cred: get rid of CONFIG_DEBUG_CREDENTIALS
[sfrench/cifs-2.6.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 #include "exit.h"
78
79 /*
80  * The default value should be high enough to not crash a system that randomly
81  * crashes its kernel from time to time, but low enough to at least not permit
82  * overflowing 32-bit refcounts or the ldsem writer count.
83  */
84 static unsigned int oops_limit = 10000;
85
86 #ifdef CONFIG_SYSCTL
87 static struct ctl_table kern_exit_table[] = {
88         {
89                 .procname       = "oops_limit",
90                 .data           = &oops_limit,
91                 .maxlen         = sizeof(oops_limit),
92                 .mode           = 0644,
93                 .proc_handler   = proc_douintvec,
94         },
95         { }
96 };
97
98 static __init int kernel_exit_sysctls_init(void)
99 {
100         register_sysctl_init("kernel", kern_exit_table);
101         return 0;
102 }
103 late_initcall(kernel_exit_sysctls_init);
104 #endif
105
106 static atomic_t oops_count = ATOMIC_INIT(0);
107
108 #ifdef CONFIG_SYSFS
109 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
110                                char *page)
111 {
112         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
113 }
114
115 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
116
117 static __init int kernel_exit_sysfs_init(void)
118 {
119         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
120         return 0;
121 }
122 late_initcall(kernel_exit_sysfs_init);
123 #endif
124
125 static void __unhash_process(struct task_struct *p, bool group_dead)
126 {
127         nr_threads--;
128         detach_pid(p, PIDTYPE_PID);
129         if (group_dead) {
130                 detach_pid(p, PIDTYPE_TGID);
131                 detach_pid(p, PIDTYPE_PGID);
132                 detach_pid(p, PIDTYPE_SID);
133
134                 list_del_rcu(&p->tasks);
135                 list_del_init(&p->sibling);
136                 __this_cpu_dec(process_counts);
137         }
138         list_del_rcu(&p->thread_node);
139 }
140
141 /*
142  * This function expects the tasklist_lock write-locked.
143  */
144 static void __exit_signal(struct task_struct *tsk)
145 {
146         struct signal_struct *sig = tsk->signal;
147         bool group_dead = thread_group_leader(tsk);
148         struct sighand_struct *sighand;
149         struct tty_struct *tty;
150         u64 utime, stime;
151
152         sighand = rcu_dereference_check(tsk->sighand,
153                                         lockdep_tasklist_lock_is_held());
154         spin_lock(&sighand->siglock);
155
156 #ifdef CONFIG_POSIX_TIMERS
157         posix_cpu_timers_exit(tsk);
158         if (group_dead)
159                 posix_cpu_timers_exit_group(tsk);
160 #endif
161
162         if (group_dead) {
163                 tty = sig->tty;
164                 sig->tty = NULL;
165         } else {
166                 /*
167                  * If there is any task waiting for the group exit
168                  * then notify it:
169                  */
170                 if (sig->notify_count > 0 && !--sig->notify_count)
171                         wake_up_process(sig->group_exec_task);
172
173                 if (tsk == sig->curr_target)
174                         sig->curr_target = next_thread(tsk);
175         }
176
177         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
178                               sizeof(unsigned long long));
179
180         /*
181          * Accumulate here the counters for all threads as they die. We could
182          * skip the group leader because it is the last user of signal_struct,
183          * but we want to avoid the race with thread_group_cputime() which can
184          * see the empty ->thread_head list.
185          */
186         task_cputime(tsk, &utime, &stime);
187         write_seqlock(&sig->stats_lock);
188         sig->utime += utime;
189         sig->stime += stime;
190         sig->gtime += task_gtime(tsk);
191         sig->min_flt += tsk->min_flt;
192         sig->maj_flt += tsk->maj_flt;
193         sig->nvcsw += tsk->nvcsw;
194         sig->nivcsw += tsk->nivcsw;
195         sig->inblock += task_io_get_inblock(tsk);
196         sig->oublock += task_io_get_oublock(tsk);
197         task_io_accounting_add(&sig->ioac, &tsk->ioac);
198         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199         sig->nr_threads--;
200         __unhash_process(tsk, group_dead);
201         write_sequnlock(&sig->stats_lock);
202
203         /*
204          * Do this under ->siglock, we can race with another thread
205          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
206          */
207         flush_sigqueue(&tsk->pending);
208         tsk->sighand = NULL;
209         spin_unlock(&sighand->siglock);
210
211         __cleanup_sighand(sighand);
212         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
213         if (group_dead) {
214                 flush_sigqueue(&sig->shared_pending);
215                 tty_kref_put(tty);
216         }
217 }
218
219 static void delayed_put_task_struct(struct rcu_head *rhp)
220 {
221         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
222
223         kprobe_flush_task(tsk);
224         rethook_flush_task(tsk);
225         perf_event_delayed_put(tsk);
226         trace_sched_process_free(tsk);
227         put_task_struct(tsk);
228 }
229
230 void put_task_struct_rcu_user(struct task_struct *task)
231 {
232         if (refcount_dec_and_test(&task->rcu_users))
233                 call_rcu(&task->rcu, delayed_put_task_struct);
234 }
235
236 void __weak release_thread(struct task_struct *dead_task)
237 {
238 }
239
240 void release_task(struct task_struct *p)
241 {
242         struct task_struct *leader;
243         struct pid *thread_pid;
244         int zap_leader;
245 repeat:
246         /* don't need to get the RCU readlock here - the process is dead and
247          * can't be modifying its own credentials. But shut RCU-lockdep up */
248         rcu_read_lock();
249         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
250         rcu_read_unlock();
251
252         cgroup_release(p);
253
254         write_lock_irq(&tasklist_lock);
255         ptrace_release_task(p);
256         thread_pid = get_pid(p->thread_pid);
257         __exit_signal(p);
258
259         /*
260          * If we are the last non-leader member of the thread
261          * group, and the leader is zombie, then notify the
262          * group leader's parent process. (if it wants notification.)
263          */
264         zap_leader = 0;
265         leader = p->group_leader;
266         if (leader != p && thread_group_empty(leader)
267                         && leader->exit_state == EXIT_ZOMBIE) {
268                 /*
269                  * If we were the last child thread and the leader has
270                  * exited already, and the leader's parent ignores SIGCHLD,
271                  * then we are the one who should release the leader.
272                  */
273                 zap_leader = do_notify_parent(leader, leader->exit_signal);
274                 if (zap_leader)
275                         leader->exit_state = EXIT_DEAD;
276         }
277
278         write_unlock_irq(&tasklist_lock);
279         seccomp_filter_release(p);
280         proc_flush_pid(thread_pid);
281         put_pid(thread_pid);
282         release_thread(p);
283         put_task_struct_rcu_user(p);
284
285         p = leader;
286         if (unlikely(zap_leader))
287                 goto repeat;
288 }
289
290 int rcuwait_wake_up(struct rcuwait *w)
291 {
292         int ret = 0;
293         struct task_struct *task;
294
295         rcu_read_lock();
296
297         /*
298          * Order condition vs @task, such that everything prior to the load
299          * of @task is visible. This is the condition as to why the user called
300          * rcuwait_wake() in the first place. Pairs with set_current_state()
301          * barrier (A) in rcuwait_wait_event().
302          *
303          *    WAIT                WAKE
304          *    [S] tsk = current   [S] cond = true
305          *        MB (A)              MB (B)
306          *    [L] cond            [L] tsk
307          */
308         smp_mb(); /* (B) */
309
310         task = rcu_dereference(w->task);
311         if (task)
312                 ret = wake_up_process(task);
313         rcu_read_unlock();
314
315         return ret;
316 }
317 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
318
319 /*
320  * Determine if a process group is "orphaned", according to the POSIX
321  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
322  * by terminal-generated stop signals.  Newly orphaned process groups are
323  * to receive a SIGHUP and a SIGCONT.
324  *
325  * "I ask you, have you ever known what it is to be an orphan?"
326  */
327 static int will_become_orphaned_pgrp(struct pid *pgrp,
328                                         struct task_struct *ignored_task)
329 {
330         struct task_struct *p;
331
332         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
333                 if ((p == ignored_task) ||
334                     (p->exit_state && thread_group_empty(p)) ||
335                     is_global_init(p->real_parent))
336                         continue;
337
338                 if (task_pgrp(p->real_parent) != pgrp &&
339                     task_session(p->real_parent) == task_session(p))
340                         return 0;
341         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
342
343         return 1;
344 }
345
346 int is_current_pgrp_orphaned(void)
347 {
348         int retval;
349
350         read_lock(&tasklist_lock);
351         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
352         read_unlock(&tasklist_lock);
353
354         return retval;
355 }
356
357 static bool has_stopped_jobs(struct pid *pgrp)
358 {
359         struct task_struct *p;
360
361         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
362                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
363                         return true;
364         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
365
366         return false;
367 }
368
369 /*
370  * Check to see if any process groups have become orphaned as
371  * a result of our exiting, and if they have any stopped jobs,
372  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
373  */
374 static void
375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
376 {
377         struct pid *pgrp = task_pgrp(tsk);
378         struct task_struct *ignored_task = tsk;
379
380         if (!parent)
381                 /* exit: our father is in a different pgrp than
382                  * we are and we were the only connection outside.
383                  */
384                 parent = tsk->real_parent;
385         else
386                 /* reparent: our child is in a different pgrp than
387                  * we are, and it was the only connection outside.
388                  */
389                 ignored_task = NULL;
390
391         if (task_pgrp(parent) != pgrp &&
392             task_session(parent) == task_session(tsk) &&
393             will_become_orphaned_pgrp(pgrp, ignored_task) &&
394             has_stopped_jobs(pgrp)) {
395                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
396                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
397         }
398 }
399
400 static void coredump_task_exit(struct task_struct *tsk)
401 {
402         struct core_state *core_state;
403
404         /*
405          * Serialize with any possible pending coredump.
406          * We must hold siglock around checking core_state
407          * and setting PF_POSTCOREDUMP.  The core-inducing thread
408          * will increment ->nr_threads for each thread in the
409          * group without PF_POSTCOREDUMP set.
410          */
411         spin_lock_irq(&tsk->sighand->siglock);
412         tsk->flags |= PF_POSTCOREDUMP;
413         core_state = tsk->signal->core_state;
414         spin_unlock_irq(&tsk->sighand->siglock);
415
416         /* The vhost_worker does not particpate in coredumps */
417         if (core_state &&
418             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
419                 struct core_thread self;
420
421                 self.task = current;
422                 if (self.task->flags & PF_SIGNALED)
423                         self.next = xchg(&core_state->dumper.next, &self);
424                 else
425                         self.task = NULL;
426                 /*
427                  * Implies mb(), the result of xchg() must be visible
428                  * to core_state->dumper.
429                  */
430                 if (atomic_dec_and_test(&core_state->nr_threads))
431                         complete(&core_state->startup);
432
433                 for (;;) {
434                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
435                         if (!self.task) /* see coredump_finish() */
436                                 break;
437                         schedule();
438                 }
439                 __set_current_state(TASK_RUNNING);
440         }
441 }
442
443 #ifdef CONFIG_MEMCG
444 /*
445  * A task is exiting.   If it owned this mm, find a new owner for the mm.
446  */
447 void mm_update_next_owner(struct mm_struct *mm)
448 {
449         struct task_struct *c, *g, *p = current;
450
451 retry:
452         /*
453          * If the exiting or execing task is not the owner, it's
454          * someone else's problem.
455          */
456         if (mm->owner != p)
457                 return;
458         /*
459          * The current owner is exiting/execing and there are no other
460          * candidates.  Do not leave the mm pointing to a possibly
461          * freed task structure.
462          */
463         if (atomic_read(&mm->mm_users) <= 1) {
464                 WRITE_ONCE(mm->owner, NULL);
465                 return;
466         }
467
468         read_lock(&tasklist_lock);
469         /*
470          * Search in the children
471          */
472         list_for_each_entry(c, &p->children, sibling) {
473                 if (c->mm == mm)
474                         goto assign_new_owner;
475         }
476
477         /*
478          * Search in the siblings
479          */
480         list_for_each_entry(c, &p->real_parent->children, sibling) {
481                 if (c->mm == mm)
482                         goto assign_new_owner;
483         }
484
485         /*
486          * Search through everything else, we should not get here often.
487          */
488         for_each_process(g) {
489                 if (g->flags & PF_KTHREAD)
490                         continue;
491                 for_each_thread(g, c) {
492                         if (c->mm == mm)
493                                 goto assign_new_owner;
494                         if (c->mm)
495                                 break;
496                 }
497         }
498         read_unlock(&tasklist_lock);
499         /*
500          * We found no owner yet mm_users > 1: this implies that we are
501          * most likely racing with swapoff (try_to_unuse()) or /proc or
502          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
503          */
504         WRITE_ONCE(mm->owner, NULL);
505         return;
506
507 assign_new_owner:
508         BUG_ON(c == p);
509         get_task_struct(c);
510         /*
511          * The task_lock protects c->mm from changing.
512          * We always want mm->owner->mm == mm
513          */
514         task_lock(c);
515         /*
516          * Delay read_unlock() till we have the task_lock()
517          * to ensure that c does not slip away underneath us
518          */
519         read_unlock(&tasklist_lock);
520         if (c->mm != mm) {
521                 task_unlock(c);
522                 put_task_struct(c);
523                 goto retry;
524         }
525         WRITE_ONCE(mm->owner, c);
526         lru_gen_migrate_mm(mm);
527         task_unlock(c);
528         put_task_struct(c);
529 }
530 #endif /* CONFIG_MEMCG */
531
532 /*
533  * Turn us into a lazy TLB process if we
534  * aren't already..
535  */
536 static void exit_mm(void)
537 {
538         struct mm_struct *mm = current->mm;
539
540         exit_mm_release(current, mm);
541         if (!mm)
542                 return;
543         mmap_read_lock(mm);
544         mmgrab_lazy_tlb(mm);
545         BUG_ON(mm != current->active_mm);
546         /* more a memory barrier than a real lock */
547         task_lock(current);
548         /*
549          * When a thread stops operating on an address space, the loop
550          * in membarrier_private_expedited() may not observe that
551          * tsk->mm, and the loop in membarrier_global_expedited() may
552          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553          * rq->membarrier_state, so those would not issue an IPI.
554          * Membarrier requires a memory barrier after accessing
555          * user-space memory, before clearing tsk->mm or the
556          * rq->membarrier_state.
557          */
558         smp_mb__after_spinlock();
559         local_irq_disable();
560         current->mm = NULL;
561         membarrier_update_current_mm(NULL);
562         enter_lazy_tlb(mm, current);
563         local_irq_enable();
564         task_unlock(current);
565         mmap_read_unlock(mm);
566         mm_update_next_owner(mm);
567         mmput(mm);
568         if (test_thread_flag(TIF_MEMDIE))
569                 exit_oom_victim();
570 }
571
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574         struct task_struct *t;
575
576         for_each_thread(p, t) {
577                 if (!(t->flags & PF_EXITING))
578                         return t;
579         }
580         return NULL;
581 }
582
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584                                                 struct list_head *dead)
585         __releases(&tasklist_lock)
586         __acquires(&tasklist_lock)
587 {
588         struct pid_namespace *pid_ns = task_active_pid_ns(father);
589         struct task_struct *reaper = pid_ns->child_reaper;
590         struct task_struct *p, *n;
591
592         if (likely(reaper != father))
593                 return reaper;
594
595         reaper = find_alive_thread(father);
596         if (reaper) {
597                 pid_ns->child_reaper = reaper;
598                 return reaper;
599         }
600
601         write_unlock_irq(&tasklist_lock);
602
603         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604                 list_del_init(&p->ptrace_entry);
605                 release_task(p);
606         }
607
608         zap_pid_ns_processes(pid_ns);
609         write_lock_irq(&tasklist_lock);
610
611         return father;
612 }
613
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622                                            struct task_struct *child_reaper)
623 {
624         struct task_struct *thread, *reaper;
625
626         thread = find_alive_thread(father);
627         if (thread)
628                 return thread;
629
630         if (father->signal->has_child_subreaper) {
631                 unsigned int ns_level = task_pid(father)->level;
632                 /*
633                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
634                  * We can't check reaper != child_reaper to ensure we do not
635                  * cross the namespaces, the exiting parent could be injected
636                  * by setns() + fork().
637                  * We check pid->level, this is slightly more efficient than
638                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639                  */
640                 for (reaper = father->real_parent;
641                      task_pid(reaper)->level == ns_level;
642                      reaper = reaper->real_parent) {
643                         if (reaper == &init_task)
644                                 break;
645                         if (!reaper->signal->is_child_subreaper)
646                                 continue;
647                         thread = find_alive_thread(reaper);
648                         if (thread)
649                                 return thread;
650                 }
651         }
652
653         return child_reaper;
654 }
655
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660                                 struct list_head *dead)
661 {
662         if (unlikely(p->exit_state == EXIT_DEAD))
663                 return;
664
665         /* We don't want people slaying init. */
666         p->exit_signal = SIGCHLD;
667
668         /* If it has exited notify the new parent about this child's death. */
669         if (!p->ptrace &&
670             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671                 if (do_notify_parent(p, p->exit_signal)) {
672                         p->exit_state = EXIT_DEAD;
673                         list_add(&p->ptrace_entry, dead);
674                 }
675         }
676
677         kill_orphaned_pgrp(p, father);
678 }
679
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *      as a result of our exiting, and if they have any stopped
686  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689                                         struct list_head *dead)
690 {
691         struct task_struct *p, *t, *reaper;
692
693         if (unlikely(!list_empty(&father->ptraced)))
694                 exit_ptrace(father, dead);
695
696         /* Can drop and reacquire tasklist_lock */
697         reaper = find_child_reaper(father, dead);
698         if (list_empty(&father->children))
699                 return;
700
701         reaper = find_new_reaper(father, reaper);
702         list_for_each_entry(p, &father->children, sibling) {
703                 for_each_thread(p, t) {
704                         RCU_INIT_POINTER(t->real_parent, reaper);
705                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706                         if (likely(!t->ptrace))
707                                 t->parent = t->real_parent;
708                         if (t->pdeath_signal)
709                                 group_send_sig_info(t->pdeath_signal,
710                                                     SEND_SIG_NOINFO, t,
711                                                     PIDTYPE_TGID);
712                 }
713                 /*
714                  * If this is a threaded reparent there is no need to
715                  * notify anyone anything has happened.
716                  */
717                 if (!same_thread_group(reaper, father))
718                         reparent_leader(father, p, dead);
719         }
720         list_splice_tail_init(&father->children, &reaper->children);
721 }
722
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729         bool autoreap;
730         struct task_struct *p, *n;
731         LIST_HEAD(dead);
732
733         write_lock_irq(&tasklist_lock);
734         forget_original_parent(tsk, &dead);
735
736         if (group_dead)
737                 kill_orphaned_pgrp(tsk->group_leader, NULL);
738
739         tsk->exit_state = EXIT_ZOMBIE;
740         if (unlikely(tsk->ptrace)) {
741                 int sig = thread_group_leader(tsk) &&
742                                 thread_group_empty(tsk) &&
743                                 !ptrace_reparented(tsk) ?
744                         tsk->exit_signal : SIGCHLD;
745                 autoreap = do_notify_parent(tsk, sig);
746         } else if (thread_group_leader(tsk)) {
747                 autoreap = thread_group_empty(tsk) &&
748                         do_notify_parent(tsk, tsk->exit_signal);
749         } else {
750                 autoreap = true;
751         }
752
753         if (autoreap) {
754                 tsk->exit_state = EXIT_DEAD;
755                 list_add(&tsk->ptrace_entry, &dead);
756         }
757
758         /* mt-exec, de_thread() is waiting for group leader */
759         if (unlikely(tsk->signal->notify_count < 0))
760                 wake_up_process(tsk->signal->group_exec_task);
761         write_unlock_irq(&tasklist_lock);
762
763         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764                 list_del_init(&p->ptrace_entry);
765                 release_task(p);
766         }
767 }
768
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
771 {
772         static DEFINE_SPINLOCK(low_water_lock);
773         static int lowest_to_date = THREAD_SIZE;
774         unsigned long free;
775
776         free = stack_not_used(current);
777
778         if (free >= lowest_to_date)
779                 return;
780
781         spin_lock(&low_water_lock);
782         if (free < lowest_to_date) {
783                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784                         current->comm, task_pid_nr(current), free);
785                 lowest_to_date = free;
786         }
787         spin_unlock(&low_water_lock);
788 }
789 #else
790 static inline void check_stack_usage(void) {}
791 #endif
792
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795         struct sighand_struct *sighand = tsk->sighand;
796         struct signal_struct *signal = tsk->signal;
797
798         spin_lock_irq(&sighand->siglock);
799         signal->quick_threads--;
800         if ((signal->quick_threads == 0) &&
801             !(signal->flags & SIGNAL_GROUP_EXIT)) {
802                 signal->flags = SIGNAL_GROUP_EXIT;
803                 signal->group_exit_code = code;
804                 signal->group_stop_count = 0;
805         }
806         spin_unlock_irq(&sighand->siglock);
807 }
808
809 void __noreturn do_exit(long code)
810 {
811         struct task_struct *tsk = current;
812         int group_dead;
813
814         WARN_ON(irqs_disabled());
815
816         synchronize_group_exit(tsk, code);
817
818         WARN_ON(tsk->plug);
819
820         kcov_task_exit(tsk);
821         kmsan_task_exit(tsk);
822
823         coredump_task_exit(tsk);
824         ptrace_event(PTRACE_EVENT_EXIT, code);
825         user_events_exit(tsk);
826
827         io_uring_files_cancel();
828         exit_signals(tsk);  /* sets PF_EXITING */
829
830         acct_update_integrals(tsk);
831         group_dead = atomic_dec_and_test(&tsk->signal->live);
832         if (group_dead) {
833                 /*
834                  * If the last thread of global init has exited, panic
835                  * immediately to get a useable coredump.
836                  */
837                 if (unlikely(is_global_init(tsk)))
838                         panic("Attempted to kill init! exitcode=0x%08x\n",
839                                 tsk->signal->group_exit_code ?: (int)code);
840
841 #ifdef CONFIG_POSIX_TIMERS
842                 hrtimer_cancel(&tsk->signal->real_timer);
843                 exit_itimers(tsk);
844 #endif
845                 if (tsk->mm)
846                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847         }
848         acct_collect(code, group_dead);
849         if (group_dead)
850                 tty_audit_exit();
851         audit_free(tsk);
852
853         tsk->exit_code = code;
854         taskstats_exit(tsk, group_dead);
855
856         exit_mm();
857
858         if (group_dead)
859                 acct_process();
860         trace_sched_process_exit(tsk);
861
862         exit_sem(tsk);
863         exit_shm(tsk);
864         exit_files(tsk);
865         exit_fs(tsk);
866         if (group_dead)
867                 disassociate_ctty(1);
868         exit_task_namespaces(tsk);
869         exit_task_work(tsk);
870         exit_thread(tsk);
871
872         /*
873          * Flush inherited counters to the parent - before the parent
874          * gets woken up by child-exit notifications.
875          *
876          * because of cgroup mode, must be called before cgroup_exit()
877          */
878         perf_event_exit_task(tsk);
879
880         sched_autogroup_exit_task(tsk);
881         cgroup_exit(tsk);
882
883         /*
884          * FIXME: do that only when needed, using sched_exit tracepoint
885          */
886         flush_ptrace_hw_breakpoint(tsk);
887
888         exit_tasks_rcu_start();
889         exit_notify(tsk, group_dead);
890         proc_exit_connector(tsk);
891         mpol_put_task_policy(tsk);
892 #ifdef CONFIG_FUTEX
893         if (unlikely(current->pi_state_cache))
894                 kfree(current->pi_state_cache);
895 #endif
896         /*
897          * Make sure we are holding no locks:
898          */
899         debug_check_no_locks_held();
900
901         if (tsk->io_context)
902                 exit_io_context(tsk);
903
904         if (tsk->splice_pipe)
905                 free_pipe_info(tsk->splice_pipe);
906
907         if (tsk->task_frag.page)
908                 put_page(tsk->task_frag.page);
909
910         exit_task_stack_account(tsk);
911
912         check_stack_usage();
913         preempt_disable();
914         if (tsk->nr_dirtied)
915                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
916         exit_rcu();
917         exit_tasks_rcu_finish();
918
919         lockdep_free_task(tsk);
920         do_task_dead();
921 }
922
923 void __noreturn make_task_dead(int signr)
924 {
925         /*
926          * Take the task off the cpu after something catastrophic has
927          * happened.
928          *
929          * We can get here from a kernel oops, sometimes with preemption off.
930          * Start by checking for critical errors.
931          * Then fix up important state like USER_DS and preemption.
932          * Then do everything else.
933          */
934         struct task_struct *tsk = current;
935         unsigned int limit;
936
937         if (unlikely(in_interrupt()))
938                 panic("Aiee, killing interrupt handler!");
939         if (unlikely(!tsk->pid))
940                 panic("Attempted to kill the idle task!");
941
942         if (unlikely(irqs_disabled())) {
943                 pr_info("note: %s[%d] exited with irqs disabled\n",
944                         current->comm, task_pid_nr(current));
945                 local_irq_enable();
946         }
947         if (unlikely(in_atomic())) {
948                 pr_info("note: %s[%d] exited with preempt_count %d\n",
949                         current->comm, task_pid_nr(current),
950                         preempt_count());
951                 preempt_count_set(PREEMPT_ENABLED);
952         }
953
954         /*
955          * Every time the system oopses, if the oops happens while a reference
956          * to an object was held, the reference leaks.
957          * If the oops doesn't also leak memory, repeated oopsing can cause
958          * reference counters to wrap around (if they're not using refcount_t).
959          * This means that repeated oopsing can make unexploitable-looking bugs
960          * exploitable through repeated oopsing.
961          * To make sure this can't happen, place an upper bound on how often the
962          * kernel may oops without panic().
963          */
964         limit = READ_ONCE(oops_limit);
965         if (atomic_inc_return(&oops_count) >= limit && limit)
966                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
967
968         /*
969          * We're taking recursive faults here in make_task_dead. Safest is to just
970          * leave this task alone and wait for reboot.
971          */
972         if (unlikely(tsk->flags & PF_EXITING)) {
973                 pr_alert("Fixing recursive fault but reboot is needed!\n");
974                 futex_exit_recursive(tsk);
975                 tsk->exit_state = EXIT_DEAD;
976                 refcount_inc(&tsk->rcu_users);
977                 do_task_dead();
978         }
979
980         do_exit(signr);
981 }
982
983 SYSCALL_DEFINE1(exit, int, error_code)
984 {
985         do_exit((error_code&0xff)<<8);
986 }
987
988 /*
989  * Take down every thread in the group.  This is called by fatal signals
990  * as well as by sys_exit_group (below).
991  */
992 void __noreturn
993 do_group_exit(int exit_code)
994 {
995         struct signal_struct *sig = current->signal;
996
997         if (sig->flags & SIGNAL_GROUP_EXIT)
998                 exit_code = sig->group_exit_code;
999         else if (sig->group_exec_task)
1000                 exit_code = 0;
1001         else {
1002                 struct sighand_struct *const sighand = current->sighand;
1003
1004                 spin_lock_irq(&sighand->siglock);
1005                 if (sig->flags & SIGNAL_GROUP_EXIT)
1006                         /* Another thread got here before we took the lock.  */
1007                         exit_code = sig->group_exit_code;
1008                 else if (sig->group_exec_task)
1009                         exit_code = 0;
1010                 else {
1011                         sig->group_exit_code = exit_code;
1012                         sig->flags = SIGNAL_GROUP_EXIT;
1013                         zap_other_threads(current);
1014                 }
1015                 spin_unlock_irq(&sighand->siglock);
1016         }
1017
1018         do_exit(exit_code);
1019         /* NOTREACHED */
1020 }
1021
1022 /*
1023  * this kills every thread in the thread group. Note that any externally
1024  * wait4()-ing process will get the correct exit code - even if this
1025  * thread is not the thread group leader.
1026  */
1027 SYSCALL_DEFINE1(exit_group, int, error_code)
1028 {
1029         do_group_exit((error_code & 0xff) << 8);
1030         /* NOTREACHED */
1031         return 0;
1032 }
1033
1034 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1035 {
1036         return  wo->wo_type == PIDTYPE_MAX ||
1037                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1038 }
1039
1040 static int
1041 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1042 {
1043         if (!eligible_pid(wo, p))
1044                 return 0;
1045
1046         /*
1047          * Wait for all children (clone and not) if __WALL is set or
1048          * if it is traced by us.
1049          */
1050         if (ptrace || (wo->wo_flags & __WALL))
1051                 return 1;
1052
1053         /*
1054          * Otherwise, wait for clone children *only* if __WCLONE is set;
1055          * otherwise, wait for non-clone children *only*.
1056          *
1057          * Note: a "clone" child here is one that reports to its parent
1058          * using a signal other than SIGCHLD, or a non-leader thread which
1059          * we can only see if it is traced by us.
1060          */
1061         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1062                 return 0;
1063
1064         return 1;
1065 }
1066
1067 /*
1068  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1069  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1070  * the lock and this task is uninteresting.  If we return nonzero, we have
1071  * released the lock and the system call should return.
1072  */
1073 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1074 {
1075         int state, status;
1076         pid_t pid = task_pid_vnr(p);
1077         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1078         struct waitid_info *infop;
1079
1080         if (!likely(wo->wo_flags & WEXITED))
1081                 return 0;
1082
1083         if (unlikely(wo->wo_flags & WNOWAIT)) {
1084                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1085                         ? p->signal->group_exit_code : p->exit_code;
1086                 get_task_struct(p);
1087                 read_unlock(&tasklist_lock);
1088                 sched_annotate_sleep();
1089                 if (wo->wo_rusage)
1090                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1091                 put_task_struct(p);
1092                 goto out_info;
1093         }
1094         /*
1095          * Move the task's state to DEAD/TRACE, only one thread can do this.
1096          */
1097         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1098                 EXIT_TRACE : EXIT_DEAD;
1099         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1100                 return 0;
1101         /*
1102          * We own this thread, nobody else can reap it.
1103          */
1104         read_unlock(&tasklist_lock);
1105         sched_annotate_sleep();
1106
1107         /*
1108          * Check thread_group_leader() to exclude the traced sub-threads.
1109          */
1110         if (state == EXIT_DEAD && thread_group_leader(p)) {
1111                 struct signal_struct *sig = p->signal;
1112                 struct signal_struct *psig = current->signal;
1113                 unsigned long maxrss;
1114                 u64 tgutime, tgstime;
1115
1116                 /*
1117                  * The resource counters for the group leader are in its
1118                  * own task_struct.  Those for dead threads in the group
1119                  * are in its signal_struct, as are those for the child
1120                  * processes it has previously reaped.  All these
1121                  * accumulate in the parent's signal_struct c* fields.
1122                  *
1123                  * We don't bother to take a lock here to protect these
1124                  * p->signal fields because the whole thread group is dead
1125                  * and nobody can change them.
1126                  *
1127                  * psig->stats_lock also protects us from our sub-threads
1128                  * which can reap other children at the same time. Until
1129                  * we change k_getrusage()-like users to rely on this lock
1130                  * we have to take ->siglock as well.
1131                  *
1132                  * We use thread_group_cputime_adjusted() to get times for
1133                  * the thread group, which consolidates times for all threads
1134                  * in the group including the group leader.
1135                  */
1136                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1137                 spin_lock_irq(&current->sighand->siglock);
1138                 write_seqlock(&psig->stats_lock);
1139                 psig->cutime += tgutime + sig->cutime;
1140                 psig->cstime += tgstime + sig->cstime;
1141                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1142                 psig->cmin_flt +=
1143                         p->min_flt + sig->min_flt + sig->cmin_flt;
1144                 psig->cmaj_flt +=
1145                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1146                 psig->cnvcsw +=
1147                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1148                 psig->cnivcsw +=
1149                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1150                 psig->cinblock +=
1151                         task_io_get_inblock(p) +
1152                         sig->inblock + sig->cinblock;
1153                 psig->coublock +=
1154                         task_io_get_oublock(p) +
1155                         sig->oublock + sig->coublock;
1156                 maxrss = max(sig->maxrss, sig->cmaxrss);
1157                 if (psig->cmaxrss < maxrss)
1158                         psig->cmaxrss = maxrss;
1159                 task_io_accounting_add(&psig->ioac, &p->ioac);
1160                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1161                 write_sequnlock(&psig->stats_lock);
1162                 spin_unlock_irq(&current->sighand->siglock);
1163         }
1164
1165         if (wo->wo_rusage)
1166                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1167         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1168                 ? p->signal->group_exit_code : p->exit_code;
1169         wo->wo_stat = status;
1170
1171         if (state == EXIT_TRACE) {
1172                 write_lock_irq(&tasklist_lock);
1173                 /* We dropped tasklist, ptracer could die and untrace */
1174                 ptrace_unlink(p);
1175
1176                 /* If parent wants a zombie, don't release it now */
1177                 state = EXIT_ZOMBIE;
1178                 if (do_notify_parent(p, p->exit_signal))
1179                         state = EXIT_DEAD;
1180                 p->exit_state = state;
1181                 write_unlock_irq(&tasklist_lock);
1182         }
1183         if (state == EXIT_DEAD)
1184                 release_task(p);
1185
1186 out_info:
1187         infop = wo->wo_info;
1188         if (infop) {
1189                 if ((status & 0x7f) == 0) {
1190                         infop->cause = CLD_EXITED;
1191                         infop->status = status >> 8;
1192                 } else {
1193                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194                         infop->status = status & 0x7f;
1195                 }
1196                 infop->pid = pid;
1197                 infop->uid = uid;
1198         }
1199
1200         return pid;
1201 }
1202
1203 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1204 {
1205         if (ptrace) {
1206                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1207                         return &p->exit_code;
1208         } else {
1209                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1210                         return &p->signal->group_exit_code;
1211         }
1212         return NULL;
1213 }
1214
1215 /**
1216  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1217  * @wo: wait options
1218  * @ptrace: is the wait for ptrace
1219  * @p: task to wait for
1220  *
1221  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1222  *
1223  * CONTEXT:
1224  * read_lock(&tasklist_lock), which is released if return value is
1225  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1226  *
1227  * RETURNS:
1228  * 0 if wait condition didn't exist and search for other wait conditions
1229  * should continue.  Non-zero return, -errno on failure and @p's pid on
1230  * success, implies that tasklist_lock is released and wait condition
1231  * search should terminate.
1232  */
1233 static int wait_task_stopped(struct wait_opts *wo,
1234                                 int ptrace, struct task_struct *p)
1235 {
1236         struct waitid_info *infop;
1237         int exit_code, *p_code, why;
1238         uid_t uid = 0; /* unneeded, required by compiler */
1239         pid_t pid;
1240
1241         /*
1242          * Traditionally we see ptrace'd stopped tasks regardless of options.
1243          */
1244         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1245                 return 0;
1246
1247         if (!task_stopped_code(p, ptrace))
1248                 return 0;
1249
1250         exit_code = 0;
1251         spin_lock_irq(&p->sighand->siglock);
1252
1253         p_code = task_stopped_code(p, ptrace);
1254         if (unlikely(!p_code))
1255                 goto unlock_sig;
1256
1257         exit_code = *p_code;
1258         if (!exit_code)
1259                 goto unlock_sig;
1260
1261         if (!unlikely(wo->wo_flags & WNOWAIT))
1262                 *p_code = 0;
1263
1264         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1265 unlock_sig:
1266         spin_unlock_irq(&p->sighand->siglock);
1267         if (!exit_code)
1268                 return 0;
1269
1270         /*
1271          * Now we are pretty sure this task is interesting.
1272          * Make sure it doesn't get reaped out from under us while we
1273          * give up the lock and then examine it below.  We don't want to
1274          * keep holding onto the tasklist_lock while we call getrusage and
1275          * possibly take page faults for user memory.
1276          */
1277         get_task_struct(p);
1278         pid = task_pid_vnr(p);
1279         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1280         read_unlock(&tasklist_lock);
1281         sched_annotate_sleep();
1282         if (wo->wo_rusage)
1283                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1284         put_task_struct(p);
1285
1286         if (likely(!(wo->wo_flags & WNOWAIT)))
1287                 wo->wo_stat = (exit_code << 8) | 0x7f;
1288
1289         infop = wo->wo_info;
1290         if (infop) {
1291                 infop->cause = why;
1292                 infop->status = exit_code;
1293                 infop->pid = pid;
1294                 infop->uid = uid;
1295         }
1296         return pid;
1297 }
1298
1299 /*
1300  * Handle do_wait work for one task in a live, non-stopped state.
1301  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1302  * the lock and this task is uninteresting.  If we return nonzero, we have
1303  * released the lock and the system call should return.
1304  */
1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1306 {
1307         struct waitid_info *infop;
1308         pid_t pid;
1309         uid_t uid;
1310
1311         if (!unlikely(wo->wo_flags & WCONTINUED))
1312                 return 0;
1313
1314         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1315                 return 0;
1316
1317         spin_lock_irq(&p->sighand->siglock);
1318         /* Re-check with the lock held.  */
1319         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1320                 spin_unlock_irq(&p->sighand->siglock);
1321                 return 0;
1322         }
1323         if (!unlikely(wo->wo_flags & WNOWAIT))
1324                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1325         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1326         spin_unlock_irq(&p->sighand->siglock);
1327
1328         pid = task_pid_vnr(p);
1329         get_task_struct(p);
1330         read_unlock(&tasklist_lock);
1331         sched_annotate_sleep();
1332         if (wo->wo_rusage)
1333                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1334         put_task_struct(p);
1335
1336         infop = wo->wo_info;
1337         if (!infop) {
1338                 wo->wo_stat = 0xffff;
1339         } else {
1340                 infop->cause = CLD_CONTINUED;
1341                 infop->pid = pid;
1342                 infop->uid = uid;
1343                 infop->status = SIGCONT;
1344         }
1345         return pid;
1346 }
1347
1348 /*
1349  * Consider @p for a wait by @parent.
1350  *
1351  * -ECHILD should be in ->notask_error before the first call.
1352  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1353  * Returns zero if the search for a child should continue;
1354  * then ->notask_error is 0 if @p is an eligible child,
1355  * or still -ECHILD.
1356  */
1357 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1358                                 struct task_struct *p)
1359 {
1360         /*
1361          * We can race with wait_task_zombie() from another thread.
1362          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1363          * can't confuse the checks below.
1364          */
1365         int exit_state = READ_ONCE(p->exit_state);
1366         int ret;
1367
1368         if (unlikely(exit_state == EXIT_DEAD))
1369                 return 0;
1370
1371         ret = eligible_child(wo, ptrace, p);
1372         if (!ret)
1373                 return ret;
1374
1375         if (unlikely(exit_state == EXIT_TRACE)) {
1376                 /*
1377                  * ptrace == 0 means we are the natural parent. In this case
1378                  * we should clear notask_error, debugger will notify us.
1379                  */
1380                 if (likely(!ptrace))
1381                         wo->notask_error = 0;
1382                 return 0;
1383         }
1384
1385         if (likely(!ptrace) && unlikely(p->ptrace)) {
1386                 /*
1387                  * If it is traced by its real parent's group, just pretend
1388                  * the caller is ptrace_do_wait() and reap this child if it
1389                  * is zombie.
1390                  *
1391                  * This also hides group stop state from real parent; otherwise
1392                  * a single stop can be reported twice as group and ptrace stop.
1393                  * If a ptracer wants to distinguish these two events for its
1394                  * own children it should create a separate process which takes
1395                  * the role of real parent.
1396                  */
1397                 if (!ptrace_reparented(p))
1398                         ptrace = 1;
1399         }
1400
1401         /* slay zombie? */
1402         if (exit_state == EXIT_ZOMBIE) {
1403                 /* we don't reap group leaders with subthreads */
1404                 if (!delay_group_leader(p)) {
1405                         /*
1406                          * A zombie ptracee is only visible to its ptracer.
1407                          * Notification and reaping will be cascaded to the
1408                          * real parent when the ptracer detaches.
1409                          */
1410                         if (unlikely(ptrace) || likely(!p->ptrace))
1411                                 return wait_task_zombie(wo, p);
1412                 }
1413
1414                 /*
1415                  * Allow access to stopped/continued state via zombie by
1416                  * falling through.  Clearing of notask_error is complex.
1417                  *
1418                  * When !@ptrace:
1419                  *
1420                  * If WEXITED is set, notask_error should naturally be
1421                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1422                  * so, if there are live subthreads, there are events to
1423                  * wait for.  If all subthreads are dead, it's still safe
1424                  * to clear - this function will be called again in finite
1425                  * amount time once all the subthreads are released and
1426                  * will then return without clearing.
1427                  *
1428                  * When @ptrace:
1429                  *
1430                  * Stopped state is per-task and thus can't change once the
1431                  * target task dies.  Only continued and exited can happen.
1432                  * Clear notask_error if WCONTINUED | WEXITED.
1433                  */
1434                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1435                         wo->notask_error = 0;
1436         } else {
1437                 /*
1438                  * @p is alive and it's gonna stop, continue or exit, so
1439                  * there always is something to wait for.
1440                  */
1441                 wo->notask_error = 0;
1442         }
1443
1444         /*
1445          * Wait for stopped.  Depending on @ptrace, different stopped state
1446          * is used and the two don't interact with each other.
1447          */
1448         ret = wait_task_stopped(wo, ptrace, p);
1449         if (ret)
1450                 return ret;
1451
1452         /*
1453          * Wait for continued.  There's only one continued state and the
1454          * ptracer can consume it which can confuse the real parent.  Don't
1455          * use WCONTINUED from ptracer.  You don't need or want it.
1456          */
1457         return wait_task_continued(wo, p);
1458 }
1459
1460 /*
1461  * Do the work of do_wait() for one thread in the group, @tsk.
1462  *
1463  * -ECHILD should be in ->notask_error before the first call.
1464  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1465  * Returns zero if the search for a child should continue; then
1466  * ->notask_error is 0 if there were any eligible children,
1467  * or still -ECHILD.
1468  */
1469 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1470 {
1471         struct task_struct *p;
1472
1473         list_for_each_entry(p, &tsk->children, sibling) {
1474                 int ret = wait_consider_task(wo, 0, p);
1475
1476                 if (ret)
1477                         return ret;
1478         }
1479
1480         return 0;
1481 }
1482
1483 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1484 {
1485         struct task_struct *p;
1486
1487         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1488                 int ret = wait_consider_task(wo, 1, p);
1489
1490                 if (ret)
1491                         return ret;
1492         }
1493
1494         return 0;
1495 }
1496
1497 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1498 {
1499         if (!eligible_pid(wo, p))
1500                 return false;
1501
1502         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1503                 return false;
1504
1505         return true;
1506 }
1507
1508 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1509                                 int sync, void *key)
1510 {
1511         struct wait_opts *wo = container_of(wait, struct wait_opts,
1512                                                 child_wait);
1513         struct task_struct *p = key;
1514
1515         if (pid_child_should_wake(wo, p))
1516                 return default_wake_function(wait, mode, sync, key);
1517
1518         return 0;
1519 }
1520
1521 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1522 {
1523         __wake_up_sync_key(&parent->signal->wait_chldexit,
1524                            TASK_INTERRUPTIBLE, p);
1525 }
1526
1527 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1528                                  struct task_struct *target)
1529 {
1530         struct task_struct *parent =
1531                 !ptrace ? target->real_parent : target->parent;
1532
1533         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1534                                      same_thread_group(current, parent));
1535 }
1536
1537 /*
1538  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1539  * and tracee lists to find the target task.
1540  */
1541 static int do_wait_pid(struct wait_opts *wo)
1542 {
1543         bool ptrace;
1544         struct task_struct *target;
1545         int retval;
1546
1547         ptrace = false;
1548         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1549         if (target && is_effectively_child(wo, ptrace, target)) {
1550                 retval = wait_consider_task(wo, ptrace, target);
1551                 if (retval)
1552                         return retval;
1553         }
1554
1555         ptrace = true;
1556         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1557         if (target && target->ptrace &&
1558             is_effectively_child(wo, ptrace, target)) {
1559                 retval = wait_consider_task(wo, ptrace, target);
1560                 if (retval)
1561                         return retval;
1562         }
1563
1564         return 0;
1565 }
1566
1567 long __do_wait(struct wait_opts *wo)
1568 {
1569         long retval;
1570
1571         /*
1572          * If there is nothing that can match our criteria, just get out.
1573          * We will clear ->notask_error to zero if we see any child that
1574          * might later match our criteria, even if we are not able to reap
1575          * it yet.
1576          */
1577         wo->notask_error = -ECHILD;
1578         if ((wo->wo_type < PIDTYPE_MAX) &&
1579            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1580                 goto notask;
1581
1582         read_lock(&tasklist_lock);
1583
1584         if (wo->wo_type == PIDTYPE_PID) {
1585                 retval = do_wait_pid(wo);
1586                 if (retval)
1587                         return retval;
1588         } else {
1589                 struct task_struct *tsk = current;
1590
1591                 do {
1592                         retval = do_wait_thread(wo, tsk);
1593                         if (retval)
1594                                 return retval;
1595
1596                         retval = ptrace_do_wait(wo, tsk);
1597                         if (retval)
1598                                 return retval;
1599
1600                         if (wo->wo_flags & __WNOTHREAD)
1601                                 break;
1602                 } while_each_thread(current, tsk);
1603         }
1604         read_unlock(&tasklist_lock);
1605
1606 notask:
1607         retval = wo->notask_error;
1608         if (!retval && !(wo->wo_flags & WNOHANG))
1609                 return -ERESTARTSYS;
1610
1611         return retval;
1612 }
1613
1614 static long do_wait(struct wait_opts *wo)
1615 {
1616         int retval;
1617
1618         trace_sched_process_wait(wo->wo_pid);
1619
1620         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1621         wo->child_wait.private = current;
1622         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1623
1624         do {
1625                 set_current_state(TASK_INTERRUPTIBLE);
1626                 retval = __do_wait(wo);
1627                 if (retval != -ERESTARTSYS)
1628                         break;
1629                 if (signal_pending(current))
1630                         break;
1631                 schedule();
1632         } while (1);
1633
1634         __set_current_state(TASK_RUNNING);
1635         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1636         return retval;
1637 }
1638
1639 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1640                           struct waitid_info *infop, int options,
1641                           struct rusage *ru)
1642 {
1643         unsigned int f_flags = 0;
1644         struct pid *pid = NULL;
1645         enum pid_type type;
1646
1647         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1648                         __WNOTHREAD|__WCLONE|__WALL))
1649                 return -EINVAL;
1650         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1651                 return -EINVAL;
1652
1653         switch (which) {
1654         case P_ALL:
1655                 type = PIDTYPE_MAX;
1656                 break;
1657         case P_PID:
1658                 type = PIDTYPE_PID;
1659                 if (upid <= 0)
1660                         return -EINVAL;
1661
1662                 pid = find_get_pid(upid);
1663                 break;
1664         case P_PGID:
1665                 type = PIDTYPE_PGID;
1666                 if (upid < 0)
1667                         return -EINVAL;
1668
1669                 if (upid)
1670                         pid = find_get_pid(upid);
1671                 else
1672                         pid = get_task_pid(current, PIDTYPE_PGID);
1673                 break;
1674         case P_PIDFD:
1675                 type = PIDTYPE_PID;
1676                 if (upid < 0)
1677                         return -EINVAL;
1678
1679                 pid = pidfd_get_pid(upid, &f_flags);
1680                 if (IS_ERR(pid))
1681                         return PTR_ERR(pid);
1682
1683                 break;
1684         default:
1685                 return -EINVAL;
1686         }
1687
1688         wo->wo_type     = type;
1689         wo->wo_pid      = pid;
1690         wo->wo_flags    = options;
1691         wo->wo_info     = infop;
1692         wo->wo_rusage   = ru;
1693         if (f_flags & O_NONBLOCK)
1694                 wo->wo_flags |= WNOHANG;
1695
1696         return 0;
1697 }
1698
1699 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1700                           int options, struct rusage *ru)
1701 {
1702         struct wait_opts wo;
1703         long ret;
1704
1705         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1706         if (ret)
1707                 return ret;
1708
1709         ret = do_wait(&wo);
1710         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1711                 ret = -EAGAIN;
1712
1713         put_pid(wo.wo_pid);
1714         return ret;
1715 }
1716
1717 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1718                 infop, int, options, struct rusage __user *, ru)
1719 {
1720         struct rusage r;
1721         struct waitid_info info = {.status = 0};
1722         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1723         int signo = 0;
1724
1725         if (err > 0) {
1726                 signo = SIGCHLD;
1727                 err = 0;
1728                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1729                         return -EFAULT;
1730         }
1731         if (!infop)
1732                 return err;
1733
1734         if (!user_write_access_begin(infop, sizeof(*infop)))
1735                 return -EFAULT;
1736
1737         unsafe_put_user(signo, &infop->si_signo, Efault);
1738         unsafe_put_user(0, &infop->si_errno, Efault);
1739         unsafe_put_user(info.cause, &infop->si_code, Efault);
1740         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1741         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1742         unsafe_put_user(info.status, &infop->si_status, Efault);
1743         user_write_access_end();
1744         return err;
1745 Efault:
1746         user_write_access_end();
1747         return -EFAULT;
1748 }
1749
1750 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1751                   struct rusage *ru)
1752 {
1753         struct wait_opts wo;
1754         struct pid *pid = NULL;
1755         enum pid_type type;
1756         long ret;
1757
1758         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1759                         __WNOTHREAD|__WCLONE|__WALL))
1760                 return -EINVAL;
1761
1762         /* -INT_MIN is not defined */
1763         if (upid == INT_MIN)
1764                 return -ESRCH;
1765
1766         if (upid == -1)
1767                 type = PIDTYPE_MAX;
1768         else if (upid < 0) {
1769                 type = PIDTYPE_PGID;
1770                 pid = find_get_pid(-upid);
1771         } else if (upid == 0) {
1772                 type = PIDTYPE_PGID;
1773                 pid = get_task_pid(current, PIDTYPE_PGID);
1774         } else /* upid > 0 */ {
1775                 type = PIDTYPE_PID;
1776                 pid = find_get_pid(upid);
1777         }
1778
1779         wo.wo_type      = type;
1780         wo.wo_pid       = pid;
1781         wo.wo_flags     = options | WEXITED;
1782         wo.wo_info      = NULL;
1783         wo.wo_stat      = 0;
1784         wo.wo_rusage    = ru;
1785         ret = do_wait(&wo);
1786         put_pid(pid);
1787         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1788                 ret = -EFAULT;
1789
1790         return ret;
1791 }
1792
1793 int kernel_wait(pid_t pid, int *stat)
1794 {
1795         struct wait_opts wo = {
1796                 .wo_type        = PIDTYPE_PID,
1797                 .wo_pid         = find_get_pid(pid),
1798                 .wo_flags       = WEXITED,
1799         };
1800         int ret;
1801
1802         ret = do_wait(&wo);
1803         if (ret > 0 && wo.wo_stat)
1804                 *stat = wo.wo_stat;
1805         put_pid(wo.wo_pid);
1806         return ret;
1807 }
1808
1809 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1810                 int, options, struct rusage __user *, ru)
1811 {
1812         struct rusage r;
1813         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1814
1815         if (err > 0) {
1816                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1817                         return -EFAULT;
1818         }
1819         return err;
1820 }
1821
1822 #ifdef __ARCH_WANT_SYS_WAITPID
1823
1824 /*
1825  * sys_waitpid() remains for compatibility. waitpid() should be
1826  * implemented by calling sys_wait4() from libc.a.
1827  */
1828 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1829 {
1830         return kernel_wait4(pid, stat_addr, options, NULL);
1831 }
1832
1833 #endif
1834
1835 #ifdef CONFIG_COMPAT
1836 COMPAT_SYSCALL_DEFINE4(wait4,
1837         compat_pid_t, pid,
1838         compat_uint_t __user *, stat_addr,
1839         int, options,
1840         struct compat_rusage __user *, ru)
1841 {
1842         struct rusage r;
1843         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1844         if (err > 0) {
1845                 if (ru && put_compat_rusage(&r, ru))
1846                         return -EFAULT;
1847         }
1848         return err;
1849 }
1850
1851 COMPAT_SYSCALL_DEFINE5(waitid,
1852                 int, which, compat_pid_t, pid,
1853                 struct compat_siginfo __user *, infop, int, options,
1854                 struct compat_rusage __user *, uru)
1855 {
1856         struct rusage ru;
1857         struct waitid_info info = {.status = 0};
1858         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1859         int signo = 0;
1860         if (err > 0) {
1861                 signo = SIGCHLD;
1862                 err = 0;
1863                 if (uru) {
1864                         /* kernel_waitid() overwrites everything in ru */
1865                         if (COMPAT_USE_64BIT_TIME)
1866                                 err = copy_to_user(uru, &ru, sizeof(ru));
1867                         else
1868                                 err = put_compat_rusage(&ru, uru);
1869                         if (err)
1870                                 return -EFAULT;
1871                 }
1872         }
1873
1874         if (!infop)
1875                 return err;
1876
1877         if (!user_write_access_begin(infop, sizeof(*infop)))
1878                 return -EFAULT;
1879
1880         unsafe_put_user(signo, &infop->si_signo, Efault);
1881         unsafe_put_user(0, &infop->si_errno, Efault);
1882         unsafe_put_user(info.cause, &infop->si_code, Efault);
1883         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1884         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1885         unsafe_put_user(info.status, &infop->si_status, Efault);
1886         user_write_access_end();
1887         return err;
1888 Efault:
1889         user_write_access_end();
1890         return -EFAULT;
1891 }
1892 #endif
1893
1894 /**
1895  * thread_group_exited - check that a thread group has exited
1896  * @pid: tgid of thread group to be checked.
1897  *
1898  * Test if the thread group represented by tgid has exited (all
1899  * threads are zombies, dead or completely gone).
1900  *
1901  * Return: true if the thread group has exited. false otherwise.
1902  */
1903 bool thread_group_exited(struct pid *pid)
1904 {
1905         struct task_struct *task;
1906         bool exited;
1907
1908         rcu_read_lock();
1909         task = pid_task(pid, PIDTYPE_PID);
1910         exited = !task ||
1911                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1912         rcu_read_unlock();
1913
1914         return exited;
1915 }
1916 EXPORT_SYMBOL(thread_group_exited);
1917
1918 /*
1919  * This needs to be __function_aligned as GCC implicitly makes any
1920  * implementation of abort() cold and drops alignment specified by
1921  * -falign-functions=N.
1922  *
1923  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1924  */
1925 __weak __function_aligned void abort(void)
1926 {
1927         BUG();
1928
1929         /* if that doesn't kill us, halt */
1930         panic("Oops failed to kill thread");
1931 }
1932 EXPORT_SYMBOL(abort);