         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1313                 vm_flags |= VM_UFFD_MISSING;
1314         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1315 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1316                 goto out;
1317 #endif
1318                 vm_flags |= VM_UFFD_WP;
1319         }
1320         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1321 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1322                 goto out;
1323 #endif
1324                 vm_flags |= VM_UFFD_MINOR;
1325         }
1326
1327         ret = validate_range(mm, uffdio_register.range.start,
1328                              uffdio_register.range.len);
1329         if (ret)
1330                 goto out;
1331
1332         start = uffdio_register.range.start;
1333         end = start + uffdio_register.range.len;
1334
1335         ret = -ENOMEM;
1336         if (!mmget_not_zero(mm))
1337                 goto out;
1338
1339         ret = -EINVAL;
1340         mmap_write_lock(mm);
1341         vma_iter_init(&vmi, mm, start);
1342         vma = vma_find(&vmi, end);
1343         if (!vma)
1344                 goto out_unlock;
1345
1346         /*
1347          * If the first vma contains huge pages, make sure start address
1348          * is aligned to huge page size.
1349          */
1350         if (is_vm_hugetlb_page(vma)) {
1351                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1352
1353                 if (start & (vma_hpagesize - 1))
1354                         goto out_unlock;
1355         }
1356
1357         /*
1358          * Search for not compatible vmas.
1359          */
1360         found = false;
1361         basic_ioctls = false;
1362         cur = vma;
1363         do {
1364                 cond_resched();
1365
1366                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1367                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1368
1369                 /* check not compatible vmas */
1370                 ret = -EINVAL;
1371                 if (!vma_can_userfault(cur, vm_flags, wp_async))
1372                         goto out_unlock;
1373
1374                 /*
1375                  * UFFDIO_COPY will fill file holes even without
1376                  * PROT_WRITE. This check enforces that if this is a
1377                  * MAP_SHARED, the process has write permission to the backing
1378                  * file. If VM_MAYWRITE is set it also enforces that on a
1379                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1380                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1381                  */
1382                 ret = -EPERM;
1383                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1384                         goto out_unlock;
1385
1386                 /*
1387                  * If this vma contains ending address, and huge pages
1388                  * check alignment.
1389                  */
1390                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1391                     end > cur->vm_start) {
1392                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1393
1394                         ret = -EINVAL;
1395
1396                         if (end & (vma_hpagesize - 1))
1397                                 goto out_unlock;
1398                 }
1399                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1400                         goto out_unlock;
1401
1402                 /*
1403                  * Check that this vma isn't already owned by a
1404                  * different userfaultfd. We can't allow more than one
1405                  * userfaultfd to own a single vma simultaneously or we
1406                  * wouldn't know which one to deliver the userfaults to.
1407                  */
1408                 ret = -EBUSY;
1409                 if (cur->vm_userfaultfd_ctx.ctx &&
1410                     cur->vm_userfaultfd_ctx.ctx != ctx)
1411                         goto out_unlock;
1412
1413                 /*
1414                  * Note vmas containing huge pages
1415                  */
1416                 if (is_vm_hugetlb_page(cur))
1417                         basic_ioctls = true;
1418
1419                 found = true;
1420         } for_each_vma_range(vmi, cur, end);
1421         BUG_ON(!found);
1422
1423         vma_iter_set(&vmi, start);
1424         prev = vma_prev(&vmi);
1425         if (vma->vm_start < start)
1426                 prev = vma;
1427
1428         ret = 0;
1429         for_each_vma_range(vmi, vma, end) {
1430                 cond_resched();
1431
1432                 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1433                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1434                        vma->vm_userfaultfd_ctx.ctx != ctx);
1435                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1436
1437                 /*
1438                  * Nothing to do: this vma is already registered into this
1439                  * userfaultfd and with the right tracking mode too.
1440                  */
1441                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1442                     (vma->vm_flags & vm_flags) == vm_flags)
1443                         goto skip;
1444
1445                 if (vma->vm_start > start)
1446                         start = vma->vm_start;
1447                 vma_end = min(end, vma->vm_end);
1448
1449                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1450                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1451                                             new_flags,
1452                                             (struct vm_userfaultfd_ctx){ctx});
1453                 if (IS_ERR(vma)) {
1454                         ret = PTR_ERR(vma);
1455                         break;
1456                 }
1457
1458                 /*
1459                  * In the vma_merge() successful mprotect-like case 8:
1460                  * the next vma was merged into the current one and
1461                  * the current one has not been updated yet.
1462                  */
1463                 vma_start_write(vma);
1464                 userfaultfd_set_vm_flags(vma, new_flags);
1465                 vma->vm_userfaultfd_ctx.ctx = ctx;
1466
1467                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468                         hugetlb_unshare_all_pmds(vma);
1469
1470         skip:
1471                 prev = vma;
1472                 start = vma->vm_end;
1473         }
1474
1475 out_unlock:
1476         mmap_write_unlock(mm);
1477         mmput(mm);
1478         if (!ret) {
1479                 __u64 ioctls_out;
1480
1481                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482                     UFFD_API_RANGE_IOCTLS;
1483
1484                 /*
1485                  * Declare the WP ioctl only if the WP mode is
1486                  * specified and all checks passed with the range
1487                  */
1488                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1490
1491                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1494
1495                 /*
1496                  * Now that we scanned all vmas we can already tell
1497                  * userland which ioctls methods are guaranteed to
1498                  * succeed on this range.
1499                  */
1500                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1501                         ret = -EFAULT;
1502         }
1503 out:
1504         return ret;
1505 }
1506
1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508                                   unsigned long arg)
1509 {
1510         struct mm_struct *mm = ctx->mm;
1511         struct vm_area_struct *vma, *prev, *cur;
1512         int ret;
1513         struct uffdio_range uffdio_unregister;
1514         unsigned long new_flags;
1515         bool found;
1516         unsigned long start, end, vma_end;
1517         const void __user *buf = (void __user *)arg;
1518         struct vma_iterator vmi;
1519         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1520
1521         ret = -EFAULT;
1522         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523                 goto out;
1524
1525         ret = validate_range(mm, uffdio_unregister.start,
1526                              uffdio_unregister.len);
1527         if (ret)
1528                 goto out;
1529
1530         start = uffdio_unregister.start;
1531         end = start + uffdio_unregister.len;
1532
1533         ret = -ENOMEM;
1534         if (!mmget_not_zero(mm))
1535                 goto out;
1536
1537         mmap_write_lock(mm);
1538         ret = -EINVAL;
1539         vma_iter_init(&vmi, mm, start);
1540         vma = vma_find(&vmi, end);
1541         if (!vma)
1542                 goto out_unlock;
1543
1544         /*
1545          * If the first vma contains huge pages, make sure start address
1546          * is aligned to huge page size.
1547          */
1548         if (is_vm_hugetlb_page(vma)) {
1549                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1550
1551                 if (start & (vma_hpagesize - 1))
1552                         goto out_unlock;
1553         }
1554
1555         /*
1556          * Search for not compatible vmas.
1557          */
1558         found = false;
1559         cur = vma;
1560         do {
1561                 cond_resched();
1562
1563                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1564                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1565
1566                 /*
1567                  * Check not compatible vmas, not strictly required
1568                  * here as not compatible vmas cannot have an
1569                  * userfaultfd_ctx registered on them, but this
1570                  * provides for more strict behavior to notice
1571                  * unregistration errors.
1572                  */
1573                 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1574                         goto out_unlock;
1575
1576                 found = true;
1577         } for_each_vma_range(vmi, cur, end);
1578         BUG_ON(!found);
1579
1580         vma_iter_set(&vmi, start);
1581         prev = vma_prev(&vmi);
1582         if (vma->vm_start < start)
1583                 prev = vma;
1584
1585         ret = 0;
1586         for_each_vma_range(vmi, vma, end) {
1587                 cond_resched();
1588
1589                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1590
1591                 /*
1592                  * Nothing to do: this vma is already registered into this
1593                  * userfaultfd and with the right tracking mode too.
1594                  */
1595                 if (!vma->vm_userfaultfd_ctx.ctx)
1596                         goto skip;
1597
1598                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599
1600                 if (vma->vm_start > start)
1601                         start = vma->vm_start;
1602                 vma_end = min(end, vma->vm_end);
1603
1604                 if (userfaultfd_missing(vma)) {
1605                         /*
1606                          * Wake any concurrent pending userfault while
1607                          * we unregister, so they will not hang
1608                          * permanently and it avoids userland to call
1609                          * UFFDIO_WAKE explicitly.
1610                          */
1611                         struct userfaultfd_wake_range range;
1612                         range.start = start;
1613                         range.len = vma_end - start;
1614                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1615                 }
1616
1617                 /* Reset ptes for the whole vma range if wr-protected */
1618                 if (userfaultfd_wp(vma))
1619                         uffd_wp_range(vma, start, vma_end - start, false);
1620
1621                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1622                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1623                                             new_flags, NULL_VM_UFFD_CTX);
1624                 if (IS_ERR(vma)) {
1625                         ret = PTR_ERR(vma);
1626                         break;
1627                 }
1628
1629                 /*
1630                  * In the vma_merge() successful mprotect-like case 8:
1631                  * the next vma was merged into the current one and
1632                  * the current one has not been updated yet.
1633                  */
1634                 vma_start_write(vma);
1635                 userfaultfd_set_vm_flags(vma, new_flags);
1636                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1637
1638         skip:
1639                 prev = vma;
1640                 start = vma->vm_end;
1641         }
1642
1643 out_unlock:
1644         mmap_write_unlock(mm);
1645         mmput(mm);
1646 out:
1647         return ret;
1648 }
1649
1650 /*
1651  * userfaultfd_wake may be used in combination with the
1652  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1653  */
1654 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1655                             unsigned long arg)
1656 {
1657         int ret;
1658         struct uffdio_range uffdio_wake;
1659         struct userfaultfd_wake_range range;
1660         const void __user *buf = (void __user *)arg;
1661
1662         ret = -EFAULT;
1663         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1664                 goto out;
1665
1666         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1667         if (ret)
1668                 goto out;
1669
1670         range.start = uffdio_wake.start;
1671         range.len = uffdio_wake.len;
1672
1673         /*
1674          * len == 0 means wake all and we don't want to wake all here,
1675          * so check it again to be sure.
1676          */
1677         VM_BUG_ON(!range.len);
1678
1679         wake_userfault(ctx, &range);
1680         ret = 0;
1681
1682 out:
1683         return ret;
1684 }
1685
1686 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1687                             unsigned long arg)
1688 {
1689         __s64 ret;
1690         struct uffdio_copy uffdio_copy;
1691         struct uffdio_copy __user *user_uffdio_copy;
1692         struct userfaultfd_wake_range range;
1693         uffd_flags_t flags = 0;
1694
1695         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1696
1697         ret = -EAGAIN;
1698         if (atomic_read(&ctx->mmap_changing))
1699                 goto out;
1700
1701         ret = -EFAULT;
1702         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1703                            /* don't copy "copy" last field */
1704                            sizeof(uffdio_copy)-sizeof(__s64)))
1705                 goto out;
1706
1707         ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1708                                        uffdio_copy.len);
1709         if (ret)
1710                 goto out;
1711         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1712         if (ret)
1713                 goto out;
1714
1715         ret = -EINVAL;
1716         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1717                 goto out;
1718         if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1719                 flags |= MFILL_ATOMIC_WP;
1720         if (mmget_not_zero(ctx->mm)) {
1721                 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1722                                         uffdio_copy.len, flags);
1723                 mmput(ctx->mm);
1724         } else {
1725                 return -ESRCH;
1726         }
1727         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1728                 return -EFAULT;
1729         if (ret < 0)
1730                 goto out;
1731         BUG_ON(!ret);
1732         /* len == 0 would wake all */
1733         range.len = ret;
1734         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1735                 range.start = uffdio_copy.dst;
1736                 wake_userfault(ctx, &range);
1737         }
1738         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1739 out:
1740         return ret;
1741 }
1742
1743 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1744                                 unsigned long arg)
1745 {
1746         __s64 ret;
1747         struct uffdio_zeropage uffdio_zeropage;
1748         struct uffdio_zeropage __user *user_uffdio_zeropage;
1749         struct userfaultfd_wake_range range;
1750
1751         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1752
1753         ret = -EAGAIN;
1754         if (atomic_read(&ctx->mmap_changing))
1755                 goto out;
1756
1757         ret = -EFAULT;
1758         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1759                            /* don't copy "zeropage" last field */
1760                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1761                 goto out;
1762
1763         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1764                              uffdio_zeropage.range.len);
1765         if (ret)
1766                 goto out;
1767         ret = -EINVAL;
1768         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1769                 goto out;
1770
1771         if (mmget_not_zero(ctx->mm)) {
1772                 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1773                                            uffdio_zeropage.range.len);
1774                 mmput(ctx->mm);
1775         } else {
1776                 return -ESRCH;
1777         }
1778         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1779                 return -EFAULT;
1780         if (ret < 0)
1781                 goto out;
1782         /* len == 0 would wake all */
1783         BUG_ON(!ret);
1784         range.len = ret;
1785         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1786                 range.start = uffdio_zeropage.range.start;
1787                 wake_userfault(ctx, &range);
1788         }
1789         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1790 out:
1791         return ret;
1792 }
1793
1794 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1795                                     unsigned long arg)
1796 {
1797         int ret;
1798         struct uffdio_writeprotect uffdio_wp;
1799         struct uffdio_writeprotect __user *user_uffdio_wp;
1800         struct userfaultfd_wake_range range;
1801         bool mode_wp, mode_dontwake;
1802
1803         if (atomic_read(&ctx->mmap_changing))
1804                 return -EAGAIN;
1805
1806         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1807
1808         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1809                            sizeof(struct uffdio_writeprotect)))
1810                 return -EFAULT;
1811
1812         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1813                              uffdio_wp.range.len);
1814         if (ret)
1815                 return ret;
1816
1817         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1818                                UFFDIO_WRITEPROTECT_MODE_WP))
1819                 return -EINVAL;
1820
1821         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1822         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1823
1824         if (mode_wp && mode_dontwake)
1825                 return -EINVAL;
1826
1827         if (mmget_not_zero(ctx->mm)) {
1828                 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1829                                           uffdio_wp.range.len, mode_wp);
1830                 mmput(ctx->mm);
1831         } else {
1832                 return -ESRCH;
1833         }
1834
1835         if (ret)
1836                 return ret;
1837
1838         if (!mode_wp && !mode_dontwake) {
1839                 range.start = uffdio_wp.range.start;
1840                 range.len = uffdio_wp.range.len;
1841                 wake_userfault(ctx, &range);
1842         }
1843         return ret;
1844 }
1845
1846 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1847 {
1848         __s64 ret;
1849         struct uffdio_continue uffdio_continue;
1850         struct uffdio_continue __user *user_uffdio_continue;
1851         struct userfaultfd_wake_range range;
1852         uffd_flags_t flags = 0;
1853
1854         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1855
1856         ret = -EAGAIN;
1857         if (atomic_read(&ctx->mmap_changing))
1858                 goto out;
1859
1860         ret = -EFAULT;
1861         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1862                            /* don't copy the output fields */
1863                            sizeof(uffdio_continue) - (sizeof(__s64))))
1864                 goto out;
1865
1866         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1867                              uffdio_continue.range.len);
1868         if (ret)
1869                 goto out;
1870
1871         ret = -EINVAL;
1872         if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1873                                      UFFDIO_CONTINUE_MODE_WP))
1874                 goto out;
1875         if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1876                 flags |= MFILL_ATOMIC_WP;
1877
1878         if (mmget_not_zero(ctx->mm)) {
1879                 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1880                                             uffdio_continue.range.len, flags);
1881                 mmput(ctx->mm);
1882         } else {
1883                 return -ESRCH;
1884         }
1885
1886         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1887                 return -EFAULT;
1888         if (ret < 0)
1889                 goto out;
1890
1891         /* len == 0 would wake all */
1892         BUG_ON(!ret);
1893         range.len = ret;
1894         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1895                 range.start = uffdio_continue.range.start;
1896                 wake_userfault(ctx, &range);
1897         }
1898         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1899
1900 out:
1901         return ret;
1902 }
1903
1904 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1905 {
1906         __s64 ret;
1907         struct uffdio_poison uffdio_poison;
1908         struct uffdio_poison __user *user_uffdio_poison;
1909         struct userfaultfd_wake_range range;
1910
1911         user_uffdio_poison = (struct uffdio_poison __user *)arg;
1912
1913         ret = -EAGAIN;
1914         if (atomic_read(&ctx->mmap_changing))
1915                 goto out;
1916
1917         ret = -EFAULT;
1918         if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1919                            /* don't copy the output fields */
1920                            sizeof(uffdio_poison) - (sizeof(__s64))))
1921                 goto out;
1922
1923         ret = validate_range(ctx->mm, uffdio_poison.range.start,
1924                              uffdio_poison.range.len);
1925         if (ret)
1926                 goto out;
1927
1928         ret = -EINVAL;
1929         if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1930                 goto out;
1931
1932         if (mmget_not_zero(ctx->mm)) {
1933                 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1934                                           uffdio_poison.range.len, 0);
1935                 mmput(ctx->mm);
1936         } else {
1937                 return -ESRCH;
1938         }
1939
1940         if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1941                 return -EFAULT;
1942         if (ret < 0)
1943                 goto out;
1944
1945         /* len == 0 would wake all */
1946         BUG_ON(!ret);
1947         range.len = ret;
1948         if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1949                 range.start = uffdio_poison.range.start;
1950                 wake_userfault(ctx, &range);
1951         }
1952         ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1953
1954 out:
1955         return ret;
1956 }
1957
1958 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1959 {
1960         return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1961 }
1962
1963 static inline unsigned int uffd_ctx_features(__u64 user_features)
1964 {
1965         /*
1966          * For the current set of features the bits just coincide. Set
1967          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1968          */
1969         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1970 }
1971
1972 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1973                             unsigned long arg)
1974 {
1975         __s64 ret;
1976         struct uffdio_move uffdio_move;
1977         struct uffdio_move __user *user_uffdio_move;
1978         struct userfaultfd_wake_range range;
1979         struct mm_struct *mm = ctx->mm;
1980
1981         user_uffdio_move = (struct uffdio_move __user *) arg;
1982
1983         if (atomic_read(&ctx->mmap_changing))
1984                 return -EAGAIN;
1985
1986         if (copy_from_user(&uffdio_move, user_uffdio_move,
1987                            /* don't copy "move" last field */
1988                            sizeof(uffdio_move)-sizeof(__s64)))
1989                 return -EFAULT;
1990
1991         /* Do not allow cross-mm moves. */
1992         if (mm != current->mm)
1993                 return -EINVAL;
1994
1995         ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1996         if (ret)
1997                 return ret;
1998
1999         ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2000         if (ret)
2001                 return ret;
2002
2003         if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2004                                   UFFDIO_MOVE_MODE_DONTWAKE))
2005                 return -EINVAL;
2006
2007         if (mmget_not_zero(mm)) {
2008                 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2009                                  uffdio_move.len, uffdio_move.mode);
2010                 mmput(mm);
2011         } else {
2012                 return -ESRCH;
2013         }
2014
2015         if (unlikely(put_user(ret, &user_uffdio_move->move)))
2016                 return -EFAULT;
2017         if (ret < 0)
2018                 goto out;
2019
2020         /* len == 0 would wake all */
2021         VM_WARN_ON(!ret);
2022         range.len = ret;
2023         if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2024                 range.start = uffdio_move.dst;
2025                 wake_userfault(ctx, &range);
2026         }
2027         ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2028
2029 out:
2030         return ret;
2031 }
2032
2033 /*
2034  * userland asks for a certain API version and we return which bits
2035  * and ioctl commands are implemented in this kernel for such API
2036  * version or -EINVAL if unknown.
2037  */
2038 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2039                            unsigned long arg)
2040 {
2041         struct uffdio_api uffdio_api;
2042         void __user *buf = (void __user *)arg;
2043         unsigned int ctx_features;
2044         int ret;
2045         __u64 features;
2046
2047         ret = -EFAULT;
2048         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2049                 goto out;
2050         features = uffdio_api.features;
2051         ret = -EINVAL;
2052         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2053                 goto err_out;
2054         ret = -EPERM;
2055         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2056                 goto err_out;
2057
2058         /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2059         if (features & UFFD_FEATURE_WP_ASYNC)
2060                 features |= UFFD_FEATURE_WP_UNPOPULATED;
2061
2062         /* report all available features and ioctls to userland */
2063         uffdio_api.features = UFFD_API_FEATURES;
2064 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2065         uffdio_api.features &=
2066                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2067 #endif
2068 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2069         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2070 #endif
2071 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2072         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2073         uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2074         uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2075 #endif
2076         uffdio_api.ioctls = UFFD_API_IOCTLS;
2077         ret = -EFAULT;
2078         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2079                 goto out;
2080
2081         /* only enable the requested features for this uffd context */
2082         ctx_features = uffd_ctx_features(features);
2083         ret = -EINVAL;
2084         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2085                 goto err_out;
2086
2087         ret = 0;
2088 out:
2089         return ret;
2090 err_out:
2091         memset(&uffdio_api, 0, sizeof(uffdio_api));
2092         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2093                 ret = -EFAULT;
2094         goto out;
2095 }
2096
2097 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2098                               unsigned long arg)
2099 {
2100         int ret = -EINVAL;
2101         struct userfaultfd_ctx *ctx = file->private_data;
2102
2103         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2104                 return -EINVAL;
2105
2106         switch(cmd) {
2107         case UFFDIO_API:
2108                 ret = userfaultfd_api(ctx, arg);
2109                 break;
2110         case UFFDIO_REGISTER:
2111                 ret = userfaultfd_register(ctx, arg);
2112                 break;
2113         case UFFDIO_UNREGISTER:
2114                 ret = userfaultfd_unregister(ctx, arg);
2115                 break;
2116         case UFFDIO_WAKE:
2117                 ret = userfaultfd_wake(ctx, arg);
2118                 break;
2119         case UFFDIO_COPY:
2120                 ret = userfaultfd_copy(ctx, arg);
2121                 break;
2122         case UFFDIO_ZEROPAGE:
2123                 ret = userfaultfd_zeropage(ctx, arg);
2124                 break;
2125         case UFFDIO_MOVE:
2126                 ret = userfaultfd_move(ctx, arg);
2127                 break;
2128         case UFFDIO_WRITEPROTECT:
2129                 ret = userfaultfd_writeprotect(ctx, arg);
2130                 break;
2131         case UFFDIO_CONTINUE:
2132                 ret = userfaultfd_continue(ctx, arg);
2133                 break;
2134         case UFFDIO_POISON:
2135                 ret = userfaultfd_poison(ctx, arg);
2136                 break;
2137         }
2138         return ret;
2139 }
2140
2141 #ifdef CONFIG_PROC_FS
2142 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2143 {
2144         struct userfaultfd_ctx *ctx = f->private_data;
2145         wait_queue_entry_t *wq;
2146         unsigned long pending = 0, total = 0;
2147
2148         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2149         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2150                 pending++;
2151                 total++;
2152         }
2153         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2154                 total++;
2155         }
2156         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2157
2158         /*
2159          * If more protocols will be added, there will be all shown
2160          * separated by a space. Like this:
2161          *      protocols: aa:... bb:...
2162          */
2163         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2164                    pending, total, UFFD_API, ctx->features,
2165                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2166 }
2167 #endif
2168
2169 static const struct file_operations userfaultfd_fops = {
2170 #ifdef CONFIG_PROC_FS
2171         .show_fdinfo    = userfaultfd_show_fdinfo,
2172 #endif
2173         .release        = userfaultfd_release,
2174         .poll           = userfaultfd_poll,
2175         .read           = userfaultfd_read,
2176         .unlocked_ioctl = userfaultfd_ioctl,
2177         .compat_ioctl   = compat_ptr_ioctl,
2178         .llseek         = noop_llseek,
2179 };
2180
2181 static void init_once_userfaultfd_ctx(void *mem)
2182 {
2183         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2184
2185         init_waitqueue_head(&ctx->fault_pending_wqh);
2186         init_waitqueue_head(&ctx->fault_wqh);
2187         init_waitqueue_head(&ctx->event_wqh);
2188         init_waitqueue_head(&ctx->fd_wqh);
2189         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2190 }
2191
2192 static int new_userfaultfd(int flags)
2193 {
2194         struct userfaultfd_ctx *ctx;
2195         int fd;
2196
2197         BUG_ON(!current->mm);
2198
2199         /* Check the UFFD_* constants for consistency.  */
2200         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2201         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2202         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2203
2204         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2205                 return -EINVAL;
2206
2207         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2208         if (!ctx)
2209                 return -ENOMEM;
2210
2211         refcount_set(&ctx->refcount, 1);
2212         ctx->flags = flags;
2213         ctx->features = 0;
2214         ctx->released = false;
2215         init_rwsem(&ctx->map_changing_lock);
2216         atomic_set(&ctx->mmap_changing, 0);
2217         ctx->mm = current->mm;
2218         /* prevent the mm struct to be freed */
2219         mmgrab(ctx->mm);
2220
2221         /* Create a new inode so that the LSM can block the creation.  */
2222         fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2223                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2224         if (fd < 0) {
2225                 mmdrop(ctx->mm);
2226                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2227         }
2228         return fd;
2229 }
2230
2231 static inline bool userfaultfd_syscall_allowed(int flags)
2232 {
2233         /* Userspace-only page faults are always allowed */
2234         if (flags & UFFD_USER_MODE_ONLY)
2235                 return true;
2236
2237         /*
2238          * The user is requesting a userfaultfd which can handle kernel faults.
2239          * Privileged users are always allowed to do this.
2240          */
2241         if (capable(CAP_SYS_PTRACE))
2242                 return true;
2243
2244         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2245         return sysctl_unprivileged_userfaultfd;
2246 }
2247
2248 SYSCALL_DEFINE1(userfaultfd, int, flags)
2249 {
2250         if (!userfaultfd_syscall_allowed(flags))
2251                 return -EPERM;
2252
2253         return new_userfaultfd(flags);
2254 }
2255
2256 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2257 {
2258         if (cmd != USERFAULTFD_IOC_NEW)
2259                 return -EINVAL;
2260
2261         return new_userfaultfd(flags);
2262 }
2263
2264 static const struct file_operations userfaultfd_dev_fops = {
2265         .unlocked_ioctl = userfaultfd_dev_ioctl,
2266         .compat_ioctl = userfaultfd_dev_ioctl,
2267         .owner = THIS_MODULE,
2268         .llseek = noop_llseek,
2269 };
2270
2271 static struct miscdevice userfaultfd_misc = {
2272         .minor = MISC_DYNAMIC_MINOR,
2273         .name = "userfaultfd",
2274         .fops = &userfaultfd_dev_fops
2275 };
2276
2277 static int __init userfaultfd_init(void)
2278 {
2279         int ret;
2280
2281         ret = misc_register(&userfaultfd_misc);
2282         if (ret)
2283                 return ret;
2284
2285         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2286                                                 sizeof(struct userfaultfd_ctx),
2287                                                 0,
2288                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2289                                                 init_once_userfaultfd_ctx);
2290 #ifdef CONFIG_SYSCTL
2291         register_sysctl_init("vm", vm_userfaultfd_table);
2292 #endif
2293         return 0;
2294 }
2295 __initcall(userfaultfd_init);