Merge branch 'report-rcu-qs-for-busy-network-kthreads'
[sfrench/cifs-2.6.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
35 void set_kexec_sig_enforced(void)
36 {
37         sig_enforce = true;
38 }
39 #endif
40
41 static int kexec_calculate_store_digests(struct kimage *image);
42
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX     min_t(s64, 4LL << 30, SSIZE_MAX)
45
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
51 int kexec_image_probe_default(struct kimage *image, void *buf,
52                               unsigned long buf_len)
53 {
54         const struct kexec_file_ops * const *fops;
55         int ret = -ENOEXEC;
56
57         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58                 ret = (*fops)->probe(buf, buf_len);
59                 if (!ret) {
60                         image->fops = *fops;
61                         return ret;
62                 }
63         }
64
65         return ret;
66 }
67
68 static void *kexec_image_load_default(struct kimage *image)
69 {
70         if (!image->fops || !image->fops->load)
71                 return ERR_PTR(-ENOEXEC);
72
73         return image->fops->load(image, image->kernel_buf,
74                                  image->kernel_buf_len, image->initrd_buf,
75                                  image->initrd_buf_len, image->cmdline_buf,
76                                  image->cmdline_buf_len);
77 }
78
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81         if (!image->fops || !image->fops->cleanup)
82                 return 0;
83
84         return image->fops->cleanup(image->image_loader_data);
85 }
86
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94         struct purgatory_info *pi = &image->purgatory_info;
95
96         vfree(image->kernel_buf);
97         image->kernel_buf = NULL;
98
99         vfree(image->initrd_buf);
100         image->initrd_buf = NULL;
101
102         kfree(image->cmdline_buf);
103         image->cmdline_buf = NULL;
104
105         vfree(pi->purgatory_buf);
106         pi->purgatory_buf = NULL;
107
108         vfree(pi->sechdrs);
109         pi->sechdrs = NULL;
110
111 #ifdef CONFIG_IMA_KEXEC
112         vfree(image->ima_buffer);
113         image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115
116         /* See if architecture has anything to cleanup post load */
117         arch_kimage_file_post_load_cleanup(image);
118
119         /*
120          * Above call should have called into bootloader to free up
121          * any data stored in kimage->image_loader_data. It should
122          * be ok now to free it up.
123          */
124         kfree(image->image_loader_data);
125         image->image_loader_data = NULL;
126
127         kexec_file_dbg_print = false;
128 }
129
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134         int ret;
135
136         ret = verify_pefile_signature(kernel, kernel_len,
137                                       VERIFY_USE_SECONDARY_KEYRING,
138                                       VERIFYING_KEXEC_PE_SIGNATURE);
139         if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140                 ret = verify_pefile_signature(kernel, kernel_len,
141                                               VERIFY_USE_PLATFORM_KEYRING,
142                                               VERIFYING_KEXEC_PE_SIGNATURE);
143         }
144         return ret;
145 }
146 #endif
147
148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149                                   unsigned long buf_len)
150 {
151         if (!image->fops || !image->fops->verify_sig) {
152                 pr_debug("kernel loader does not support signature verification.\n");
153                 return -EKEYREJECTED;
154         }
155
156         return image->fops->verify_sig(buf, buf_len);
157 }
158
159 static int
160 kimage_validate_signature(struct kimage *image)
161 {
162         int ret;
163
164         ret = kexec_image_verify_sig(image, image->kernel_buf,
165                                      image->kernel_buf_len);
166         if (ret) {
167
168                 if (sig_enforce) {
169                         pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170                         return ret;
171                 }
172
173                 /*
174                  * If IMA is guaranteed to appraise a signature on the kexec
175                  * image, permit it even if the kernel is otherwise locked
176                  * down.
177                  */
178                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179                     security_locked_down(LOCKDOWN_KEXEC))
180                         return -EPERM;
181
182                 pr_debug("kernel signature verification failed (%d).\n", ret);
183         }
184
185         return 0;
186 }
187 #endif
188
189 /*
190  * In file mode list of segments is prepared by kernel. Copy relevant
191  * data from user space, do error checking, prepare segment list
192  */
193 static int
194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195                              const char __user *cmdline_ptr,
196                              unsigned long cmdline_len, unsigned flags)
197 {
198         ssize_t ret;
199         void *ldata;
200
201         ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202                                        KEXEC_FILE_SIZE_MAX, NULL,
203                                        READING_KEXEC_IMAGE);
204         if (ret < 0)
205                 return ret;
206         image->kernel_buf_len = ret;
207         kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208                       image->kernel_buf, image->kernel_buf_len);
209
210         /* Call arch image probe handlers */
211         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212                                             image->kernel_buf_len);
213         if (ret)
214                 goto out;
215
216 #ifdef CONFIG_KEXEC_SIG
217         ret = kimage_validate_signature(image);
218
219         if (ret)
220                 goto out;
221 #endif
222         /* It is possible that there no initramfs is being loaded */
223         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224                 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225                                                KEXEC_FILE_SIZE_MAX, NULL,
226                                                READING_KEXEC_INITRAMFS);
227                 if (ret < 0)
228                         goto out;
229                 image->initrd_buf_len = ret;
230                 ret = 0;
231         }
232
233         if (cmdline_len) {
234                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235                 if (IS_ERR(image->cmdline_buf)) {
236                         ret = PTR_ERR(image->cmdline_buf);
237                         image->cmdline_buf = NULL;
238                         goto out;
239                 }
240
241                 image->cmdline_buf_len = cmdline_len;
242
243                 /* command line should be a string with last byte null */
244                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245                         ret = -EINVAL;
246                         goto out;
247                 }
248
249                 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250                                   image->cmdline_buf_len - 1);
251         }
252
253         /* IMA needs to pass the measurement list to the next kernel. */
254         ima_add_kexec_buffer(image);
255
256         /* Call image load handler */
257         ldata = kexec_image_load_default(image);
258
259         if (IS_ERR(ldata)) {
260                 ret = PTR_ERR(ldata);
261                 goto out;
262         }
263
264         image->image_loader_data = ldata;
265 out:
266         /* In case of error, free up all allocated memory in this function */
267         if (ret)
268                 kimage_file_post_load_cleanup(image);
269         return ret;
270 }
271
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274                        int initrd_fd, const char __user *cmdline_ptr,
275                        unsigned long cmdline_len, unsigned long flags)
276 {
277         int ret;
278         struct kimage *image;
279         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281         image = do_kimage_alloc_init();
282         if (!image)
283                 return -ENOMEM;
284
285         kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286         image->file_mode = 1;
287
288         if (kexec_on_panic) {
289                 /* Enable special crash kernel control page alloc policy. */
290                 image->control_page = crashk_res.start;
291                 image->type = KEXEC_TYPE_CRASH;
292         }
293
294         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
295                                            cmdline_ptr, cmdline_len, flags);
296         if (ret)
297                 goto out_free_image;
298
299         ret = sanity_check_segment_list(image);
300         if (ret)
301                 goto out_free_post_load_bufs;
302
303         ret = -ENOMEM;
304         image->control_code_page = kimage_alloc_control_pages(image,
305                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
306         if (!image->control_code_page) {
307                 pr_err("Could not allocate control_code_buffer\n");
308                 goto out_free_post_load_bufs;
309         }
310
311         if (!kexec_on_panic) {
312                 image->swap_page = kimage_alloc_control_pages(image, 0);
313                 if (!image->swap_page) {
314                         pr_err("Could not allocate swap buffer\n");
315                         goto out_free_control_pages;
316                 }
317         }
318
319         *rimage = image;
320         return 0;
321 out_free_control_pages:
322         kimage_free_page_list(&image->control_pages);
323 out_free_post_load_bufs:
324         kimage_file_post_load_cleanup(image);
325 out_free_image:
326         kfree(image);
327         return ret;
328 }
329
330 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
331                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
332                 unsigned long, flags)
333 {
334         int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
335                          KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
336         struct kimage **dest_image, *image;
337         int ret = 0, i;
338
339         /* We only trust the superuser with rebooting the system. */
340         if (!kexec_load_permitted(image_type))
341                 return -EPERM;
342
343         /* Make sure we have a legal set of flags */
344         if (flags != (flags & KEXEC_FILE_FLAGS))
345                 return -EINVAL;
346
347         image = NULL;
348
349         if (!kexec_trylock())
350                 return -EBUSY;
351
352         if (image_type == KEXEC_TYPE_CRASH) {
353                 dest_image = &kexec_crash_image;
354                 if (kexec_crash_image)
355                         arch_kexec_unprotect_crashkres();
356         } else {
357                 dest_image = &kexec_image;
358         }
359
360         if (flags & KEXEC_FILE_UNLOAD)
361                 goto exchange;
362
363         /*
364          * In case of crash, new kernel gets loaded in reserved region. It is
365          * same memory where old crash kernel might be loaded. Free any
366          * current crash dump kernel before we corrupt it.
367          */
368         if (flags & KEXEC_FILE_ON_CRASH)
369                 kimage_free(xchg(&kexec_crash_image, NULL));
370
371         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
372                                      cmdline_len, flags);
373         if (ret)
374                 goto out;
375
376         ret = machine_kexec_prepare(image);
377         if (ret)
378                 goto out;
379
380         /*
381          * Some architecture(like S390) may touch the crash memory before
382          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
383          */
384         ret = kimage_crash_copy_vmcoreinfo(image);
385         if (ret)
386                 goto out;
387
388         ret = kexec_calculate_store_digests(image);
389         if (ret)
390                 goto out;
391
392         kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
393         for (i = 0; i < image->nr_segments; i++) {
394                 struct kexec_segment *ksegment;
395
396                 ksegment = &image->segment[i];
397                 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
398                               i, ksegment->buf, ksegment->bufsz, ksegment->mem,
399                               ksegment->memsz);
400
401                 ret = kimage_load_segment(image, &image->segment[i]);
402                 if (ret)
403                         goto out;
404         }
405
406         kimage_terminate(image);
407
408         ret = machine_kexec_post_load(image);
409         if (ret)
410                 goto out;
411
412         kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
413                       image->type, image->start, image->head, flags);
414         /*
415          * Free up any temporary buffers allocated which are not needed
416          * after image has been loaded
417          */
418         kimage_file_post_load_cleanup(image);
419 exchange:
420         image = xchg(dest_image, image);
421 out:
422         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
423                 arch_kexec_protect_crashkres();
424
425         kexec_unlock();
426         kimage_free(image);
427         return ret;
428 }
429
430 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
431                                     struct kexec_buf *kbuf)
432 {
433         struct kimage *image = kbuf->image;
434         unsigned long temp_start, temp_end;
435
436         temp_end = min(end, kbuf->buf_max);
437         temp_start = temp_end - kbuf->memsz + 1;
438
439         do {
440                 /* align down start */
441                 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
442
443                 if (temp_start < start || temp_start < kbuf->buf_min)
444                         return 0;
445
446                 temp_end = temp_start + kbuf->memsz - 1;
447
448                 /*
449                  * Make sure this does not conflict with any of existing
450                  * segments
451                  */
452                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
453                         temp_start = temp_start - PAGE_SIZE;
454                         continue;
455                 }
456
457                 /* We found a suitable memory range */
458                 break;
459         } while (1);
460
461         /* If we are here, we found a suitable memory range */
462         kbuf->mem = temp_start;
463
464         /* Success, stop navigating through remaining System RAM ranges */
465         return 1;
466 }
467
468 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
469                                      struct kexec_buf *kbuf)
470 {
471         struct kimage *image = kbuf->image;
472         unsigned long temp_start, temp_end;
473
474         temp_start = max(start, kbuf->buf_min);
475
476         do {
477                 temp_start = ALIGN(temp_start, kbuf->buf_align);
478                 temp_end = temp_start + kbuf->memsz - 1;
479
480                 if (temp_end > end || temp_end > kbuf->buf_max)
481                         return 0;
482                 /*
483                  * Make sure this does not conflict with any of existing
484                  * segments
485                  */
486                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
487                         temp_start = temp_start + PAGE_SIZE;
488                         continue;
489                 }
490
491                 /* We found a suitable memory range */
492                 break;
493         } while (1);
494
495         /* If we are here, we found a suitable memory range */
496         kbuf->mem = temp_start;
497
498         /* Success, stop navigating through remaining System RAM ranges */
499         return 1;
500 }
501
502 static int locate_mem_hole_callback(struct resource *res, void *arg)
503 {
504         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
505         u64 start = res->start, end = res->end;
506         unsigned long sz = end - start + 1;
507
508         /* Returning 0 will take to next memory range */
509
510         /* Don't use memory that will be detected and handled by a driver. */
511         if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
512                 return 0;
513
514         if (sz < kbuf->memsz)
515                 return 0;
516
517         if (end < kbuf->buf_min || start > kbuf->buf_max)
518                 return 0;
519
520         /*
521          * Allocate memory top down with-in ram range. Otherwise bottom up
522          * allocation.
523          */
524         if (kbuf->top_down)
525                 return locate_mem_hole_top_down(start, end, kbuf);
526         return locate_mem_hole_bottom_up(start, end, kbuf);
527 }
528
529 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
530 static int kexec_walk_memblock(struct kexec_buf *kbuf,
531                                int (*func)(struct resource *, void *))
532 {
533         int ret = 0;
534         u64 i;
535         phys_addr_t mstart, mend;
536         struct resource res = { };
537
538         if (kbuf->image->type == KEXEC_TYPE_CRASH)
539                 return func(&crashk_res, kbuf);
540
541         /*
542          * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
543          * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
544          * locate_mem_hole_callback().
545          */
546         if (kbuf->top_down) {
547                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
548                                                 &mstart, &mend, NULL) {
549                         /*
550                          * In memblock, end points to the first byte after the
551                          * range while in kexec, end points to the last byte
552                          * in the range.
553                          */
554                         res.start = mstart;
555                         res.end = mend - 1;
556                         ret = func(&res, kbuf);
557                         if (ret)
558                                 break;
559                 }
560         } else {
561                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
562                                         &mstart, &mend, NULL) {
563                         /*
564                          * In memblock, end points to the first byte after the
565                          * range while in kexec, end points to the last byte
566                          * in the range.
567                          */
568                         res.start = mstart;
569                         res.end = mend - 1;
570                         ret = func(&res, kbuf);
571                         if (ret)
572                                 break;
573                 }
574         }
575
576         return ret;
577 }
578 #else
579 static int kexec_walk_memblock(struct kexec_buf *kbuf,
580                                int (*func)(struct resource *, void *))
581 {
582         return 0;
583 }
584 #endif
585
586 /**
587  * kexec_walk_resources - call func(data) on free memory regions
588  * @kbuf:       Context info for the search. Also passed to @func.
589  * @func:       Function to call for each memory region.
590  *
591  * Return: The memory walk will stop when func returns a non-zero value
592  * and that value will be returned. If all free regions are visited without
593  * func returning non-zero, then zero will be returned.
594  */
595 static int kexec_walk_resources(struct kexec_buf *kbuf,
596                                 int (*func)(struct resource *, void *))
597 {
598         if (kbuf->image->type == KEXEC_TYPE_CRASH)
599                 return walk_iomem_res_desc(crashk_res.desc,
600                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
601                                            crashk_res.start, crashk_res.end,
602                                            kbuf, func);
603         else if (kbuf->top_down)
604                 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
605         else
606                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
607 }
608
609 /**
610  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
611  * @kbuf:       Parameters for the memory search.
612  *
613  * On success, kbuf->mem will have the start address of the memory region found.
614  *
615  * Return: 0 on success, negative errno on error.
616  */
617 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
618 {
619         int ret;
620
621         /* Arch knows where to place */
622         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
623                 return 0;
624
625         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
626                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
627         else
628                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
629
630         return ret == 1 ? 0 : -EADDRNOTAVAIL;
631 }
632
633 /**
634  * kexec_add_buffer - place a buffer in a kexec segment
635  * @kbuf:       Buffer contents and memory parameters.
636  *
637  * This function assumes that kexec_lock is held.
638  * On successful return, @kbuf->mem will have the physical address of
639  * the buffer in memory.
640  *
641  * Return: 0 on success, negative errno on error.
642  */
643 int kexec_add_buffer(struct kexec_buf *kbuf)
644 {
645         struct kexec_segment *ksegment;
646         int ret;
647
648         /* Currently adding segment this way is allowed only in file mode */
649         if (!kbuf->image->file_mode)
650                 return -EINVAL;
651
652         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
653                 return -EINVAL;
654
655         /*
656          * Make sure we are not trying to add buffer after allocating
657          * control pages. All segments need to be placed first before
658          * any control pages are allocated. As control page allocation
659          * logic goes through list of segments to make sure there are
660          * no destination overlaps.
661          */
662         if (!list_empty(&kbuf->image->control_pages)) {
663                 WARN_ON(1);
664                 return -EINVAL;
665         }
666
667         /* Ensure minimum alignment needed for segments. */
668         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
669         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
670
671         /* Walk the RAM ranges and allocate a suitable range for the buffer */
672         ret = arch_kexec_locate_mem_hole(kbuf);
673         if (ret)
674                 return ret;
675
676         /* Found a suitable memory range */
677         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
678         ksegment->kbuf = kbuf->buffer;
679         ksegment->bufsz = kbuf->bufsz;
680         ksegment->mem = kbuf->mem;
681         ksegment->memsz = kbuf->memsz;
682         kbuf->image->nr_segments++;
683         return 0;
684 }
685
686 /* Calculate and store the digest of segments */
687 static int kexec_calculate_store_digests(struct kimage *image)
688 {
689         struct crypto_shash *tfm;
690         struct shash_desc *desc;
691         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
692         size_t desc_size, nullsz;
693         char *digest;
694         void *zero_buf;
695         struct kexec_sha_region *sha_regions;
696         struct purgatory_info *pi = &image->purgatory_info;
697
698         if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
699                 return 0;
700
701         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
702         zero_buf_sz = PAGE_SIZE;
703
704         tfm = crypto_alloc_shash("sha256", 0, 0);
705         if (IS_ERR(tfm)) {
706                 ret = PTR_ERR(tfm);
707                 goto out;
708         }
709
710         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
711         desc = kzalloc(desc_size, GFP_KERNEL);
712         if (!desc) {
713                 ret = -ENOMEM;
714                 goto out_free_tfm;
715         }
716
717         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
718         sha_regions = vzalloc(sha_region_sz);
719         if (!sha_regions) {
720                 ret = -ENOMEM;
721                 goto out_free_desc;
722         }
723
724         desc->tfm   = tfm;
725
726         ret = crypto_shash_init(desc);
727         if (ret < 0)
728                 goto out_free_sha_regions;
729
730         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
731         if (!digest) {
732                 ret = -ENOMEM;
733                 goto out_free_sha_regions;
734         }
735
736         for (j = i = 0; i < image->nr_segments; i++) {
737                 struct kexec_segment *ksegment;
738
739 #ifdef CONFIG_CRASH_HOTPLUG
740                 /* Exclude elfcorehdr segment to allow future changes via hotplug */
741                 if (j == image->elfcorehdr_index)
742                         continue;
743 #endif
744
745                 ksegment = &image->segment[i];
746                 /*
747                  * Skip purgatory as it will be modified once we put digest
748                  * info in purgatory.
749                  */
750                 if (ksegment->kbuf == pi->purgatory_buf)
751                         continue;
752
753                 ret = crypto_shash_update(desc, ksegment->kbuf,
754                                           ksegment->bufsz);
755                 if (ret)
756                         break;
757
758                 /*
759                  * Assume rest of the buffer is filled with zero and
760                  * update digest accordingly.
761                  */
762                 nullsz = ksegment->memsz - ksegment->bufsz;
763                 while (nullsz) {
764                         unsigned long bytes = nullsz;
765
766                         if (bytes > zero_buf_sz)
767                                 bytes = zero_buf_sz;
768                         ret = crypto_shash_update(desc, zero_buf, bytes);
769                         if (ret)
770                                 break;
771                         nullsz -= bytes;
772                 }
773
774                 if (ret)
775                         break;
776
777                 sha_regions[j].start = ksegment->mem;
778                 sha_regions[j].len = ksegment->memsz;
779                 j++;
780         }
781
782         if (!ret) {
783                 ret = crypto_shash_final(desc, digest);
784                 if (ret)
785                         goto out_free_digest;
786                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
787                                                      sha_regions, sha_region_sz, 0);
788                 if (ret)
789                         goto out_free_digest;
790
791                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
792                                                      digest, SHA256_DIGEST_SIZE, 0);
793                 if (ret)
794                         goto out_free_digest;
795         }
796
797 out_free_digest:
798         kfree(digest);
799 out_free_sha_regions:
800         vfree(sha_regions);
801 out_free_desc:
802         kfree(desc);
803 out_free_tfm:
804         kfree(tfm);
805 out:
806         return ret;
807 }
808
809 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
810 /*
811  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
812  * @pi:         Purgatory to be loaded.
813  * @kbuf:       Buffer to setup.
814  *
815  * Allocates the memory needed for the buffer. Caller is responsible to free
816  * the memory after use.
817  *
818  * Return: 0 on success, negative errno on error.
819  */
820 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
821                                       struct kexec_buf *kbuf)
822 {
823         const Elf_Shdr *sechdrs;
824         unsigned long bss_align;
825         unsigned long bss_sz;
826         unsigned long align;
827         int i, ret;
828
829         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
830         kbuf->buf_align = bss_align = 1;
831         kbuf->bufsz = bss_sz = 0;
832
833         for (i = 0; i < pi->ehdr->e_shnum; i++) {
834                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
835                         continue;
836
837                 align = sechdrs[i].sh_addralign;
838                 if (sechdrs[i].sh_type != SHT_NOBITS) {
839                         if (kbuf->buf_align < align)
840                                 kbuf->buf_align = align;
841                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
842                         kbuf->bufsz += sechdrs[i].sh_size;
843                 } else {
844                         if (bss_align < align)
845                                 bss_align = align;
846                         bss_sz = ALIGN(bss_sz, align);
847                         bss_sz += sechdrs[i].sh_size;
848                 }
849         }
850         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
851         kbuf->memsz = kbuf->bufsz + bss_sz;
852         if (kbuf->buf_align < bss_align)
853                 kbuf->buf_align = bss_align;
854
855         kbuf->buffer = vzalloc(kbuf->bufsz);
856         if (!kbuf->buffer)
857                 return -ENOMEM;
858         pi->purgatory_buf = kbuf->buffer;
859
860         ret = kexec_add_buffer(kbuf);
861         if (ret)
862                 goto out;
863
864         return 0;
865 out:
866         vfree(pi->purgatory_buf);
867         pi->purgatory_buf = NULL;
868         return ret;
869 }
870
871 /*
872  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
873  * @pi:         Purgatory to be loaded.
874  * @kbuf:       Buffer prepared to store purgatory.
875  *
876  * Allocates the memory needed for the buffer. Caller is responsible to free
877  * the memory after use.
878  *
879  * Return: 0 on success, negative errno on error.
880  */
881 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
882                                          struct kexec_buf *kbuf)
883 {
884         unsigned long bss_addr;
885         unsigned long offset;
886         size_t sechdrs_size;
887         Elf_Shdr *sechdrs;
888         int i;
889
890         /*
891          * The section headers in kexec_purgatory are read-only. In order to
892          * have them modifiable make a temporary copy.
893          */
894         sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
895         sechdrs = vzalloc(sechdrs_size);
896         if (!sechdrs)
897                 return -ENOMEM;
898         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
899         pi->sechdrs = sechdrs;
900
901         offset = 0;
902         bss_addr = kbuf->mem + kbuf->bufsz;
903         kbuf->image->start = pi->ehdr->e_entry;
904
905         for (i = 0; i < pi->ehdr->e_shnum; i++) {
906                 unsigned long align;
907                 void *src, *dst;
908
909                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
910                         continue;
911
912                 align = sechdrs[i].sh_addralign;
913                 if (sechdrs[i].sh_type == SHT_NOBITS) {
914                         bss_addr = ALIGN(bss_addr, align);
915                         sechdrs[i].sh_addr = bss_addr;
916                         bss_addr += sechdrs[i].sh_size;
917                         continue;
918                 }
919
920                 offset = ALIGN(offset, align);
921
922                 /*
923                  * Check if the segment contains the entry point, if so,
924                  * calculate the value of image->start based on it.
925                  * If the compiler has produced more than one .text section
926                  * (Eg: .text.hot), they are generally after the main .text
927                  * section, and they shall not be used to calculate
928                  * image->start. So do not re-calculate image->start if it
929                  * is not set to the initial value, and warn the user so they
930                  * have a chance to fix their purgatory's linker script.
931                  */
932                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
933                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
934                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
935                                          + sechdrs[i].sh_size) &&
936                     !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
937                         kbuf->image->start -= sechdrs[i].sh_addr;
938                         kbuf->image->start += kbuf->mem + offset;
939                 }
940
941                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
942                 dst = pi->purgatory_buf + offset;
943                 memcpy(dst, src, sechdrs[i].sh_size);
944
945                 sechdrs[i].sh_addr = kbuf->mem + offset;
946                 sechdrs[i].sh_offset = offset;
947                 offset += sechdrs[i].sh_size;
948         }
949
950         return 0;
951 }
952
953 static int kexec_apply_relocations(struct kimage *image)
954 {
955         int i, ret;
956         struct purgatory_info *pi = &image->purgatory_info;
957         const Elf_Shdr *sechdrs;
958
959         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
960
961         for (i = 0; i < pi->ehdr->e_shnum; i++) {
962                 const Elf_Shdr *relsec;
963                 const Elf_Shdr *symtab;
964                 Elf_Shdr *section;
965
966                 relsec = sechdrs + i;
967
968                 if (relsec->sh_type != SHT_RELA &&
969                     relsec->sh_type != SHT_REL)
970                         continue;
971
972                 /*
973                  * For section of type SHT_RELA/SHT_REL,
974                  * ->sh_link contains section header index of associated
975                  * symbol table. And ->sh_info contains section header
976                  * index of section to which relocations apply.
977                  */
978                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
979                     relsec->sh_link >= pi->ehdr->e_shnum)
980                         return -ENOEXEC;
981
982                 section = pi->sechdrs + relsec->sh_info;
983                 symtab = sechdrs + relsec->sh_link;
984
985                 if (!(section->sh_flags & SHF_ALLOC))
986                         continue;
987
988                 /*
989                  * symtab->sh_link contain section header index of associated
990                  * string table.
991                  */
992                 if (symtab->sh_link >= pi->ehdr->e_shnum)
993                         /* Invalid section number? */
994                         continue;
995
996                 /*
997                  * Respective architecture needs to provide support for applying
998                  * relocations of type SHT_RELA/SHT_REL.
999                  */
1000                 if (relsec->sh_type == SHT_RELA)
1001                         ret = arch_kexec_apply_relocations_add(pi, section,
1002                                                                relsec, symtab);
1003                 else if (relsec->sh_type == SHT_REL)
1004                         ret = arch_kexec_apply_relocations(pi, section,
1005                                                            relsec, symtab);
1006                 if (ret)
1007                         return ret;
1008         }
1009
1010         return 0;
1011 }
1012
1013 /*
1014  * kexec_load_purgatory - Load and relocate the purgatory object.
1015  * @image:      Image to add the purgatory to.
1016  * @kbuf:       Memory parameters to use.
1017  *
1018  * Allocates the memory needed for image->purgatory_info.sechdrs and
1019  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1020  * to free the memory after use.
1021  *
1022  * Return: 0 on success, negative errno on error.
1023  */
1024 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1025 {
1026         struct purgatory_info *pi = &image->purgatory_info;
1027         int ret;
1028
1029         if (kexec_purgatory_size <= 0)
1030                 return -EINVAL;
1031
1032         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1033
1034         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1035         if (ret)
1036                 return ret;
1037
1038         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1039         if (ret)
1040                 goto out_free_kbuf;
1041
1042         ret = kexec_apply_relocations(image);
1043         if (ret)
1044                 goto out;
1045
1046         return 0;
1047 out:
1048         vfree(pi->sechdrs);
1049         pi->sechdrs = NULL;
1050 out_free_kbuf:
1051         vfree(pi->purgatory_buf);
1052         pi->purgatory_buf = NULL;
1053         return ret;
1054 }
1055
1056 /*
1057  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1058  * @pi:         Purgatory to search in.
1059  * @name:       Name of the symbol.
1060  *
1061  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1062  */
1063 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1064                                                   const char *name)
1065 {
1066         const Elf_Shdr *sechdrs;
1067         const Elf_Ehdr *ehdr;
1068         const Elf_Sym *syms;
1069         const char *strtab;
1070         int i, k;
1071
1072         if (!pi->ehdr)
1073                 return NULL;
1074
1075         ehdr = pi->ehdr;
1076         sechdrs = (void *)ehdr + ehdr->e_shoff;
1077
1078         for (i = 0; i < ehdr->e_shnum; i++) {
1079                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1080                         continue;
1081
1082                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1083                         /* Invalid strtab section number */
1084                         continue;
1085                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1086                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1087
1088                 /* Go through symbols for a match */
1089                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1090                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1091                                 continue;
1092
1093                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1094                                 continue;
1095
1096                         if (syms[k].st_shndx == SHN_UNDEF ||
1097                             syms[k].st_shndx >= ehdr->e_shnum) {
1098                                 pr_debug("Symbol: %s has bad section index %d.\n",
1099                                                 name, syms[k].st_shndx);
1100                                 return NULL;
1101                         }
1102
1103                         /* Found the symbol we are looking for */
1104                         return &syms[k];
1105                 }
1106         }
1107
1108         return NULL;
1109 }
1110
1111 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1112 {
1113         struct purgatory_info *pi = &image->purgatory_info;
1114         const Elf_Sym *sym;
1115         Elf_Shdr *sechdr;
1116
1117         sym = kexec_purgatory_find_symbol(pi, name);
1118         if (!sym)
1119                 return ERR_PTR(-EINVAL);
1120
1121         sechdr = &pi->sechdrs[sym->st_shndx];
1122
1123         /*
1124          * Returns the address where symbol will finally be loaded after
1125          * kexec_load_segment()
1126          */
1127         return (void *)(sechdr->sh_addr + sym->st_value);
1128 }
1129
1130 /*
1131  * Get or set value of a symbol. If "get_value" is true, symbol value is
1132  * returned in buf otherwise symbol value is set based on value in buf.
1133  */
1134 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1135                                    void *buf, unsigned int size, bool get_value)
1136 {
1137         struct purgatory_info *pi = &image->purgatory_info;
1138         const Elf_Sym *sym;
1139         Elf_Shdr *sec;
1140         char *sym_buf;
1141
1142         sym = kexec_purgatory_find_symbol(pi, name);
1143         if (!sym)
1144                 return -EINVAL;
1145
1146         if (sym->st_size != size) {
1147                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1148                        name, (unsigned long)sym->st_size, size);
1149                 return -EINVAL;
1150         }
1151
1152         sec = pi->sechdrs + sym->st_shndx;
1153
1154         if (sec->sh_type == SHT_NOBITS) {
1155                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1156                        get_value ? "get" : "set");
1157                 return -EINVAL;
1158         }
1159
1160         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1161
1162         if (get_value)
1163                 memcpy((void *)buf, sym_buf, size);
1164         else
1165                 memcpy((void *)sym_buf, buf, size);
1166
1167         return 0;
1168 }
1169 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */