Merge tag 'tty-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[sfrench/cifs-2.6.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)         (x)
54 #define DO_NUMA(x)      do { (x); } while (0)
55 #else
56 #define NUMA(x)         (0)
57 #define DO_NUMA(x)      do { } while (0)
58 #endif
59
60 typedef u8 rmap_age_t;
61
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128         struct mm_slot slot;
129         struct ksm_rmap_item *rmap_list;
130 };
131
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142         struct ksm_mm_slot *mm_slot;
143         unsigned long address;
144         struct ksm_rmap_item **rmap_list;
145         unsigned long seqnr;
146 };
147
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161         union {
162                 struct rb_node node;    /* when node of stable tree */
163                 struct {                /* when listed for migration */
164                         struct list_head *head;
165                         struct {
166                                 struct hlist_node hlist_dup;
167                                 struct list_head list;
168                         };
169                 };
170         };
171         struct hlist_head hlist;
172         union {
173                 unsigned long kpfn;
174                 unsigned long chain_prune_time;
175         };
176         /*
177          * STABLE_NODE_CHAIN can be any negative number in
178          * rmap_hlist_len negative range, but better not -1 to be able
179          * to reliably detect underflows.
180          */
181 #define STABLE_NODE_CHAIN -1024
182         int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184         int nid;
185 #endif
186 };
187
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203         struct ksm_rmap_item *rmap_list;
204         union {
205                 struct anon_vma *anon_vma;      /* when stable */
206 #ifdef CONFIG_NUMA
207                 int nid;                /* when node of unstable tree */
208 #endif
209         };
210         struct mm_struct *mm;
211         unsigned long address;          /* + low bits used for flags below */
212         unsigned int oldchecksum;       /* when unstable */
213         rmap_age_t age;
214         rmap_age_t remaining_skips;
215         union {
216                 struct rb_node node;    /* when node of unstable tree */
217                 struct {                /* when listed from stable tree */
218                         struct ksm_stable_node *head;
219                         struct hlist_node hlist;
220                 };
221         };
222 };
223
224 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
226 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
227
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240
241 static struct ksm_mm_slot ksm_mm_head = {
242         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245         .mm_slot = &ksm_mm_head,
246 };
247
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297
298 /* The number of zero pages which is placed by KSM */
299 unsigned long ksm_zero_pages;
300
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327         ktime_t start_scan;
328         unsigned long scan_time;
329         unsigned long change;
330         unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336         KSM_ADVISOR_NONE,
337         KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349 static void set_advisor_defaults(void)
350 {
351         if (ksm_advisor == KSM_ADVISOR_NONE) {
352                 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353         } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354                 advisor_ctx = (const struct advisor_ctx){ 0 };
355                 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356         }
357 }
358 #endif /* CONFIG_SYSFS */
359
360 static inline void advisor_start_scan(void)
361 {
362         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363                 advisor_ctx.start_scan = ktime_get();
364 }
365
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371                                            unsigned long scan_time)
372 {
373         return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379         return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405         unsigned int cpu_percent;
406         unsigned long cpu_time;
407         unsigned long cpu_time_diff;
408         unsigned long cpu_time_diff_ms;
409         unsigned long pages;
410         unsigned long per_page_cost;
411         unsigned long factor;
412         unsigned long change;
413         unsigned long last_scan_time;
414         unsigned long scan_time;
415
416         /* Convert scan time to seconds */
417         scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418                             MSEC_PER_SEC);
419         scan_time = scan_time ? scan_time : 1;
420
421         /* Calculate CPU consumption of ksmd background thread */
422         cpu_time = task_sched_runtime(current);
423         cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424         cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426         cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427         cpu_percent = cpu_percent ? cpu_percent : 1;
428         last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430         /* Calculate scan time as percentage of target scan time */
431         factor = ksm_advisor_target_scan_time * 100 / scan_time;
432         factor = factor ? factor : 1;
433
434         /*
435          * Calculate scan time as percentage of last scan time and use
436          * exponentially weighted average to smooth it
437          */
438         change = scan_time * 100 / last_scan_time;
439         change = change ? change : 1;
440         change = ewma(advisor_ctx.change, change);
441
442         /* Calculate new scan rate based on target scan rate. */
443         pages = ksm_thread_pages_to_scan * 100 / factor;
444         /* Update pages_to_scan by weighted change percentage. */
445         pages = pages * change / 100;
446
447         /* Cap new pages_to_scan value */
448         per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449         per_page_cost = per_page_cost ? per_page_cost : 1;
450
451         pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452         pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453         pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455         /* Update advisor context */
456         advisor_ctx.change = change;
457         advisor_ctx.scan_time = scan_time;
458         advisor_ctx.cpu_time = cpu_time;
459
460         ksm_thread_pages_to_scan = pages;
461         trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463
464 static void advisor_stop_scan(void)
465 {
466         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467                 scan_time_advisor();
468 }
469
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes  1U
476 #define ksm_nr_node_ids         1
477 #endif
478
479 #define KSM_RUN_STOP    0
480 #define KSM_RUN_MERGE   1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492                 sizeof(struct __struct), __alignof__(struct __struct),\
493                 (__flags), NULL)
494
495 static int __init ksm_slab_init(void)
496 {
497         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498         if (!rmap_item_cache)
499                 goto out;
500
501         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502         if (!stable_node_cache)
503                 goto out_free1;
504
505         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506         if (!mm_slot_cache)
507                 goto out_free2;
508
509         return 0;
510
511 out_free2:
512         kmem_cache_destroy(stable_node_cache);
513 out_free1:
514         kmem_cache_destroy(rmap_item_cache);
515 out:
516         return -ENOMEM;
517 }
518
519 static void __init ksm_slab_free(void)
520 {
521         kmem_cache_destroy(mm_slot_cache);
522         kmem_cache_destroy(stable_node_cache);
523         kmem_cache_destroy(rmap_item_cache);
524         mm_slot_cache = NULL;
525 }
526
527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528 {
529         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530 }
531
532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533 {
534         return dup->head == STABLE_NODE_DUP_HEAD;
535 }
536
537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538                                              struct ksm_stable_node *chain)
539 {
540         VM_BUG_ON(is_stable_node_dup(dup));
541         dup->head = STABLE_NODE_DUP_HEAD;
542         VM_BUG_ON(!is_stable_node_chain(chain));
543         hlist_add_head(&dup->hlist_dup, &chain->hlist);
544         ksm_stable_node_dups++;
545 }
546
547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548 {
549         VM_BUG_ON(!is_stable_node_dup(dup));
550         hlist_del(&dup->hlist_dup);
551         ksm_stable_node_dups--;
552 }
553
554 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555 {
556         VM_BUG_ON(is_stable_node_chain(dup));
557         if (is_stable_node_dup(dup))
558                 __stable_node_dup_del(dup);
559         else
560                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561 #ifdef CONFIG_DEBUG_VM
562         dup->head = NULL;
563 #endif
564 }
565
566 static inline struct ksm_rmap_item *alloc_rmap_item(void)
567 {
568         struct ksm_rmap_item *rmap_item;
569
570         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571                                                 __GFP_NORETRY | __GFP_NOWARN);
572         if (rmap_item)
573                 ksm_rmap_items++;
574         return rmap_item;
575 }
576
577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578 {
579         ksm_rmap_items--;
580         rmap_item->mm->ksm_rmap_items--;
581         rmap_item->mm = NULL;   /* debug safety */
582         kmem_cache_free(rmap_item_cache, rmap_item);
583 }
584
585 static inline struct ksm_stable_node *alloc_stable_node(void)
586 {
587         /*
588          * The allocation can take too long with GFP_KERNEL when memory is under
589          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590          * grants access to memory reserves, helping to avoid this problem.
591          */
592         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593 }
594
595 static inline void free_stable_node(struct ksm_stable_node *stable_node)
596 {
597         VM_BUG_ON(stable_node->rmap_hlist_len &&
598                   !is_stable_node_chain(stable_node));
599         kmem_cache_free(stable_node_cache, stable_node);
600 }
601
602 /*
603  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604  * page tables after it has passed through ksm_exit() - which, if necessary,
605  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606  * a special flag: they can just back out as soon as mm_users goes to zero.
607  * ksm_test_exit() is used throughout to make this test for exit: in some
608  * places for correctness, in some places just to avoid unnecessary work.
609  */
610 static inline bool ksm_test_exit(struct mm_struct *mm)
611 {
612         return atomic_read(&mm->mm_users) == 0;
613 }
614
615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616                         struct mm_walk *walk)
617 {
618         struct page *page = NULL;
619         spinlock_t *ptl;
620         pte_t *pte;
621         pte_t ptent;
622         int ret;
623
624         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625         if (!pte)
626                 return 0;
627         ptent = ptep_get(pte);
628         if (pte_present(ptent)) {
629                 page = vm_normal_page(walk->vma, addr, ptent);
630         } else if (!pte_none(ptent)) {
631                 swp_entry_t entry = pte_to_swp_entry(ptent);
632
633                 /*
634                  * As KSM pages remain KSM pages until freed, no need to wait
635                  * here for migration to end.
636                  */
637                 if (is_migration_entry(entry))
638                         page = pfn_swap_entry_to_page(entry);
639         }
640         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
641         ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642         pte_unmap_unlock(pte, ptl);
643         return ret;
644 }
645
646 static const struct mm_walk_ops break_ksm_ops = {
647         .pmd_entry = break_ksm_pmd_entry,
648         .walk_lock = PGWALK_RDLOCK,
649 };
650
651 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652         .pmd_entry = break_ksm_pmd_entry,
653         .walk_lock = PGWALK_WRLOCK,
654 };
655
656 /*
657  * We use break_ksm to break COW on a ksm page by triggering unsharing,
658  * such that the ksm page will get replaced by an exclusive anonymous page.
659  *
660  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661  * in case the application has unmapped and remapped mm,addr meanwhile.
662  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663  * mmap of /dev/mem, where we would not want to touch it.
664  *
665  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666  * of the process that owns 'vma'.  We also do not want to enforce
667  * protection keys here anyway.
668  */
669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670 {
671         vm_fault_t ret = 0;
672         const struct mm_walk_ops *ops = lock_vma ?
673                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
674
675         do {
676                 int ksm_page;
677
678                 cond_resched();
679                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680                 if (WARN_ON_ONCE(ksm_page < 0))
681                         return ksm_page;
682                 if (!ksm_page)
683                         return 0;
684                 ret = handle_mm_fault(vma, addr,
685                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686                                       NULL);
687         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688         /*
689          * We must loop until we no longer find a KSM page because
690          * handle_mm_fault() may back out if there's any difficulty e.g. if
691          * pte accessed bit gets updated concurrently.
692          *
693          * VM_FAULT_SIGBUS could occur if we race with truncation of the
694          * backing file, which also invalidates anonymous pages: that's
695          * okay, that truncation will have unmapped the PageKsm for us.
696          *
697          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699          * current task has TIF_MEMDIE set, and will be OOM killed on return
700          * to user; and ksmd, having no mm, would never be chosen for that.
701          *
702          * But if the mm is in a limited mem_cgroup, then the fault may fail
703          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704          * even ksmd can fail in this way - though it's usually breaking ksm
705          * just to undo a merge it made a moment before, so unlikely to oom.
706          *
707          * That's a pity: we might therefore have more kernel pages allocated
708          * than we're counting as nodes in the stable tree; but ksm_do_scan
709          * will retry to break_cow on each pass, so should recover the page
710          * in due course.  The important thing is to not let VM_MERGEABLE
711          * be cleared while any such pages might remain in the area.
712          */
713         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714 }
715
716 static bool vma_ksm_compatible(struct vm_area_struct *vma)
717 {
718         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720                              VM_MIXEDMAP))
721                 return false;           /* just ignore the advice */
722
723         if (vma_is_dax(vma))
724                 return false;
725
726 #ifdef VM_SAO
727         if (vma->vm_flags & VM_SAO)
728                 return false;
729 #endif
730 #ifdef VM_SPARC_ADI
731         if (vma->vm_flags & VM_SPARC_ADI)
732                 return false;
733 #endif
734
735         return true;
736 }
737
738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739                 unsigned long addr)
740 {
741         struct vm_area_struct *vma;
742         if (ksm_test_exit(mm))
743                 return NULL;
744         vma = vma_lookup(mm, addr);
745         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746                 return NULL;
747         return vma;
748 }
749
750 static void break_cow(struct ksm_rmap_item *rmap_item)
751 {
752         struct mm_struct *mm = rmap_item->mm;
753         unsigned long addr = rmap_item->address;
754         struct vm_area_struct *vma;
755
756         /*
757          * It is not an accident that whenever we want to break COW
758          * to undo, we also need to drop a reference to the anon_vma.
759          */
760         put_anon_vma(rmap_item->anon_vma);
761
762         mmap_read_lock(mm);
763         vma = find_mergeable_vma(mm, addr);
764         if (vma)
765                 break_ksm(vma, addr, false);
766         mmap_read_unlock(mm);
767 }
768
769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770 {
771         struct mm_struct *mm = rmap_item->mm;
772         unsigned long addr = rmap_item->address;
773         struct vm_area_struct *vma;
774         struct page *page;
775
776         mmap_read_lock(mm);
777         vma = find_mergeable_vma(mm, addr);
778         if (!vma)
779                 goto out;
780
781         page = follow_page(vma, addr, FOLL_GET);
782         if (IS_ERR_OR_NULL(page))
783                 goto out;
784         if (is_zone_device_page(page))
785                 goto out_putpage;
786         if (PageAnon(page)) {
787                 flush_anon_page(vma, page, addr);
788                 flush_dcache_page(page);
789         } else {
790 out_putpage:
791                 put_page(page);
792 out:
793                 page = NULL;
794         }
795         mmap_read_unlock(mm);
796         return page;
797 }
798
799 /*
800  * This helper is used for getting right index into array of tree roots.
801  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803  * every node has its own stable and unstable tree.
804  */
805 static inline int get_kpfn_nid(unsigned long kpfn)
806 {
807         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808 }
809
810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811                                                    struct rb_root *root)
812 {
813         struct ksm_stable_node *chain = alloc_stable_node();
814         VM_BUG_ON(is_stable_node_chain(dup));
815         if (likely(chain)) {
816                 INIT_HLIST_HEAD(&chain->hlist);
817                 chain->chain_prune_time = jiffies;
818                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820                 chain->nid = NUMA_NO_NODE; /* debug */
821 #endif
822                 ksm_stable_node_chains++;
823
824                 /*
825                  * Put the stable node chain in the first dimension of
826                  * the stable tree and at the same time remove the old
827                  * stable node.
828                  */
829                 rb_replace_node(&dup->node, &chain->node, root);
830
831                 /*
832                  * Move the old stable node to the second dimension
833                  * queued in the hlist_dup. The invariant is that all
834                  * dup stable_nodes in the chain->hlist point to pages
835                  * that are write protected and have the exact same
836                  * content.
837                  */
838                 stable_node_chain_add_dup(dup, chain);
839         }
840         return chain;
841 }
842
843 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844                                           struct rb_root *root)
845 {
846         rb_erase(&chain->node, root);
847         free_stable_node(chain);
848         ksm_stable_node_chains--;
849 }
850
851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852 {
853         struct ksm_rmap_item *rmap_item;
854
855         /* check it's not STABLE_NODE_CHAIN or negative */
856         BUG_ON(stable_node->rmap_hlist_len < 0);
857
858         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859                 if (rmap_item->hlist.next) {
860                         ksm_pages_sharing--;
861                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862                 } else {
863                         ksm_pages_shared--;
864                 }
865
866                 rmap_item->mm->ksm_merging_pages--;
867
868                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869                 stable_node->rmap_hlist_len--;
870                 put_anon_vma(rmap_item->anon_vma);
871                 rmap_item->address &= PAGE_MASK;
872                 cond_resched();
873         }
874
875         /*
876          * We need the second aligned pointer of the migrate_nodes
877          * list_head to stay clear from the rb_parent_color union
878          * (aligned and different than any node) and also different
879          * from &migrate_nodes. This will verify that future list.h changes
880          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881          */
882         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884
885         trace_ksm_remove_ksm_page(stable_node->kpfn);
886         if (stable_node->head == &migrate_nodes)
887                 list_del(&stable_node->list);
888         else
889                 stable_node_dup_del(stable_node);
890         free_stable_node(stable_node);
891 }
892
893 enum get_ksm_page_flags {
894         GET_KSM_PAGE_NOLOCK,
895         GET_KSM_PAGE_LOCK,
896         GET_KSM_PAGE_TRYLOCK
897 };
898
899 /*
900  * get_ksm_page: checks if the page indicated by the stable node
901  * is still its ksm page, despite having held no reference to it.
902  * In which case we can trust the content of the page, and it
903  * returns the gotten page; but if the page has now been zapped,
904  * remove the stale node from the stable tree and return NULL.
905  * But beware, the stable node's page might be being migrated.
906  *
907  * You would expect the stable_node to hold a reference to the ksm page.
908  * But if it increments the page's count, swapping out has to wait for
909  * ksmd to come around again before it can free the page, which may take
910  * seconds or even minutes: much too unresponsive.  So instead we use a
911  * "keyhole reference": access to the ksm page from the stable node peeps
912  * out through its keyhole to see if that page still holds the right key,
913  * pointing back to this stable node.  This relies on freeing a PageAnon
914  * page to reset its page->mapping to NULL, and relies on no other use of
915  * a page to put something that might look like our key in page->mapping.
916  * is on its way to being freed; but it is an anomaly to bear in mind.
917  */
918 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
919                                  enum get_ksm_page_flags flags)
920 {
921         struct page *page;
922         void *expected_mapping;
923         unsigned long kpfn;
924
925         expected_mapping = (void *)((unsigned long)stable_node |
926                                         PAGE_MAPPING_KSM);
927 again:
928         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929         page = pfn_to_page(kpfn);
930         if (READ_ONCE(page->mapping) != expected_mapping)
931                 goto stale;
932
933         /*
934          * We cannot do anything with the page while its refcount is 0.
935          * Usually 0 means free, or tail of a higher-order page: in which
936          * case this node is no longer referenced, and should be freed;
937          * however, it might mean that the page is under page_ref_freeze().
938          * The __remove_mapping() case is easy, again the node is now stale;
939          * the same is in reuse_ksm_page() case; but if page is swapcache
940          * in folio_migrate_mapping(), it might still be our page,
941          * in which case it's essential to keep the node.
942          */
943         while (!get_page_unless_zero(page)) {
944                 /*
945                  * Another check for page->mapping != expected_mapping would
946                  * work here too.  We have chosen the !PageSwapCache test to
947                  * optimize the common case, when the page is or is about to
948                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
949                  * in the ref_freeze section of __remove_mapping(); but Anon
950                  * page->mapping reset to NULL later, in free_pages_prepare().
951                  */
952                 if (!PageSwapCache(page))
953                         goto stale;
954                 cpu_relax();
955         }
956
957         if (READ_ONCE(page->mapping) != expected_mapping) {
958                 put_page(page);
959                 goto stale;
960         }
961
962         if (flags == GET_KSM_PAGE_TRYLOCK) {
963                 if (!trylock_page(page)) {
964                         put_page(page);
965                         return ERR_PTR(-EBUSY);
966                 }
967         } else if (flags == GET_KSM_PAGE_LOCK)
968                 lock_page(page);
969
970         if (flags != GET_KSM_PAGE_NOLOCK) {
971                 if (READ_ONCE(page->mapping) != expected_mapping) {
972                         unlock_page(page);
973                         put_page(page);
974                         goto stale;
975                 }
976         }
977         return page;
978
979 stale:
980         /*
981          * We come here from above when page->mapping or !PageSwapCache
982          * suggests that the node is stale; but it might be under migration.
983          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984          * before checking whether node->kpfn has been changed.
985          */
986         smp_rmb();
987         if (READ_ONCE(stable_node->kpfn) != kpfn)
988                 goto again;
989         remove_node_from_stable_tree(stable_node);
990         return NULL;
991 }
992
993 /*
994  * Removing rmap_item from stable or unstable tree.
995  * This function will clean the information from the stable/unstable tree.
996  */
997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
998 {
999         if (rmap_item->address & STABLE_FLAG) {
1000                 struct ksm_stable_node *stable_node;
1001                 struct page *page;
1002
1003                 stable_node = rmap_item->head;
1004                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1005                 if (!page)
1006                         goto out;
1007
1008                 hlist_del(&rmap_item->hlist);
1009                 unlock_page(page);
1010                 put_page(page);
1011
1012                 if (!hlist_empty(&stable_node->hlist))
1013                         ksm_pages_sharing--;
1014                 else
1015                         ksm_pages_shared--;
1016
1017                 rmap_item->mm->ksm_merging_pages--;
1018
1019                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020                 stable_node->rmap_hlist_len--;
1021
1022                 put_anon_vma(rmap_item->anon_vma);
1023                 rmap_item->head = NULL;
1024                 rmap_item->address &= PAGE_MASK;
1025
1026         } else if (rmap_item->address & UNSTABLE_FLAG) {
1027                 unsigned char age;
1028                 /*
1029                  * Usually ksmd can and must skip the rb_erase, because
1030                  * root_unstable_tree was already reset to RB_ROOT.
1031                  * But be careful when an mm is exiting: do the rb_erase
1032                  * if this rmap_item was inserted by this scan, rather
1033                  * than left over from before.
1034                  */
1035                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1036                 BUG_ON(age > 1);
1037                 if (!age)
1038                         rb_erase(&rmap_item->node,
1039                                  root_unstable_tree + NUMA(rmap_item->nid));
1040                 ksm_pages_unshared--;
1041                 rmap_item->address &= PAGE_MASK;
1042         }
1043 out:
1044         cond_resched();         /* we're called from many long loops */
1045 }
1046
1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1048 {
1049         while (*rmap_list) {
1050                 struct ksm_rmap_item *rmap_item = *rmap_list;
1051                 *rmap_list = rmap_item->rmap_list;
1052                 remove_rmap_item_from_tree(rmap_item);
1053                 free_rmap_item(rmap_item);
1054         }
1055 }
1056
1057 /*
1058  * Though it's very tempting to unmerge rmap_items from stable tree rather
1059  * than check every pte of a given vma, the locking doesn't quite work for
1060  * that - an rmap_item is assigned to the stable tree after inserting ksm
1061  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1062  * rmap_items from parent to child at fork time (so as not to waste time
1063  * if exit comes before the next scan reaches it).
1064  *
1065  * Similarly, although we'd like to remove rmap_items (so updating counts
1066  * and freeing memory) when unmerging an area, it's easier to leave that
1067  * to the next pass of ksmd - consider, for example, how ksmd might be
1068  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1069  */
1070 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1071                              unsigned long start, unsigned long end, bool lock_vma)
1072 {
1073         unsigned long addr;
1074         int err = 0;
1075
1076         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1077                 if (ksm_test_exit(vma->vm_mm))
1078                         break;
1079                 if (signal_pending(current))
1080                         err = -ERESTARTSYS;
1081                 else
1082                         err = break_ksm(vma, addr, lock_vma);
1083         }
1084         return err;
1085 }
1086
1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1088 {
1089         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091
1092 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1093 {
1094         return folio_stable_node(page_folio(page));
1095 }
1096
1097 static inline void set_page_stable_node(struct page *page,
1098                                         struct ksm_stable_node *stable_node)
1099 {
1100         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
1101         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102 }
1103
1104 #ifdef CONFIG_SYSFS
1105 /*
1106  * Only called through the sysfs control interface:
1107  */
1108 static int remove_stable_node(struct ksm_stable_node *stable_node)
1109 {
1110         struct page *page;
1111         int err;
1112
1113         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1114         if (!page) {
1115                 /*
1116                  * get_ksm_page did remove_node_from_stable_tree itself.
1117                  */
1118                 return 0;
1119         }
1120
1121         /*
1122          * Page could be still mapped if this races with __mmput() running in
1123          * between ksm_exit() and exit_mmap(). Just refuse to let
1124          * merge_across_nodes/max_page_sharing be switched.
1125          */
1126         err = -EBUSY;
1127         if (!page_mapped(page)) {
1128                 /*
1129                  * The stable node did not yet appear stale to get_ksm_page(),
1130                  * since that allows for an unmapped ksm page to be recognized
1131                  * right up until it is freed; but the node is safe to remove.
1132                  * This page might be in an LRU cache waiting to be freed,
1133                  * or it might be PageSwapCache (perhaps under writeback),
1134                  * or it might have been removed from swapcache a moment ago.
1135                  */
1136                 set_page_stable_node(page, NULL);
1137                 remove_node_from_stable_tree(stable_node);
1138                 err = 0;
1139         }
1140
1141         unlock_page(page);
1142         put_page(page);
1143         return err;
1144 }
1145
1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1147                                     struct rb_root *root)
1148 {
1149         struct ksm_stable_node *dup;
1150         struct hlist_node *hlist_safe;
1151
1152         if (!is_stable_node_chain(stable_node)) {
1153                 VM_BUG_ON(is_stable_node_dup(stable_node));
1154                 if (remove_stable_node(stable_node))
1155                         return true;
1156                 else
1157                         return false;
1158         }
1159
1160         hlist_for_each_entry_safe(dup, hlist_safe,
1161                                   &stable_node->hlist, hlist_dup) {
1162                 VM_BUG_ON(!is_stable_node_dup(dup));
1163                 if (remove_stable_node(dup))
1164                         return true;
1165         }
1166         BUG_ON(!hlist_empty(&stable_node->hlist));
1167         free_stable_node_chain(stable_node, root);
1168         return false;
1169 }
1170
1171 static int remove_all_stable_nodes(void)
1172 {
1173         struct ksm_stable_node *stable_node, *next;
1174         int nid;
1175         int err = 0;
1176
1177         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1178                 while (root_stable_tree[nid].rb_node) {
1179                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1180                                                 struct ksm_stable_node, node);
1181                         if (remove_stable_node_chain(stable_node,
1182                                                      root_stable_tree + nid)) {
1183                                 err = -EBUSY;
1184                                 break;  /* proceed to next nid */
1185                         }
1186                         cond_resched();
1187                 }
1188         }
1189         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1190                 if (remove_stable_node(stable_node))
1191                         err = -EBUSY;
1192                 cond_resched();
1193         }
1194         return err;
1195 }
1196
1197 static int unmerge_and_remove_all_rmap_items(void)
1198 {
1199         struct ksm_mm_slot *mm_slot;
1200         struct mm_slot *slot;
1201         struct mm_struct *mm;
1202         struct vm_area_struct *vma;
1203         int err = 0;
1204
1205         spin_lock(&ksm_mmlist_lock);
1206         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207                           struct mm_slot, mm_node);
1208         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209         spin_unlock(&ksm_mmlist_lock);
1210
1211         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212              mm_slot = ksm_scan.mm_slot) {
1213                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1214
1215                 mm = mm_slot->slot.mm;
1216                 mmap_read_lock(mm);
1217
1218                 /*
1219                  * Exit right away if mm is exiting to avoid lockdep issue in
1220                  * the maple tree
1221                  */
1222                 if (ksm_test_exit(mm))
1223                         goto mm_exiting;
1224
1225                 for_each_vma(vmi, vma) {
1226                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227                                 continue;
1228                         err = unmerge_ksm_pages(vma,
1229                                                 vma->vm_start, vma->vm_end, false);
1230                         if (err)
1231                                 goto error;
1232                 }
1233
1234 mm_exiting:
1235                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1236                 mmap_read_unlock(mm);
1237
1238                 spin_lock(&ksm_mmlist_lock);
1239                 slot = list_entry(mm_slot->slot.mm_node.next,
1240                                   struct mm_slot, mm_node);
1241                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1242                 if (ksm_test_exit(mm)) {
1243                         hash_del(&mm_slot->slot.hash);
1244                         list_del(&mm_slot->slot.mm_node);
1245                         spin_unlock(&ksm_mmlist_lock);
1246
1247                         mm_slot_free(mm_slot_cache, mm_slot);
1248                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1249                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1250                         mmdrop(mm);
1251                 } else
1252                         spin_unlock(&ksm_mmlist_lock);
1253         }
1254
1255         /* Clean up stable nodes, but don't worry if some are still busy */
1256         remove_all_stable_nodes();
1257         ksm_scan.seqnr = 0;
1258         return 0;
1259
1260 error:
1261         mmap_read_unlock(mm);
1262         spin_lock(&ksm_mmlist_lock);
1263         ksm_scan.mm_slot = &ksm_mm_head;
1264         spin_unlock(&ksm_mmlist_lock);
1265         return err;
1266 }
1267 #endif /* CONFIG_SYSFS */
1268
1269 static u32 calc_checksum(struct page *page)
1270 {
1271         u32 checksum;
1272         void *addr = kmap_local_page(page);
1273         checksum = xxhash(addr, PAGE_SIZE, 0);
1274         kunmap_local(addr);
1275         return checksum;
1276 }
1277
1278 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1279                               pte_t *orig_pte)
1280 {
1281         struct mm_struct *mm = vma->vm_mm;
1282         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1283         int swapped;
1284         int err = -EFAULT;
1285         struct mmu_notifier_range range;
1286         bool anon_exclusive;
1287         pte_t entry;
1288
1289         pvmw.address = page_address_in_vma(page, vma);
1290         if (pvmw.address == -EFAULT)
1291                 goto out;
1292
1293         BUG_ON(PageTransCompound(page));
1294
1295         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1296                                 pvmw.address + PAGE_SIZE);
1297         mmu_notifier_invalidate_range_start(&range);
1298
1299         if (!page_vma_mapped_walk(&pvmw))
1300                 goto out_mn;
1301         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1302                 goto out_unlock;
1303
1304         anon_exclusive = PageAnonExclusive(page);
1305         entry = ptep_get(pvmw.pte);
1306         if (pte_write(entry) || pte_dirty(entry) ||
1307             anon_exclusive || mm_tlb_flush_pending(mm)) {
1308                 swapped = PageSwapCache(page);
1309                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1310                 /*
1311                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1312                  * take any lock, therefore the check that we are going to make
1313                  * with the pagecount against the mapcount is racy and
1314                  * O_DIRECT can happen right after the check.
1315                  * So we clear the pte and flush the tlb before the check
1316                  * this assure us that no O_DIRECT can happen after the check
1317                  * or in the middle of the check.
1318                  *
1319                  * No need to notify as we are downgrading page table to read
1320                  * only not changing it to point to a new page.
1321                  *
1322                  * See Documentation/mm/mmu_notifier.rst
1323                  */
1324                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1325                 /*
1326                  * Check that no O_DIRECT or similar I/O is in progress on the
1327                  * page
1328                  */
1329                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1330                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1331                         goto out_unlock;
1332                 }
1333
1334                 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1335                 if (anon_exclusive &&
1336                     folio_try_share_anon_rmap_pte(page_folio(page), page)) {
1337                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1338                         goto out_unlock;
1339                 }
1340
1341                 if (pte_dirty(entry))
1342                         set_page_dirty(page);
1343                 entry = pte_mkclean(entry);
1344
1345                 if (pte_write(entry))
1346                         entry = pte_wrprotect(entry);
1347
1348                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1349         }
1350         *orig_pte = entry;
1351         err = 0;
1352
1353 out_unlock:
1354         page_vma_mapped_walk_done(&pvmw);
1355 out_mn:
1356         mmu_notifier_invalidate_range_end(&range);
1357 out:
1358         return err;
1359 }
1360
1361 /**
1362  * replace_page - replace page in vma by new ksm page
1363  * @vma:      vma that holds the pte pointing to page
1364  * @page:     the page we are replacing by kpage
1365  * @kpage:    the ksm page we replace page by
1366  * @orig_pte: the original value of the pte
1367  *
1368  * Returns 0 on success, -EFAULT on failure.
1369  */
1370 static int replace_page(struct vm_area_struct *vma, struct page *page,
1371                         struct page *kpage, pte_t orig_pte)
1372 {
1373         struct folio *kfolio = page_folio(kpage);
1374         struct mm_struct *mm = vma->vm_mm;
1375         struct folio *folio;
1376         pmd_t *pmd;
1377         pmd_t pmde;
1378         pte_t *ptep;
1379         pte_t newpte;
1380         spinlock_t *ptl;
1381         unsigned long addr;
1382         int err = -EFAULT;
1383         struct mmu_notifier_range range;
1384
1385         addr = page_address_in_vma(page, vma);
1386         if (addr == -EFAULT)
1387                 goto out;
1388
1389         pmd = mm_find_pmd(mm, addr);
1390         if (!pmd)
1391                 goto out;
1392         /*
1393          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1394          * without holding anon_vma lock for write.  So when looking for a
1395          * genuine pmde (in which to find pte), test present and !THP together.
1396          */
1397         pmde = pmdp_get_lockless(pmd);
1398         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1399                 goto out;
1400
1401         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1402                                 addr + PAGE_SIZE);
1403         mmu_notifier_invalidate_range_start(&range);
1404
1405         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1406         if (!ptep)
1407                 goto out_mn;
1408         if (!pte_same(ptep_get(ptep), orig_pte)) {
1409                 pte_unmap_unlock(ptep, ptl);
1410                 goto out_mn;
1411         }
1412         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1413         VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1414                         kfolio);
1415
1416         /*
1417          * No need to check ksm_use_zero_pages here: we can only have a
1418          * zero_page here if ksm_use_zero_pages was enabled already.
1419          */
1420         if (!is_zero_pfn(page_to_pfn(kpage))) {
1421                 folio_get(kfolio);
1422                 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1423                 newpte = mk_pte(kpage, vma->vm_page_prot);
1424         } else {
1425                 /*
1426                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1427                  * we can easily track all KSM-placed zero pages by checking if
1428                  * the dirty bit in zero page's PTE is set.
1429                  */
1430                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1431                 ksm_zero_pages++;
1432                 mm->ksm_zero_pages++;
1433                 /*
1434                  * We're replacing an anonymous page with a zero page, which is
1435                  * not anonymous. We need to do proper accounting otherwise we
1436                  * will get wrong values in /proc, and a BUG message in dmesg
1437                  * when tearing down the mm.
1438                  */
1439                 dec_mm_counter(mm, MM_ANONPAGES);
1440         }
1441
1442         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1443         /*
1444          * No need to notify as we are replacing a read only page with another
1445          * read only page with the same content.
1446          *
1447          * See Documentation/mm/mmu_notifier.rst
1448          */
1449         ptep_clear_flush(vma, addr, ptep);
1450         set_pte_at_notify(mm, addr, ptep, newpte);
1451
1452         folio = page_folio(page);
1453         folio_remove_rmap_pte(folio, page, vma);
1454         if (!folio_mapped(folio))
1455                 folio_free_swap(folio);
1456         folio_put(folio);
1457
1458         pte_unmap_unlock(ptep, ptl);
1459         err = 0;
1460 out_mn:
1461         mmu_notifier_invalidate_range_end(&range);
1462 out:
1463         return err;
1464 }
1465
1466 /*
1467  * try_to_merge_one_page - take two pages and merge them into one
1468  * @vma: the vma that holds the pte pointing to page
1469  * @page: the PageAnon page that we want to replace with kpage
1470  * @kpage: the PageKsm page that we want to map instead of page,
1471  *         or NULL the first time when we want to use page as kpage.
1472  *
1473  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474  */
1475 static int try_to_merge_one_page(struct vm_area_struct *vma,
1476                                  struct page *page, struct page *kpage)
1477 {
1478         pte_t orig_pte = __pte(0);
1479         int err = -EFAULT;
1480
1481         if (page == kpage)                      /* ksm page forked */
1482                 return 0;
1483
1484         if (!PageAnon(page))
1485                 goto out;
1486
1487         /*
1488          * We need the page lock to read a stable PageSwapCache in
1489          * write_protect_page().  We use trylock_page() instead of
1490          * lock_page() because we don't want to wait here - we
1491          * prefer to continue scanning and merging different pages,
1492          * then come back to this page when it is unlocked.
1493          */
1494         if (!trylock_page(page))
1495                 goto out;
1496
1497         if (PageTransCompound(page)) {
1498                 if (split_huge_page(page))
1499                         goto out_unlock;
1500         }
1501
1502         /*
1503          * If this anonymous page is mapped only here, its pte may need
1504          * to be write-protected.  If it's mapped elsewhere, all of its
1505          * ptes are necessarily already write-protected.  But in either
1506          * case, we need to lock and check page_count is not raised.
1507          */
1508         if (write_protect_page(vma, page, &orig_pte) == 0) {
1509                 if (!kpage) {
1510                         /*
1511                          * While we hold page lock, upgrade page from
1512                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1513                          * stable_tree_insert() will update stable_node.
1514                          */
1515                         set_page_stable_node(page, NULL);
1516                         mark_page_accessed(page);
1517                         /*
1518                          * Page reclaim just frees a clean page with no dirty
1519                          * ptes: make sure that the ksm page would be swapped.
1520                          */
1521                         if (!PageDirty(page))
1522                                 SetPageDirty(page);
1523                         err = 0;
1524                 } else if (pages_identical(page, kpage))
1525                         err = replace_page(vma, page, kpage, orig_pte);
1526         }
1527
1528 out_unlock:
1529         unlock_page(page);
1530 out:
1531         return err;
1532 }
1533
1534 /*
1535  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1536  * but no new kernel page is allocated: kpage must already be a ksm page.
1537  *
1538  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1539  */
1540 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1541                                       struct page *page, struct page *kpage)
1542 {
1543         struct mm_struct *mm = rmap_item->mm;
1544         struct vm_area_struct *vma;
1545         int err = -EFAULT;
1546
1547         mmap_read_lock(mm);
1548         vma = find_mergeable_vma(mm, rmap_item->address);
1549         if (!vma)
1550                 goto out;
1551
1552         err = try_to_merge_one_page(vma, page, kpage);
1553         if (err)
1554                 goto out;
1555
1556         /* Unstable nid is in union with stable anon_vma: remove first */
1557         remove_rmap_item_from_tree(rmap_item);
1558
1559         /* Must get reference to anon_vma while still holding mmap_lock */
1560         rmap_item->anon_vma = vma->anon_vma;
1561         get_anon_vma(vma->anon_vma);
1562 out:
1563         mmap_read_unlock(mm);
1564         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1565                                 rmap_item, mm, err);
1566         return err;
1567 }
1568
1569 /*
1570  * try_to_merge_two_pages - take two identical pages and prepare them
1571  * to be merged into one page.
1572  *
1573  * This function returns the kpage if we successfully merged two identical
1574  * pages into one ksm page, NULL otherwise.
1575  *
1576  * Note that this function upgrades page to ksm page: if one of the pages
1577  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1578  */
1579 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1580                                            struct page *page,
1581                                            struct ksm_rmap_item *tree_rmap_item,
1582                                            struct page *tree_page)
1583 {
1584         int err;
1585
1586         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1587         if (!err) {
1588                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1589                                                         tree_page, page);
1590                 /*
1591                  * If that fails, we have a ksm page with only one pte
1592                  * pointing to it: so break it.
1593                  */
1594                 if (err)
1595                         break_cow(rmap_item);
1596         }
1597         return err ? NULL : page;
1598 }
1599
1600 static __always_inline
1601 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1602 {
1603         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1604         /*
1605          * Check that at least one mapping still exists, otherwise
1606          * there's no much point to merge and share with this
1607          * stable_node, as the underlying tree_page of the other
1608          * sharer is going to be freed soon.
1609          */
1610         return stable_node->rmap_hlist_len &&
1611                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1612 }
1613
1614 static __always_inline
1615 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1616 {
1617         return __is_page_sharing_candidate(stable_node, 0);
1618 }
1619
1620 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1621                                     struct ksm_stable_node **_stable_node,
1622                                     struct rb_root *root,
1623                                     bool prune_stale_stable_nodes)
1624 {
1625         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1626         struct hlist_node *hlist_safe;
1627         struct page *_tree_page, *tree_page = NULL;
1628         int nr = 0;
1629         int found_rmap_hlist_len;
1630
1631         if (!prune_stale_stable_nodes ||
1632             time_before(jiffies, stable_node->chain_prune_time +
1633                         msecs_to_jiffies(
1634                                 ksm_stable_node_chains_prune_millisecs)))
1635                 prune_stale_stable_nodes = false;
1636         else
1637                 stable_node->chain_prune_time = jiffies;
1638
1639         hlist_for_each_entry_safe(dup, hlist_safe,
1640                                   &stable_node->hlist, hlist_dup) {
1641                 cond_resched();
1642                 /*
1643                  * We must walk all stable_node_dup to prune the stale
1644                  * stable nodes during lookup.
1645                  *
1646                  * get_ksm_page can drop the nodes from the
1647                  * stable_node->hlist if they point to freed pages
1648                  * (that's why we do a _safe walk). The "dup"
1649                  * stable_node parameter itself will be freed from
1650                  * under us if it returns NULL.
1651                  */
1652                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1653                 if (!_tree_page)
1654                         continue;
1655                 nr += 1;
1656                 if (is_page_sharing_candidate(dup)) {
1657                         if (!found ||
1658                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1659                                 if (found)
1660                                         put_page(tree_page);
1661                                 found = dup;
1662                                 found_rmap_hlist_len = found->rmap_hlist_len;
1663                                 tree_page = _tree_page;
1664
1665                                 /* skip put_page for found dup */
1666                                 if (!prune_stale_stable_nodes)
1667                                         break;
1668                                 continue;
1669                         }
1670                 }
1671                 put_page(_tree_page);
1672         }
1673
1674         if (found) {
1675                 /*
1676                  * nr is counting all dups in the chain only if
1677                  * prune_stale_stable_nodes is true, otherwise we may
1678                  * break the loop at nr == 1 even if there are
1679                  * multiple entries.
1680                  */
1681                 if (prune_stale_stable_nodes && nr == 1) {
1682                         /*
1683                          * If there's not just one entry it would
1684                          * corrupt memory, better BUG_ON. In KSM
1685                          * context with no lock held it's not even
1686                          * fatal.
1687                          */
1688                         BUG_ON(stable_node->hlist.first->next);
1689
1690                         /*
1691                          * There's just one entry and it is below the
1692                          * deduplication limit so drop the chain.
1693                          */
1694                         rb_replace_node(&stable_node->node, &found->node,
1695                                         root);
1696                         free_stable_node(stable_node);
1697                         ksm_stable_node_chains--;
1698                         ksm_stable_node_dups--;
1699                         /*
1700                          * NOTE: the caller depends on the stable_node
1701                          * to be equal to stable_node_dup if the chain
1702                          * was collapsed.
1703                          */
1704                         *_stable_node = found;
1705                         /*
1706                          * Just for robustness, as stable_node is
1707                          * otherwise left as a stable pointer, the
1708                          * compiler shall optimize it away at build
1709                          * time.
1710                          */
1711                         stable_node = NULL;
1712                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1713                            __is_page_sharing_candidate(found, 1)) {
1714                         /*
1715                          * If the found stable_node dup can accept one
1716                          * more future merge (in addition to the one
1717                          * that is underway) and is not at the head of
1718                          * the chain, put it there so next search will
1719                          * be quicker in the !prune_stale_stable_nodes
1720                          * case.
1721                          *
1722                          * NOTE: it would be inaccurate to use nr > 1
1723                          * instead of checking the hlist.first pointer
1724                          * directly, because in the
1725                          * prune_stale_stable_nodes case "nr" isn't
1726                          * the position of the found dup in the chain,
1727                          * but the total number of dups in the chain.
1728                          */
1729                         hlist_del(&found->hlist_dup);
1730                         hlist_add_head(&found->hlist_dup,
1731                                        &stable_node->hlist);
1732                 }
1733         }
1734
1735         *_stable_node_dup = found;
1736         return tree_page;
1737 }
1738
1739 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1740                                                struct rb_root *root)
1741 {
1742         if (!is_stable_node_chain(stable_node))
1743                 return stable_node;
1744         if (hlist_empty(&stable_node->hlist)) {
1745                 free_stable_node_chain(stable_node, root);
1746                 return NULL;
1747         }
1748         return hlist_entry(stable_node->hlist.first,
1749                            typeof(*stable_node), hlist_dup);
1750 }
1751
1752 /*
1753  * Like for get_ksm_page, this function can free the *_stable_node and
1754  * *_stable_node_dup if the returned tree_page is NULL.
1755  *
1756  * It can also free and overwrite *_stable_node with the found
1757  * stable_node_dup if the chain is collapsed (in which case
1758  * *_stable_node will be equal to *_stable_node_dup like if the chain
1759  * never existed). It's up to the caller to verify tree_page is not
1760  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1761  *
1762  * *_stable_node_dup is really a second output parameter of this
1763  * function and will be overwritten in all cases, the caller doesn't
1764  * need to initialize it.
1765  */
1766 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1767                                         struct ksm_stable_node **_stable_node,
1768                                         struct rb_root *root,
1769                                         bool prune_stale_stable_nodes)
1770 {
1771         struct ksm_stable_node *stable_node = *_stable_node;
1772         if (!is_stable_node_chain(stable_node)) {
1773                 if (is_page_sharing_candidate(stable_node)) {
1774                         *_stable_node_dup = stable_node;
1775                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1776                 }
1777                 /*
1778                  * _stable_node_dup set to NULL means the stable_node
1779                  * reached the ksm_max_page_sharing limit.
1780                  */
1781                 *_stable_node_dup = NULL;
1782                 return NULL;
1783         }
1784         return stable_node_dup(_stable_node_dup, _stable_node, root,
1785                                prune_stale_stable_nodes);
1786 }
1787
1788 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1789                                                 struct ksm_stable_node **s_n,
1790                                                 struct rb_root *root)
1791 {
1792         return __stable_node_chain(s_n_d, s_n, root, true);
1793 }
1794
1795 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1796                                           struct ksm_stable_node *s_n,
1797                                           struct rb_root *root)
1798 {
1799         struct ksm_stable_node *old_stable_node = s_n;
1800         struct page *tree_page;
1801
1802         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1803         /* not pruning dups so s_n cannot have changed */
1804         VM_BUG_ON(s_n != old_stable_node);
1805         return tree_page;
1806 }
1807
1808 /*
1809  * stable_tree_search - search for page inside the stable tree
1810  *
1811  * This function checks if there is a page inside the stable tree
1812  * with identical content to the page that we are scanning right now.
1813  *
1814  * This function returns the stable tree node of identical content if found,
1815  * NULL otherwise.
1816  */
1817 static struct page *stable_tree_search(struct page *page)
1818 {
1819         int nid;
1820         struct rb_root *root;
1821         struct rb_node **new;
1822         struct rb_node *parent;
1823         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1824         struct ksm_stable_node *page_node;
1825
1826         page_node = page_stable_node(page);
1827         if (page_node && page_node->head != &migrate_nodes) {
1828                 /* ksm page forked */
1829                 get_page(page);
1830                 return page;
1831         }
1832
1833         nid = get_kpfn_nid(page_to_pfn(page));
1834         root = root_stable_tree + nid;
1835 again:
1836         new = &root->rb_node;
1837         parent = NULL;
1838
1839         while (*new) {
1840                 struct page *tree_page;
1841                 int ret;
1842
1843                 cond_resched();
1844                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1845                 stable_node_any = NULL;
1846                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1847                 /*
1848                  * NOTE: stable_node may have been freed by
1849                  * chain_prune() if the returned stable_node_dup is
1850                  * not NULL. stable_node_dup may have been inserted in
1851                  * the rbtree instead as a regular stable_node (in
1852                  * order to collapse the stable_node chain if a single
1853                  * stable_node dup was found in it). In such case the
1854                  * stable_node is overwritten by the callee to point
1855                  * to the stable_node_dup that was collapsed in the
1856                  * stable rbtree and stable_node will be equal to
1857                  * stable_node_dup like if the chain never existed.
1858                  */
1859                 if (!stable_node_dup) {
1860                         /*
1861                          * Either all stable_node dups were full in
1862                          * this stable_node chain, or this chain was
1863                          * empty and should be rb_erased.
1864                          */
1865                         stable_node_any = stable_node_dup_any(stable_node,
1866                                                               root);
1867                         if (!stable_node_any) {
1868                                 /* rb_erase just run */
1869                                 goto again;
1870                         }
1871                         /*
1872                          * Take any of the stable_node dups page of
1873                          * this stable_node chain to let the tree walk
1874                          * continue. All KSM pages belonging to the
1875                          * stable_node dups in a stable_node chain
1876                          * have the same content and they're
1877                          * write protected at all times. Any will work
1878                          * fine to continue the walk.
1879                          */
1880                         tree_page = get_ksm_page(stable_node_any,
1881                                                  GET_KSM_PAGE_NOLOCK);
1882                 }
1883                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1884                 if (!tree_page) {
1885                         /*
1886                          * If we walked over a stale stable_node,
1887                          * get_ksm_page() will call rb_erase() and it
1888                          * may rebalance the tree from under us. So
1889                          * restart the search from scratch. Returning
1890                          * NULL would be safe too, but we'd generate
1891                          * false negative insertions just because some
1892                          * stable_node was stale.
1893                          */
1894                         goto again;
1895                 }
1896
1897                 ret = memcmp_pages(page, tree_page);
1898                 put_page(tree_page);
1899
1900                 parent = *new;
1901                 if (ret < 0)
1902                         new = &parent->rb_left;
1903                 else if (ret > 0)
1904                         new = &parent->rb_right;
1905                 else {
1906                         if (page_node) {
1907                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1908                                 /*
1909                                  * Test if the migrated page should be merged
1910                                  * into a stable node dup. If the mapcount is
1911                                  * 1 we can migrate it with another KSM page
1912                                  * without adding it to the chain.
1913                                  */
1914                                 if (page_mapcount(page) > 1)
1915                                         goto chain_append;
1916                         }
1917
1918                         if (!stable_node_dup) {
1919                                 /*
1920                                  * If the stable_node is a chain and
1921                                  * we got a payload match in memcmp
1922                                  * but we cannot merge the scanned
1923                                  * page in any of the existing
1924                                  * stable_node dups because they're
1925                                  * all full, we need to wait the
1926                                  * scanned page to find itself a match
1927                                  * in the unstable tree to create a
1928                                  * brand new KSM page to add later to
1929                                  * the dups of this stable_node.
1930                                  */
1931                                 return NULL;
1932                         }
1933
1934                         /*
1935                          * Lock and unlock the stable_node's page (which
1936                          * might already have been migrated) so that page
1937                          * migration is sure to notice its raised count.
1938                          * It would be more elegant to return stable_node
1939                          * than kpage, but that involves more changes.
1940                          */
1941                         tree_page = get_ksm_page(stable_node_dup,
1942                                                  GET_KSM_PAGE_TRYLOCK);
1943
1944                         if (PTR_ERR(tree_page) == -EBUSY)
1945                                 return ERR_PTR(-EBUSY);
1946
1947                         if (unlikely(!tree_page))
1948                                 /*
1949                                  * The tree may have been rebalanced,
1950                                  * so re-evaluate parent and new.
1951                                  */
1952                                 goto again;
1953                         unlock_page(tree_page);
1954
1955                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1956                             NUMA(stable_node_dup->nid)) {
1957                                 put_page(tree_page);
1958                                 goto replace;
1959                         }
1960                         return tree_page;
1961                 }
1962         }
1963
1964         if (!page_node)
1965                 return NULL;
1966
1967         list_del(&page_node->list);
1968         DO_NUMA(page_node->nid = nid);
1969         rb_link_node(&page_node->node, parent, new);
1970         rb_insert_color(&page_node->node, root);
1971 out:
1972         if (is_page_sharing_candidate(page_node)) {
1973                 get_page(page);
1974                 return page;
1975         } else
1976                 return NULL;
1977
1978 replace:
1979         /*
1980          * If stable_node was a chain and chain_prune collapsed it,
1981          * stable_node has been updated to be the new regular
1982          * stable_node. A collapse of the chain is indistinguishable
1983          * from the case there was no chain in the stable
1984          * rbtree. Otherwise stable_node is the chain and
1985          * stable_node_dup is the dup to replace.
1986          */
1987         if (stable_node_dup == stable_node) {
1988                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1989                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1990                 /* there is no chain */
1991                 if (page_node) {
1992                         VM_BUG_ON(page_node->head != &migrate_nodes);
1993                         list_del(&page_node->list);
1994                         DO_NUMA(page_node->nid = nid);
1995                         rb_replace_node(&stable_node_dup->node,
1996                                         &page_node->node,
1997                                         root);
1998                         if (is_page_sharing_candidate(page_node))
1999                                 get_page(page);
2000                         else
2001                                 page = NULL;
2002                 } else {
2003                         rb_erase(&stable_node_dup->node, root);
2004                         page = NULL;
2005                 }
2006         } else {
2007                 VM_BUG_ON(!is_stable_node_chain(stable_node));
2008                 __stable_node_dup_del(stable_node_dup);
2009                 if (page_node) {
2010                         VM_BUG_ON(page_node->head != &migrate_nodes);
2011                         list_del(&page_node->list);
2012                         DO_NUMA(page_node->nid = nid);
2013                         stable_node_chain_add_dup(page_node, stable_node);
2014                         if (is_page_sharing_candidate(page_node))
2015                                 get_page(page);
2016                         else
2017                                 page = NULL;
2018                 } else {
2019                         page = NULL;
2020                 }
2021         }
2022         stable_node_dup->head = &migrate_nodes;
2023         list_add(&stable_node_dup->list, stable_node_dup->head);
2024         return page;
2025
2026 chain_append:
2027         /* stable_node_dup could be null if it reached the limit */
2028         if (!stable_node_dup)
2029                 stable_node_dup = stable_node_any;
2030         /*
2031          * If stable_node was a chain and chain_prune collapsed it,
2032          * stable_node has been updated to be the new regular
2033          * stable_node. A collapse of the chain is indistinguishable
2034          * from the case there was no chain in the stable
2035          * rbtree. Otherwise stable_node is the chain and
2036          * stable_node_dup is the dup to replace.
2037          */
2038         if (stable_node_dup == stable_node) {
2039                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2040                 /* chain is missing so create it */
2041                 stable_node = alloc_stable_node_chain(stable_node_dup,
2042                                                       root);
2043                 if (!stable_node)
2044                         return NULL;
2045         }
2046         /*
2047          * Add this stable_node dup that was
2048          * migrated to the stable_node chain
2049          * of the current nid for this page
2050          * content.
2051          */
2052         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2053         VM_BUG_ON(page_node->head != &migrate_nodes);
2054         list_del(&page_node->list);
2055         DO_NUMA(page_node->nid = nid);
2056         stable_node_chain_add_dup(page_node, stable_node);
2057         goto out;
2058 }
2059
2060 /*
2061  * stable_tree_insert - insert stable tree node pointing to new ksm page
2062  * into the stable tree.
2063  *
2064  * This function returns the stable tree node just allocated on success,
2065  * NULL otherwise.
2066  */
2067 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
2068 {
2069         int nid;
2070         unsigned long kpfn;
2071         struct rb_root *root;
2072         struct rb_node **new;
2073         struct rb_node *parent;
2074         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2075         bool need_chain = false;
2076
2077         kpfn = page_to_pfn(kpage);
2078         nid = get_kpfn_nid(kpfn);
2079         root = root_stable_tree + nid;
2080 again:
2081         parent = NULL;
2082         new = &root->rb_node;
2083
2084         while (*new) {
2085                 struct page *tree_page;
2086                 int ret;
2087
2088                 cond_resched();
2089                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2090                 stable_node_any = NULL;
2091                 tree_page = chain(&stable_node_dup, stable_node, root);
2092                 if (!stable_node_dup) {
2093                         /*
2094                          * Either all stable_node dups were full in
2095                          * this stable_node chain, or this chain was
2096                          * empty and should be rb_erased.
2097                          */
2098                         stable_node_any = stable_node_dup_any(stable_node,
2099                                                               root);
2100                         if (!stable_node_any) {
2101                                 /* rb_erase just run */
2102                                 goto again;
2103                         }
2104                         /*
2105                          * Take any of the stable_node dups page of
2106                          * this stable_node chain to let the tree walk
2107                          * continue. All KSM pages belonging to the
2108                          * stable_node dups in a stable_node chain
2109                          * have the same content and they're
2110                          * write protected at all times. Any will work
2111                          * fine to continue the walk.
2112                          */
2113                         tree_page = get_ksm_page(stable_node_any,
2114                                                  GET_KSM_PAGE_NOLOCK);
2115                 }
2116                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2117                 if (!tree_page) {
2118                         /*
2119                          * If we walked over a stale stable_node,
2120                          * get_ksm_page() will call rb_erase() and it
2121                          * may rebalance the tree from under us. So
2122                          * restart the search from scratch. Returning
2123                          * NULL would be safe too, but we'd generate
2124                          * false negative insertions just because some
2125                          * stable_node was stale.
2126                          */
2127                         goto again;
2128                 }
2129
2130                 ret = memcmp_pages(kpage, tree_page);
2131                 put_page(tree_page);
2132
2133                 parent = *new;
2134                 if (ret < 0)
2135                         new = &parent->rb_left;
2136                 else if (ret > 0)
2137                         new = &parent->rb_right;
2138                 else {
2139                         need_chain = true;
2140                         break;
2141                 }
2142         }
2143
2144         stable_node_dup = alloc_stable_node();
2145         if (!stable_node_dup)
2146                 return NULL;
2147
2148         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2149         stable_node_dup->kpfn = kpfn;
2150         set_page_stable_node(kpage, stable_node_dup);
2151         stable_node_dup->rmap_hlist_len = 0;
2152         DO_NUMA(stable_node_dup->nid = nid);
2153         if (!need_chain) {
2154                 rb_link_node(&stable_node_dup->node, parent, new);
2155                 rb_insert_color(&stable_node_dup->node, root);
2156         } else {
2157                 if (!is_stable_node_chain(stable_node)) {
2158                         struct ksm_stable_node *orig = stable_node;
2159                         /* chain is missing so create it */
2160                         stable_node = alloc_stable_node_chain(orig, root);
2161                         if (!stable_node) {
2162                                 free_stable_node(stable_node_dup);
2163                                 return NULL;
2164                         }
2165                 }
2166                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2167         }
2168
2169         return stable_node_dup;
2170 }
2171
2172 /*
2173  * unstable_tree_search_insert - search for identical page,
2174  * else insert rmap_item into the unstable tree.
2175  *
2176  * This function searches for a page in the unstable tree identical to the
2177  * page currently being scanned; and if no identical page is found in the
2178  * tree, we insert rmap_item as a new object into the unstable tree.
2179  *
2180  * This function returns pointer to rmap_item found to be identical
2181  * to the currently scanned page, NULL otherwise.
2182  *
2183  * This function does both searching and inserting, because they share
2184  * the same walking algorithm in an rbtree.
2185  */
2186 static
2187 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2188                                               struct page *page,
2189                                               struct page **tree_pagep)
2190 {
2191         struct rb_node **new;
2192         struct rb_root *root;
2193         struct rb_node *parent = NULL;
2194         int nid;
2195
2196         nid = get_kpfn_nid(page_to_pfn(page));
2197         root = root_unstable_tree + nid;
2198         new = &root->rb_node;
2199
2200         while (*new) {
2201                 struct ksm_rmap_item *tree_rmap_item;
2202                 struct page *tree_page;
2203                 int ret;
2204
2205                 cond_resched();
2206                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2207                 tree_page = get_mergeable_page(tree_rmap_item);
2208                 if (!tree_page)
2209                         return NULL;
2210
2211                 /*
2212                  * Don't substitute a ksm page for a forked page.
2213                  */
2214                 if (page == tree_page) {
2215                         put_page(tree_page);
2216                         return NULL;
2217                 }
2218
2219                 ret = memcmp_pages(page, tree_page);
2220
2221                 parent = *new;
2222                 if (ret < 0) {
2223                         put_page(tree_page);
2224                         new = &parent->rb_left;
2225                 } else if (ret > 0) {
2226                         put_page(tree_page);
2227                         new = &parent->rb_right;
2228                 } else if (!ksm_merge_across_nodes &&
2229                            page_to_nid(tree_page) != nid) {
2230                         /*
2231                          * If tree_page has been migrated to another NUMA node,
2232                          * it will be flushed out and put in the right unstable
2233                          * tree next time: only merge with it when across_nodes.
2234                          */
2235                         put_page(tree_page);
2236                         return NULL;
2237                 } else {
2238                         *tree_pagep = tree_page;
2239                         return tree_rmap_item;
2240                 }
2241         }
2242
2243         rmap_item->address |= UNSTABLE_FLAG;
2244         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2245         DO_NUMA(rmap_item->nid = nid);
2246         rb_link_node(&rmap_item->node, parent, new);
2247         rb_insert_color(&rmap_item->node, root);
2248
2249         ksm_pages_unshared++;
2250         return NULL;
2251 }
2252
2253 /*
2254  * stable_tree_append - add another rmap_item to the linked list of
2255  * rmap_items hanging off a given node of the stable tree, all sharing
2256  * the same ksm page.
2257  */
2258 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2259                                struct ksm_stable_node *stable_node,
2260                                bool max_page_sharing_bypass)
2261 {
2262         /*
2263          * rmap won't find this mapping if we don't insert the
2264          * rmap_item in the right stable_node
2265          * duplicate. page_migration could break later if rmap breaks,
2266          * so we can as well crash here. We really need to check for
2267          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2268          * for other negative values as an underflow if detected here
2269          * for the first time (and not when decreasing rmap_hlist_len)
2270          * would be sign of memory corruption in the stable_node.
2271          */
2272         BUG_ON(stable_node->rmap_hlist_len < 0);
2273
2274         stable_node->rmap_hlist_len++;
2275         if (!max_page_sharing_bypass)
2276                 /* possibly non fatal but unexpected overflow, only warn */
2277                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2278                              ksm_max_page_sharing);
2279
2280         rmap_item->head = stable_node;
2281         rmap_item->address |= STABLE_FLAG;
2282         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2283
2284         if (rmap_item->hlist.next)
2285                 ksm_pages_sharing++;
2286         else
2287                 ksm_pages_shared++;
2288
2289         rmap_item->mm->ksm_merging_pages++;
2290 }
2291
2292 /*
2293  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2294  * if not, compare checksum to previous and if it's the same, see if page can
2295  * be inserted into the unstable tree, or merged with a page already there and
2296  * both transferred to the stable tree.
2297  *
2298  * @page: the page that we are searching identical page to.
2299  * @rmap_item: the reverse mapping into the virtual address of this page
2300  */
2301 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2302 {
2303         struct mm_struct *mm = rmap_item->mm;
2304         struct ksm_rmap_item *tree_rmap_item;
2305         struct page *tree_page = NULL;
2306         struct ksm_stable_node *stable_node;
2307         struct page *kpage;
2308         unsigned int checksum;
2309         int err;
2310         bool max_page_sharing_bypass = false;
2311
2312         stable_node = page_stable_node(page);
2313         if (stable_node) {
2314                 if (stable_node->head != &migrate_nodes &&
2315                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2316                     NUMA(stable_node->nid)) {
2317                         stable_node_dup_del(stable_node);
2318                         stable_node->head = &migrate_nodes;
2319                         list_add(&stable_node->list, stable_node->head);
2320                 }
2321                 if (stable_node->head != &migrate_nodes &&
2322                     rmap_item->head == stable_node)
2323                         return;
2324                 /*
2325                  * If it's a KSM fork, allow it to go over the sharing limit
2326                  * without warnings.
2327                  */
2328                 if (!is_page_sharing_candidate(stable_node))
2329                         max_page_sharing_bypass = true;
2330         }
2331
2332         /* We first start with searching the page inside the stable tree */
2333         kpage = stable_tree_search(page);
2334         if (kpage == page && rmap_item->head == stable_node) {
2335                 put_page(kpage);
2336                 return;
2337         }
2338
2339         remove_rmap_item_from_tree(rmap_item);
2340
2341         if (kpage) {
2342                 if (PTR_ERR(kpage) == -EBUSY)
2343                         return;
2344
2345                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2346                 if (!err) {
2347                         /*
2348                          * The page was successfully merged:
2349                          * add its rmap_item to the stable tree.
2350                          */
2351                         lock_page(kpage);
2352                         stable_tree_append(rmap_item, page_stable_node(kpage),
2353                                            max_page_sharing_bypass);
2354                         unlock_page(kpage);
2355                 }
2356                 put_page(kpage);
2357                 return;
2358         }
2359
2360         /*
2361          * If the hash value of the page has changed from the last time
2362          * we calculated it, this page is changing frequently: therefore we
2363          * don't want to insert it in the unstable tree, and we don't want
2364          * to waste our time searching for something identical to it there.
2365          */
2366         checksum = calc_checksum(page);
2367         if (rmap_item->oldchecksum != checksum) {
2368                 rmap_item->oldchecksum = checksum;
2369                 return;
2370         }
2371
2372         /*
2373          * Same checksum as an empty page. We attempt to merge it with the
2374          * appropriate zero page if the user enabled this via sysfs.
2375          */
2376         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2377                 struct vm_area_struct *vma;
2378
2379                 mmap_read_lock(mm);
2380                 vma = find_mergeable_vma(mm, rmap_item->address);
2381                 if (vma) {
2382                         err = try_to_merge_one_page(vma, page,
2383                                         ZERO_PAGE(rmap_item->address));
2384                         trace_ksm_merge_one_page(
2385                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2386                                 rmap_item, mm, err);
2387                 } else {
2388                         /*
2389                          * If the vma is out of date, we do not need to
2390                          * continue.
2391                          */
2392                         err = 0;
2393                 }
2394                 mmap_read_unlock(mm);
2395                 /*
2396                  * In case of failure, the page was not really empty, so we
2397                  * need to continue. Otherwise we're done.
2398                  */
2399                 if (!err)
2400                         return;
2401         }
2402         tree_rmap_item =
2403                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2404         if (tree_rmap_item) {
2405                 bool split;
2406
2407                 kpage = try_to_merge_two_pages(rmap_item, page,
2408                                                 tree_rmap_item, tree_page);
2409                 /*
2410                  * If both pages we tried to merge belong to the same compound
2411                  * page, then we actually ended up increasing the reference
2412                  * count of the same compound page twice, and split_huge_page
2413                  * failed.
2414                  * Here we set a flag if that happened, and we use it later to
2415                  * try split_huge_page again. Since we call put_page right
2416                  * afterwards, the reference count will be correct and
2417                  * split_huge_page should succeed.
2418                  */
2419                 split = PageTransCompound(page)
2420                         && compound_head(page) == compound_head(tree_page);
2421                 put_page(tree_page);
2422                 if (kpage) {
2423                         /*
2424                          * The pages were successfully merged: insert new
2425                          * node in the stable tree and add both rmap_items.
2426                          */
2427                         lock_page(kpage);
2428                         stable_node = stable_tree_insert(kpage);
2429                         if (stable_node) {
2430                                 stable_tree_append(tree_rmap_item, stable_node,
2431                                                    false);
2432                                 stable_tree_append(rmap_item, stable_node,
2433                                                    false);
2434                         }
2435                         unlock_page(kpage);
2436
2437                         /*
2438                          * If we fail to insert the page into the stable tree,
2439                          * we will have 2 virtual addresses that are pointing
2440                          * to a ksm page left outside the stable tree,
2441                          * in which case we need to break_cow on both.
2442                          */
2443                         if (!stable_node) {
2444                                 break_cow(tree_rmap_item);
2445                                 break_cow(rmap_item);
2446                         }
2447                 } else if (split) {
2448                         /*
2449                          * We are here if we tried to merge two pages and
2450                          * failed because they both belonged to the same
2451                          * compound page. We will split the page now, but no
2452                          * merging will take place.
2453                          * We do not want to add the cost of a full lock; if
2454                          * the page is locked, it is better to skip it and
2455                          * perhaps try again later.
2456                          */
2457                         if (!trylock_page(page))
2458                                 return;
2459                         split_huge_page(page);
2460                         unlock_page(page);
2461                 }
2462         }
2463 }
2464
2465 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2466                                             struct ksm_rmap_item **rmap_list,
2467                                             unsigned long addr)
2468 {
2469         struct ksm_rmap_item *rmap_item;
2470
2471         while (*rmap_list) {
2472                 rmap_item = *rmap_list;
2473                 if ((rmap_item->address & PAGE_MASK) == addr)
2474                         return rmap_item;
2475                 if (rmap_item->address > addr)
2476                         break;
2477                 *rmap_list = rmap_item->rmap_list;
2478                 remove_rmap_item_from_tree(rmap_item);
2479                 free_rmap_item(rmap_item);
2480         }
2481
2482         rmap_item = alloc_rmap_item();
2483         if (rmap_item) {
2484                 /* It has already been zeroed */
2485                 rmap_item->mm = mm_slot->slot.mm;
2486                 rmap_item->mm->ksm_rmap_items++;
2487                 rmap_item->address = addr;
2488                 rmap_item->rmap_list = *rmap_list;
2489                 *rmap_list = rmap_item;
2490         }
2491         return rmap_item;
2492 }
2493
2494 /*
2495  * Calculate skip age for the ksm page age. The age determines how often
2496  * de-duplicating has already been tried unsuccessfully. If the age is
2497  * smaller, the scanning of this page is skipped for less scans.
2498  *
2499  * @age: rmap_item age of page
2500  */
2501 static unsigned int skip_age(rmap_age_t age)
2502 {
2503         if (age <= 3)
2504                 return 1;
2505         if (age <= 5)
2506                 return 2;
2507         if (age <= 8)
2508                 return 4;
2509
2510         return 8;
2511 }
2512
2513 /*
2514  * Determines if a page should be skipped for the current scan.
2515  *
2516  * @page: page to check
2517  * @rmap_item: associated rmap_item of page
2518  */
2519 static bool should_skip_rmap_item(struct page *page,
2520                                   struct ksm_rmap_item *rmap_item)
2521 {
2522         rmap_age_t age;
2523
2524         if (!ksm_smart_scan)
2525                 return false;
2526
2527         /*
2528          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2529          * will essentially ignore them, but we still have to process them
2530          * properly.
2531          */
2532         if (PageKsm(page))
2533                 return false;
2534
2535         age = rmap_item->age;
2536         if (age != U8_MAX)
2537                 rmap_item->age++;
2538
2539         /*
2540          * Smaller ages are not skipped, they need to get a chance to go
2541          * through the different phases of the KSM merging.
2542          */
2543         if (age < 3)
2544                 return false;
2545
2546         /*
2547          * Are we still allowed to skip? If not, then don't skip it
2548          * and determine how much more often we are allowed to skip next.
2549          */
2550         if (!rmap_item->remaining_skips) {
2551                 rmap_item->remaining_skips = skip_age(age);
2552                 return false;
2553         }
2554
2555         /* Skip this page */
2556         ksm_pages_skipped++;
2557         rmap_item->remaining_skips--;
2558         remove_rmap_item_from_tree(rmap_item);
2559         return true;
2560 }
2561
2562 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2563 {
2564         struct mm_struct *mm;
2565         struct ksm_mm_slot *mm_slot;
2566         struct mm_slot *slot;
2567         struct vm_area_struct *vma;
2568         struct ksm_rmap_item *rmap_item;
2569         struct vma_iterator vmi;
2570         int nid;
2571
2572         if (list_empty(&ksm_mm_head.slot.mm_node))
2573                 return NULL;
2574
2575         mm_slot = ksm_scan.mm_slot;
2576         if (mm_slot == &ksm_mm_head) {
2577                 advisor_start_scan();
2578                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2579
2580                 /*
2581                  * A number of pages can hang around indefinitely in per-cpu
2582                  * LRU cache, raised page count preventing write_protect_page
2583                  * from merging them.  Though it doesn't really matter much,
2584                  * it is puzzling to see some stuck in pages_volatile until
2585                  * other activity jostles them out, and they also prevented
2586                  * LTP's KSM test from succeeding deterministically; so drain
2587                  * them here (here rather than on entry to ksm_do_scan(),
2588                  * so we don't IPI too often when pages_to_scan is set low).
2589                  */
2590                 lru_add_drain_all();
2591
2592                 /*
2593                  * Whereas stale stable_nodes on the stable_tree itself
2594                  * get pruned in the regular course of stable_tree_search(),
2595                  * those moved out to the migrate_nodes list can accumulate:
2596                  * so prune them once before each full scan.
2597                  */
2598                 if (!ksm_merge_across_nodes) {
2599                         struct ksm_stable_node *stable_node, *next;
2600                         struct page *page;
2601
2602                         list_for_each_entry_safe(stable_node, next,
2603                                                  &migrate_nodes, list) {
2604                                 page = get_ksm_page(stable_node,
2605                                                     GET_KSM_PAGE_NOLOCK);
2606                                 if (page)
2607                                         put_page(page);
2608                                 cond_resched();
2609                         }
2610                 }
2611
2612                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2613                         root_unstable_tree[nid] = RB_ROOT;
2614
2615                 spin_lock(&ksm_mmlist_lock);
2616                 slot = list_entry(mm_slot->slot.mm_node.next,
2617                                   struct mm_slot, mm_node);
2618                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2619                 ksm_scan.mm_slot = mm_slot;
2620                 spin_unlock(&ksm_mmlist_lock);
2621                 /*
2622                  * Although we tested list_empty() above, a racing __ksm_exit
2623                  * of the last mm on the list may have removed it since then.
2624                  */
2625                 if (mm_slot == &ksm_mm_head)
2626                         return NULL;
2627 next_mm:
2628                 ksm_scan.address = 0;
2629                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2630         }
2631
2632         slot = &mm_slot->slot;
2633         mm = slot->mm;
2634         vma_iter_init(&vmi, mm, ksm_scan.address);
2635
2636         mmap_read_lock(mm);
2637         if (ksm_test_exit(mm))
2638                 goto no_vmas;
2639
2640         for_each_vma(vmi, vma) {
2641                 if (!(vma->vm_flags & VM_MERGEABLE))
2642                         continue;
2643                 if (ksm_scan.address < vma->vm_start)
2644                         ksm_scan.address = vma->vm_start;
2645                 if (!vma->anon_vma)
2646                         ksm_scan.address = vma->vm_end;
2647
2648                 while (ksm_scan.address < vma->vm_end) {
2649                         if (ksm_test_exit(mm))
2650                                 break;
2651                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2652                         if (IS_ERR_OR_NULL(*page)) {
2653                                 ksm_scan.address += PAGE_SIZE;
2654                                 cond_resched();
2655                                 continue;
2656                         }
2657                         if (is_zone_device_page(*page))
2658                                 goto next_page;
2659                         if (PageAnon(*page)) {
2660                                 flush_anon_page(vma, *page, ksm_scan.address);
2661                                 flush_dcache_page(*page);
2662                                 rmap_item = get_next_rmap_item(mm_slot,
2663                                         ksm_scan.rmap_list, ksm_scan.address);
2664                                 if (rmap_item) {
2665                                         ksm_scan.rmap_list =
2666                                                         &rmap_item->rmap_list;
2667
2668                                         if (should_skip_rmap_item(*page, rmap_item))
2669                                                 goto next_page;
2670
2671                                         ksm_scan.address += PAGE_SIZE;
2672                                 } else
2673                                         put_page(*page);
2674                                 mmap_read_unlock(mm);
2675                                 return rmap_item;
2676                         }
2677 next_page:
2678                         put_page(*page);
2679                         ksm_scan.address += PAGE_SIZE;
2680                         cond_resched();
2681                 }
2682         }
2683
2684         if (ksm_test_exit(mm)) {
2685 no_vmas:
2686                 ksm_scan.address = 0;
2687                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2688         }
2689         /*
2690          * Nuke all the rmap_items that are above this current rmap:
2691          * because there were no VM_MERGEABLE vmas with such addresses.
2692          */
2693         remove_trailing_rmap_items(ksm_scan.rmap_list);
2694
2695         spin_lock(&ksm_mmlist_lock);
2696         slot = list_entry(mm_slot->slot.mm_node.next,
2697                           struct mm_slot, mm_node);
2698         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2699         if (ksm_scan.address == 0) {
2700                 /*
2701                  * We've completed a full scan of all vmas, holding mmap_lock
2702                  * throughout, and found no VM_MERGEABLE: so do the same as
2703                  * __ksm_exit does to remove this mm from all our lists now.
2704                  * This applies either when cleaning up after __ksm_exit
2705                  * (but beware: we can reach here even before __ksm_exit),
2706                  * or when all VM_MERGEABLE areas have been unmapped (and
2707                  * mmap_lock then protects against race with MADV_MERGEABLE).
2708                  */
2709                 hash_del(&mm_slot->slot.hash);
2710                 list_del(&mm_slot->slot.mm_node);
2711                 spin_unlock(&ksm_mmlist_lock);
2712
2713                 mm_slot_free(mm_slot_cache, mm_slot);
2714                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2715                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2716                 mmap_read_unlock(mm);
2717                 mmdrop(mm);
2718         } else {
2719                 mmap_read_unlock(mm);
2720                 /*
2721                  * mmap_read_unlock(mm) first because after
2722                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2723                  * already have been freed under us by __ksm_exit()
2724                  * because the "mm_slot" is still hashed and
2725                  * ksm_scan.mm_slot doesn't point to it anymore.
2726                  */
2727                 spin_unlock(&ksm_mmlist_lock);
2728         }
2729
2730         /* Repeat until we've completed scanning the whole list */
2731         mm_slot = ksm_scan.mm_slot;
2732         if (mm_slot != &ksm_mm_head)
2733                 goto next_mm;
2734
2735         advisor_stop_scan();
2736
2737         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2738         ksm_scan.seqnr++;
2739         return NULL;
2740 }
2741
2742 /**
2743  * ksm_do_scan  - the ksm scanner main worker function.
2744  * @scan_npages:  number of pages we want to scan before we return.
2745  */
2746 static void ksm_do_scan(unsigned int scan_npages)
2747 {
2748         struct ksm_rmap_item *rmap_item;
2749         struct page *page;
2750         unsigned int npages = scan_npages;
2751
2752         while (npages-- && likely(!freezing(current))) {
2753                 cond_resched();
2754                 rmap_item = scan_get_next_rmap_item(&page);
2755                 if (!rmap_item)
2756                         return;
2757                 cmp_and_merge_page(page, rmap_item);
2758                 put_page(page);
2759         }
2760
2761         ksm_pages_scanned += scan_npages - npages;
2762 }
2763
2764 static int ksmd_should_run(void)
2765 {
2766         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2767 }
2768
2769 static int ksm_scan_thread(void *nothing)
2770 {
2771         unsigned int sleep_ms;
2772
2773         set_freezable();
2774         set_user_nice(current, 5);
2775
2776         while (!kthread_should_stop()) {
2777                 mutex_lock(&ksm_thread_mutex);
2778                 wait_while_offlining();
2779                 if (ksmd_should_run())
2780                         ksm_do_scan(ksm_thread_pages_to_scan);
2781                 mutex_unlock(&ksm_thread_mutex);
2782
2783                 if (ksmd_should_run()) {
2784                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2785                         wait_event_freezable_timeout(ksm_iter_wait,
2786                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2787                                 msecs_to_jiffies(sleep_ms));
2788                 } else {
2789                         wait_event_freezable(ksm_thread_wait,
2790                                 ksmd_should_run() || kthread_should_stop());
2791                 }
2792         }
2793         return 0;
2794 }
2795
2796 static void __ksm_add_vma(struct vm_area_struct *vma)
2797 {
2798         unsigned long vm_flags = vma->vm_flags;
2799
2800         if (vm_flags & VM_MERGEABLE)
2801                 return;
2802
2803         if (vma_ksm_compatible(vma))
2804                 vm_flags_set(vma, VM_MERGEABLE);
2805 }
2806
2807 static int __ksm_del_vma(struct vm_area_struct *vma)
2808 {
2809         int err;
2810
2811         if (!(vma->vm_flags & VM_MERGEABLE))
2812                 return 0;
2813
2814         if (vma->anon_vma) {
2815                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2816                 if (err)
2817                         return err;
2818         }
2819
2820         vm_flags_clear(vma, VM_MERGEABLE);
2821         return 0;
2822 }
2823 /**
2824  * ksm_add_vma - Mark vma as mergeable if compatible
2825  *
2826  * @vma:  Pointer to vma
2827  */
2828 void ksm_add_vma(struct vm_area_struct *vma)
2829 {
2830         struct mm_struct *mm = vma->vm_mm;
2831
2832         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2833                 __ksm_add_vma(vma);
2834 }
2835
2836 static void ksm_add_vmas(struct mm_struct *mm)
2837 {
2838         struct vm_area_struct *vma;
2839
2840         VMA_ITERATOR(vmi, mm, 0);
2841         for_each_vma(vmi, vma)
2842                 __ksm_add_vma(vma);
2843 }
2844
2845 static int ksm_del_vmas(struct mm_struct *mm)
2846 {
2847         struct vm_area_struct *vma;
2848         int err;
2849
2850         VMA_ITERATOR(vmi, mm, 0);
2851         for_each_vma(vmi, vma) {
2852                 err = __ksm_del_vma(vma);
2853                 if (err)
2854                         return err;
2855         }
2856         return 0;
2857 }
2858
2859 /**
2860  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2861  *                        compatible VMA's
2862  *
2863  * @mm:  Pointer to mm
2864  *
2865  * Returns 0 on success, otherwise error code
2866  */
2867 int ksm_enable_merge_any(struct mm_struct *mm)
2868 {
2869         int err;
2870
2871         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2872                 return 0;
2873
2874         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2875                 err = __ksm_enter(mm);
2876                 if (err)
2877                         return err;
2878         }
2879
2880         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2881         ksm_add_vmas(mm);
2882
2883         return 0;
2884 }
2885
2886 /**
2887  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2888  *                         previously enabled via ksm_enable_merge_any().
2889  *
2890  * Disabling merging implies unmerging any merged pages, like setting
2891  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2892  * merging on all compatible VMA's remains enabled.
2893  *
2894  * @mm: Pointer to mm
2895  *
2896  * Returns 0 on success, otherwise error code
2897  */
2898 int ksm_disable_merge_any(struct mm_struct *mm)
2899 {
2900         int err;
2901
2902         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2903                 return 0;
2904
2905         err = ksm_del_vmas(mm);
2906         if (err) {
2907                 ksm_add_vmas(mm);
2908                 return err;
2909         }
2910
2911         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2912         return 0;
2913 }
2914
2915 int ksm_disable(struct mm_struct *mm)
2916 {
2917         mmap_assert_write_locked(mm);
2918
2919         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2920                 return 0;
2921         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2922                 return ksm_disable_merge_any(mm);
2923         return ksm_del_vmas(mm);
2924 }
2925
2926 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2927                 unsigned long end, int advice, unsigned long *vm_flags)
2928 {
2929         struct mm_struct *mm = vma->vm_mm;
2930         int err;
2931
2932         switch (advice) {
2933         case MADV_MERGEABLE:
2934                 if (vma->vm_flags & VM_MERGEABLE)
2935                         return 0;
2936                 if (!vma_ksm_compatible(vma))
2937                         return 0;
2938
2939                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2940                         err = __ksm_enter(mm);
2941                         if (err)
2942                                 return err;
2943                 }
2944
2945                 *vm_flags |= VM_MERGEABLE;
2946                 break;
2947
2948         case MADV_UNMERGEABLE:
2949                 if (!(*vm_flags & VM_MERGEABLE))
2950                         return 0;               /* just ignore the advice */
2951
2952                 if (vma->anon_vma) {
2953                         err = unmerge_ksm_pages(vma, start, end, true);
2954                         if (err)
2955                                 return err;
2956                 }
2957
2958                 *vm_flags &= ~VM_MERGEABLE;
2959                 break;
2960         }
2961
2962         return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(ksm_madvise);
2965
2966 int __ksm_enter(struct mm_struct *mm)
2967 {
2968         struct ksm_mm_slot *mm_slot;
2969         struct mm_slot *slot;
2970         int needs_wakeup;
2971
2972         mm_slot = mm_slot_alloc(mm_slot_cache);
2973         if (!mm_slot)
2974                 return -ENOMEM;
2975
2976         slot = &mm_slot->slot;
2977
2978         /* Check ksm_run too?  Would need tighter locking */
2979         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2980
2981         spin_lock(&ksm_mmlist_lock);
2982         mm_slot_insert(mm_slots_hash, mm, slot);
2983         /*
2984          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2985          * insert just behind the scanning cursor, to let the area settle
2986          * down a little; when fork is followed by immediate exec, we don't
2987          * want ksmd to waste time setting up and tearing down an rmap_list.
2988          *
2989          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2990          * scanning cursor, otherwise KSM pages in newly forked mms will be
2991          * missed: then we might as well insert at the end of the list.
2992          */
2993         if (ksm_run & KSM_RUN_UNMERGE)
2994                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2995         else
2996                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2997         spin_unlock(&ksm_mmlist_lock);
2998
2999         set_bit(MMF_VM_MERGEABLE, &mm->flags);
3000         mmgrab(mm);
3001
3002         if (needs_wakeup)
3003                 wake_up_interruptible(&ksm_thread_wait);
3004
3005         trace_ksm_enter(mm);
3006         return 0;
3007 }
3008
3009 void __ksm_exit(struct mm_struct *mm)
3010 {
3011         struct ksm_mm_slot *mm_slot;
3012         struct mm_slot *slot;
3013         int easy_to_free = 0;
3014
3015         /*
3016          * This process is exiting: if it's straightforward (as is the
3017          * case when ksmd was never running), free mm_slot immediately.
3018          * But if it's at the cursor or has rmap_items linked to it, use
3019          * mmap_lock to synchronize with any break_cows before pagetables
3020          * are freed, and leave the mm_slot on the list for ksmd to free.
3021          * Beware: ksm may already have noticed it exiting and freed the slot.
3022          */
3023
3024         spin_lock(&ksm_mmlist_lock);
3025         slot = mm_slot_lookup(mm_slots_hash, mm);
3026         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3027         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3028                 if (!mm_slot->rmap_list) {
3029                         hash_del(&slot->hash);
3030                         list_del(&slot->mm_node);
3031                         easy_to_free = 1;
3032                 } else {
3033                         list_move(&slot->mm_node,
3034                                   &ksm_scan.mm_slot->slot.mm_node);
3035                 }
3036         }
3037         spin_unlock(&ksm_mmlist_lock);
3038
3039         if (easy_to_free) {
3040                 mm_slot_free(mm_slot_cache, mm_slot);
3041                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3042                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3043                 mmdrop(mm);
3044         } else if (mm_slot) {
3045                 mmap_write_lock(mm);
3046                 mmap_write_unlock(mm);
3047         }
3048
3049         trace_ksm_exit(mm);
3050 }
3051
3052 struct folio *ksm_might_need_to_copy(struct folio *folio,
3053                         struct vm_area_struct *vma, unsigned long addr)
3054 {
3055         struct page *page = folio_page(folio, 0);
3056         struct anon_vma *anon_vma = folio_anon_vma(folio);
3057         struct folio *new_folio;
3058
3059         if (folio_test_large(folio))
3060                 return folio;
3061
3062         if (folio_test_ksm(folio)) {
3063                 if (folio_stable_node(folio) &&
3064                     !(ksm_run & KSM_RUN_UNMERGE))
3065                         return folio;   /* no need to copy it */
3066         } else if (!anon_vma) {
3067                 return folio;           /* no need to copy it */
3068         } else if (folio->index == linear_page_index(vma, addr) &&
3069                         anon_vma->root == vma->anon_vma->root) {
3070                 return folio;           /* still no need to copy it */
3071         }
3072         if (PageHWPoison(page))
3073                 return ERR_PTR(-EHWPOISON);
3074         if (!folio_test_uptodate(folio))
3075                 return folio;           /* let do_swap_page report the error */
3076
3077         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3078         if (new_folio &&
3079             mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3080                 folio_put(new_folio);
3081                 new_folio = NULL;
3082         }
3083         if (new_folio) {
3084                 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3085                                                                 addr, vma)) {
3086                         folio_put(new_folio);
3087                         memory_failure_queue(folio_pfn(folio), 0);
3088                         return ERR_PTR(-EHWPOISON);
3089                 }
3090                 folio_set_dirty(new_folio);
3091                 __folio_mark_uptodate(new_folio);
3092                 __folio_set_locked(new_folio);
3093 #ifdef CONFIG_SWAP
3094                 count_vm_event(KSM_SWPIN_COPY);
3095 #endif
3096         }
3097
3098         return new_folio;
3099 }
3100
3101 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3102 {
3103         struct ksm_stable_node *stable_node;
3104         struct ksm_rmap_item *rmap_item;
3105         int search_new_forks = 0;
3106
3107         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3108
3109         /*
3110          * Rely on the page lock to protect against concurrent modifications
3111          * to that page's node of the stable tree.
3112          */
3113         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3114
3115         stable_node = folio_stable_node(folio);
3116         if (!stable_node)
3117                 return;
3118 again:
3119         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3120                 struct anon_vma *anon_vma = rmap_item->anon_vma;
3121                 struct anon_vma_chain *vmac;
3122                 struct vm_area_struct *vma;
3123
3124                 cond_resched();
3125                 if (!anon_vma_trylock_read(anon_vma)) {
3126                         if (rwc->try_lock) {
3127                                 rwc->contended = true;
3128                                 return;
3129                         }
3130                         anon_vma_lock_read(anon_vma);
3131                 }
3132                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3133                                                0, ULONG_MAX) {
3134                         unsigned long addr;
3135
3136                         cond_resched();
3137                         vma = vmac->vma;
3138
3139                         /* Ignore the stable/unstable/sqnr flags */
3140                         addr = rmap_item->address & PAGE_MASK;
3141
3142                         if (addr < vma->vm_start || addr >= vma->vm_end)
3143                                 continue;
3144                         /*
3145                          * Initially we examine only the vma which covers this
3146                          * rmap_item; but later, if there is still work to do,
3147                          * we examine covering vmas in other mms: in case they
3148                          * were forked from the original since ksmd passed.
3149                          */
3150                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3151                                 continue;
3152
3153                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3154                                 continue;
3155
3156                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3157                                 anon_vma_unlock_read(anon_vma);
3158                                 return;
3159                         }
3160                         if (rwc->done && rwc->done(folio)) {
3161                                 anon_vma_unlock_read(anon_vma);
3162                                 return;
3163                         }
3164                 }
3165                 anon_vma_unlock_read(anon_vma);
3166         }
3167         if (!search_new_forks++)
3168                 goto again;
3169 }
3170
3171 #ifdef CONFIG_MEMORY_FAILURE
3172 /*
3173  * Collect processes when the error hit an ksm page.
3174  */
3175 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3176                        int force_early)
3177 {
3178         struct ksm_stable_node *stable_node;
3179         struct ksm_rmap_item *rmap_item;
3180         struct folio *folio = page_folio(page);
3181         struct vm_area_struct *vma;
3182         struct task_struct *tsk;
3183
3184         stable_node = folio_stable_node(folio);
3185         if (!stable_node)
3186                 return;
3187         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3188                 struct anon_vma *av = rmap_item->anon_vma;
3189
3190                 anon_vma_lock_read(av);
3191                 rcu_read_lock();
3192                 for_each_process(tsk) {
3193                         struct anon_vma_chain *vmac;
3194                         unsigned long addr;
3195                         struct task_struct *t =
3196                                 task_early_kill(tsk, force_early);
3197                         if (!t)
3198                                 continue;
3199                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3200                                                        ULONG_MAX)
3201                         {
3202                                 vma = vmac->vma;
3203                                 if (vma->vm_mm == t->mm) {
3204                                         addr = rmap_item->address & PAGE_MASK;
3205                                         add_to_kill_ksm(t, page, vma, to_kill,
3206                                                         addr);
3207                                 }
3208                         }
3209                 }
3210                 rcu_read_unlock();
3211                 anon_vma_unlock_read(av);
3212         }
3213 }
3214 #endif
3215
3216 #ifdef CONFIG_MIGRATION
3217 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3218 {
3219         struct ksm_stable_node *stable_node;
3220
3221         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3222         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3223         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3224
3225         stable_node = folio_stable_node(folio);
3226         if (stable_node) {
3227                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3228                 stable_node->kpfn = folio_pfn(newfolio);
3229                 /*
3230                  * newfolio->mapping was set in advance; now we need smp_wmb()
3231                  * to make sure that the new stable_node->kpfn is visible
3232                  * to get_ksm_page() before it can see that folio->mapping
3233                  * has gone stale (or that folio_test_swapcache has been cleared).
3234                  */
3235                 smp_wmb();
3236                 set_page_stable_node(&folio->page, NULL);
3237         }
3238 }
3239 #endif /* CONFIG_MIGRATION */
3240
3241 #ifdef CONFIG_MEMORY_HOTREMOVE
3242 static void wait_while_offlining(void)
3243 {
3244         while (ksm_run & KSM_RUN_OFFLINE) {
3245                 mutex_unlock(&ksm_thread_mutex);
3246                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3247                             TASK_UNINTERRUPTIBLE);
3248                 mutex_lock(&ksm_thread_mutex);
3249         }
3250 }
3251
3252 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3253                                          unsigned long start_pfn,
3254                                          unsigned long end_pfn)
3255 {
3256         if (stable_node->kpfn >= start_pfn &&
3257             stable_node->kpfn < end_pfn) {
3258                 /*
3259                  * Don't get_ksm_page, page has already gone:
3260                  * which is why we keep kpfn instead of page*
3261                  */
3262                 remove_node_from_stable_tree(stable_node);
3263                 return true;
3264         }
3265         return false;
3266 }
3267
3268 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3269                                            unsigned long start_pfn,
3270                                            unsigned long end_pfn,
3271                                            struct rb_root *root)
3272 {
3273         struct ksm_stable_node *dup;
3274         struct hlist_node *hlist_safe;
3275
3276         if (!is_stable_node_chain(stable_node)) {
3277                 VM_BUG_ON(is_stable_node_dup(stable_node));
3278                 return stable_node_dup_remove_range(stable_node, start_pfn,
3279                                                     end_pfn);
3280         }
3281
3282         hlist_for_each_entry_safe(dup, hlist_safe,
3283                                   &stable_node->hlist, hlist_dup) {
3284                 VM_BUG_ON(!is_stable_node_dup(dup));
3285                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3286         }
3287         if (hlist_empty(&stable_node->hlist)) {
3288                 free_stable_node_chain(stable_node, root);
3289                 return true; /* notify caller that tree was rebalanced */
3290         } else
3291                 return false;
3292 }
3293
3294 static void ksm_check_stable_tree(unsigned long start_pfn,
3295                                   unsigned long end_pfn)
3296 {
3297         struct ksm_stable_node *stable_node, *next;
3298         struct rb_node *node;
3299         int nid;
3300
3301         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3302                 node = rb_first(root_stable_tree + nid);
3303                 while (node) {
3304                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3305                         if (stable_node_chain_remove_range(stable_node,
3306                                                            start_pfn, end_pfn,
3307                                                            root_stable_tree +
3308                                                            nid))
3309                                 node = rb_first(root_stable_tree + nid);
3310                         else
3311                                 node = rb_next(node);
3312                         cond_resched();
3313                 }
3314         }
3315         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3316                 if (stable_node->kpfn >= start_pfn &&
3317                     stable_node->kpfn < end_pfn)
3318                         remove_node_from_stable_tree(stable_node);
3319                 cond_resched();
3320         }
3321 }
3322
3323 static int ksm_memory_callback(struct notifier_block *self,
3324                                unsigned long action, void *arg)
3325 {
3326         struct memory_notify *mn = arg;
3327
3328         switch (action) {
3329         case MEM_GOING_OFFLINE:
3330                 /*
3331                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3332                  * and remove_all_stable_nodes() while memory is going offline:
3333                  * it is unsafe for them to touch the stable tree at this time.
3334                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3335                  * which do not need the ksm_thread_mutex are all safe.
3336                  */
3337                 mutex_lock(&ksm_thread_mutex);
3338                 ksm_run |= KSM_RUN_OFFLINE;
3339                 mutex_unlock(&ksm_thread_mutex);
3340                 break;
3341
3342         case MEM_OFFLINE:
3343                 /*
3344                  * Most of the work is done by page migration; but there might
3345                  * be a few stable_nodes left over, still pointing to struct
3346                  * pages which have been offlined: prune those from the tree,
3347                  * otherwise get_ksm_page() might later try to access a
3348                  * non-existent struct page.
3349                  */
3350                 ksm_check_stable_tree(mn->start_pfn,
3351                                       mn->start_pfn + mn->nr_pages);
3352                 fallthrough;
3353         case MEM_CANCEL_OFFLINE:
3354                 mutex_lock(&ksm_thread_mutex);
3355                 ksm_run &= ~KSM_RUN_OFFLINE;
3356                 mutex_unlock(&ksm_thread_mutex);
3357
3358                 smp_mb();       /* wake_up_bit advises this */
3359                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3360                 break;
3361         }
3362         return NOTIFY_OK;
3363 }
3364 #else
3365 static void wait_while_offlining(void)
3366 {
3367 }
3368 #endif /* CONFIG_MEMORY_HOTREMOVE */
3369
3370 #ifdef CONFIG_PROC_FS
3371 long ksm_process_profit(struct mm_struct *mm)
3372 {
3373         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3374                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3375 }
3376 #endif /* CONFIG_PROC_FS */
3377
3378 #ifdef CONFIG_SYSFS
3379 /*
3380  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3381  */
3382
3383 #define KSM_ATTR_RO(_name) \
3384         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3385 #define KSM_ATTR(_name) \
3386         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3387
3388 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3389                                     struct kobj_attribute *attr, char *buf)
3390 {
3391         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3392 }
3393
3394 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3395                                      struct kobj_attribute *attr,
3396                                      const char *buf, size_t count)
3397 {
3398         unsigned int msecs;
3399         int err;
3400
3401         err = kstrtouint(buf, 10, &msecs);
3402         if (err)
3403                 return -EINVAL;
3404
3405         ksm_thread_sleep_millisecs = msecs;
3406         wake_up_interruptible(&ksm_iter_wait);
3407
3408         return count;
3409 }
3410 KSM_ATTR(sleep_millisecs);
3411
3412 static ssize_t pages_to_scan_show(struct kobject *kobj,
3413                                   struct kobj_attribute *attr, char *buf)
3414 {
3415         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3416 }
3417
3418 static ssize_t pages_to_scan_store(struct kobject *kobj,
3419                                    struct kobj_attribute *attr,
3420                                    const char *buf, size_t count)
3421 {
3422         unsigned int nr_pages;
3423         int err;
3424
3425         if (ksm_advisor != KSM_ADVISOR_NONE)
3426                 return -EINVAL;
3427
3428         err = kstrtouint(buf, 10, &nr_pages);
3429         if (err)
3430                 return -EINVAL;
3431
3432         ksm_thread_pages_to_scan = nr_pages;
3433
3434         return count;
3435 }
3436 KSM_ATTR(pages_to_scan);
3437
3438 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3439                         char *buf)
3440 {
3441         return sysfs_emit(buf, "%lu\n", ksm_run);
3442 }
3443
3444 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3445                          const char *buf, size_t count)
3446 {
3447         unsigned int flags;
3448         int err;
3449
3450         err = kstrtouint(buf, 10, &flags);
3451         if (err)
3452                 return -EINVAL;
3453         if (flags > KSM_RUN_UNMERGE)
3454                 return -EINVAL;
3455
3456         /*
3457          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3458          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3459          * breaking COW to free the pages_shared (but leaves mm_slots
3460          * on the list for when ksmd may be set running again).
3461          */
3462
3463         mutex_lock(&ksm_thread_mutex);
3464         wait_while_offlining();
3465         if (ksm_run != flags) {
3466                 ksm_run = flags;
3467                 if (flags & KSM_RUN_UNMERGE) {
3468                         set_current_oom_origin();
3469                         err = unmerge_and_remove_all_rmap_items();
3470                         clear_current_oom_origin();
3471                         if (err) {
3472                                 ksm_run = KSM_RUN_STOP;
3473                                 count = err;
3474                         }
3475                 }
3476         }
3477         mutex_unlock(&ksm_thread_mutex);
3478
3479         if (flags & KSM_RUN_MERGE)
3480                 wake_up_interruptible(&ksm_thread_wait);
3481
3482         return count;
3483 }
3484 KSM_ATTR(run);
3485
3486 #ifdef CONFIG_NUMA
3487 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3488                                        struct kobj_attribute *attr, char *buf)
3489 {
3490         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3491 }
3492
3493 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3494                                    struct kobj_attribute *attr,
3495                                    const char *buf, size_t count)
3496 {
3497         int err;
3498         unsigned long knob;
3499
3500         err = kstrtoul(buf, 10, &knob);
3501         if (err)
3502                 return err;
3503         if (knob > 1)
3504                 return -EINVAL;
3505
3506         mutex_lock(&ksm_thread_mutex);
3507         wait_while_offlining();
3508         if (ksm_merge_across_nodes != knob) {
3509                 if (ksm_pages_shared || remove_all_stable_nodes())
3510                         err = -EBUSY;
3511                 else if (root_stable_tree == one_stable_tree) {
3512                         struct rb_root *buf;
3513                         /*
3514                          * This is the first time that we switch away from the
3515                          * default of merging across nodes: must now allocate
3516                          * a buffer to hold as many roots as may be needed.
3517                          * Allocate stable and unstable together:
3518                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3519                          */
3520                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3521                                       GFP_KERNEL);
3522                         /* Let us assume that RB_ROOT is NULL is zero */
3523                         if (!buf)
3524                                 err = -ENOMEM;
3525                         else {
3526                                 root_stable_tree = buf;
3527                                 root_unstable_tree = buf + nr_node_ids;
3528                                 /* Stable tree is empty but not the unstable */
3529                                 root_unstable_tree[0] = one_unstable_tree[0];
3530                         }
3531                 }
3532                 if (!err) {
3533                         ksm_merge_across_nodes = knob;
3534                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3535                 }
3536         }
3537         mutex_unlock(&ksm_thread_mutex);
3538
3539         return err ? err : count;
3540 }
3541 KSM_ATTR(merge_across_nodes);
3542 #endif
3543
3544 static ssize_t use_zero_pages_show(struct kobject *kobj,
3545                                    struct kobj_attribute *attr, char *buf)
3546 {
3547         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3548 }
3549 static ssize_t use_zero_pages_store(struct kobject *kobj,
3550                                    struct kobj_attribute *attr,
3551                                    const char *buf, size_t count)
3552 {
3553         int err;
3554         bool value;
3555
3556         err = kstrtobool(buf, &value);
3557         if (err)
3558                 return -EINVAL;
3559
3560         ksm_use_zero_pages = value;
3561
3562         return count;
3563 }
3564 KSM_ATTR(use_zero_pages);
3565
3566 static ssize_t max_page_sharing_show(struct kobject *kobj,
3567                                      struct kobj_attribute *attr, char *buf)
3568 {
3569         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3570 }
3571
3572 static ssize_t max_page_sharing_store(struct kobject *kobj,
3573                                       struct kobj_attribute *attr,
3574                                       const char *buf, size_t count)
3575 {
3576         int err;
3577         int knob;
3578
3579         err = kstrtoint(buf, 10, &knob);
3580         if (err)
3581                 return err;
3582         /*
3583          * When a KSM page is created it is shared by 2 mappings. This
3584          * being a signed comparison, it implicitly verifies it's not
3585          * negative.
3586          */
3587         if (knob < 2)
3588                 return -EINVAL;
3589
3590         if (READ_ONCE(ksm_max_page_sharing) == knob)
3591                 return count;
3592
3593         mutex_lock(&ksm_thread_mutex);
3594         wait_while_offlining();
3595         if (ksm_max_page_sharing != knob) {
3596                 if (ksm_pages_shared || remove_all_stable_nodes())
3597                         err = -EBUSY;
3598                 else
3599                         ksm_max_page_sharing = knob;
3600         }
3601         mutex_unlock(&ksm_thread_mutex);
3602
3603         return err ? err : count;
3604 }
3605 KSM_ATTR(max_page_sharing);
3606
3607 static ssize_t pages_scanned_show(struct kobject *kobj,
3608                                   struct kobj_attribute *attr, char *buf)
3609 {
3610         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3611 }
3612 KSM_ATTR_RO(pages_scanned);
3613
3614 static ssize_t pages_shared_show(struct kobject *kobj,
3615                                  struct kobj_attribute *attr, char *buf)
3616 {
3617         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3618 }
3619 KSM_ATTR_RO(pages_shared);
3620
3621 static ssize_t pages_sharing_show(struct kobject *kobj,
3622                                   struct kobj_attribute *attr, char *buf)
3623 {
3624         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3625 }
3626 KSM_ATTR_RO(pages_sharing);
3627
3628 static ssize_t pages_unshared_show(struct kobject *kobj,
3629                                    struct kobj_attribute *attr, char *buf)
3630 {
3631         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3632 }
3633 KSM_ATTR_RO(pages_unshared);
3634
3635 static ssize_t pages_volatile_show(struct kobject *kobj,
3636                                    struct kobj_attribute *attr, char *buf)
3637 {
3638         long ksm_pages_volatile;
3639
3640         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3641                                 - ksm_pages_sharing - ksm_pages_unshared;
3642         /*
3643          * It was not worth any locking to calculate that statistic,
3644          * but it might therefore sometimes be negative: conceal that.
3645          */
3646         if (ksm_pages_volatile < 0)
3647                 ksm_pages_volatile = 0;
3648         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3649 }
3650 KSM_ATTR_RO(pages_volatile);
3651
3652 static ssize_t pages_skipped_show(struct kobject *kobj,
3653                                   struct kobj_attribute *attr, char *buf)
3654 {
3655         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3656 }
3657 KSM_ATTR_RO(pages_skipped);
3658
3659 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3660                                 struct kobj_attribute *attr, char *buf)
3661 {
3662         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3663 }
3664 KSM_ATTR_RO(ksm_zero_pages);
3665
3666 static ssize_t general_profit_show(struct kobject *kobj,
3667                                    struct kobj_attribute *attr, char *buf)
3668 {
3669         long general_profit;
3670
3671         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3672                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3673
3674         return sysfs_emit(buf, "%ld\n", general_profit);
3675 }
3676 KSM_ATTR_RO(general_profit);
3677
3678 static ssize_t stable_node_dups_show(struct kobject *kobj,
3679                                      struct kobj_attribute *attr, char *buf)
3680 {
3681         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3682 }
3683 KSM_ATTR_RO(stable_node_dups);
3684
3685 static ssize_t stable_node_chains_show(struct kobject *kobj,
3686                                        struct kobj_attribute *attr, char *buf)
3687 {
3688         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3689 }
3690 KSM_ATTR_RO(stable_node_chains);
3691
3692 static ssize_t
3693 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3694                                         struct kobj_attribute *attr,
3695                                         char *buf)
3696 {
3697         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3698 }
3699
3700 static ssize_t
3701 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3702                                          struct kobj_attribute *attr,
3703                                          const char *buf, size_t count)
3704 {
3705         unsigned int msecs;
3706         int err;
3707
3708         err = kstrtouint(buf, 10, &msecs);
3709         if (err)
3710                 return -EINVAL;
3711
3712         ksm_stable_node_chains_prune_millisecs = msecs;
3713
3714         return count;
3715 }
3716 KSM_ATTR(stable_node_chains_prune_millisecs);
3717
3718 static ssize_t full_scans_show(struct kobject *kobj,
3719                                struct kobj_attribute *attr, char *buf)
3720 {
3721         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3722 }
3723 KSM_ATTR_RO(full_scans);
3724
3725 static ssize_t smart_scan_show(struct kobject *kobj,
3726                                struct kobj_attribute *attr, char *buf)
3727 {
3728         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3729 }
3730
3731 static ssize_t smart_scan_store(struct kobject *kobj,
3732                                 struct kobj_attribute *attr,
3733                                 const char *buf, size_t count)
3734 {
3735         int err;
3736         bool value;
3737
3738         err = kstrtobool(buf, &value);
3739         if (err)
3740                 return -EINVAL;
3741
3742         ksm_smart_scan = value;
3743         return count;
3744 }
3745 KSM_ATTR(smart_scan);
3746
3747 static ssize_t advisor_mode_show(struct kobject *kobj,
3748                                  struct kobj_attribute *attr, char *buf)
3749 {
3750         const char *output;
3751
3752         if (ksm_advisor == KSM_ADVISOR_NONE)
3753                 output = "[none] scan-time";
3754         else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3755                 output = "none [scan-time]";
3756
3757         return sysfs_emit(buf, "%s\n", output);
3758 }
3759
3760 static ssize_t advisor_mode_store(struct kobject *kobj,
3761                                   struct kobj_attribute *attr, const char *buf,
3762                                   size_t count)
3763 {
3764         enum ksm_advisor_type curr_advisor = ksm_advisor;
3765
3766         if (sysfs_streq("scan-time", buf))
3767                 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3768         else if (sysfs_streq("none", buf))
3769                 ksm_advisor = KSM_ADVISOR_NONE;
3770         else
3771                 return -EINVAL;
3772
3773         /* Set advisor default values */
3774         if (curr_advisor != ksm_advisor)
3775                 set_advisor_defaults();
3776
3777         return count;
3778 }
3779 KSM_ATTR(advisor_mode);
3780
3781 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3782                                     struct kobj_attribute *attr, char *buf)
3783 {
3784         return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3785 }
3786
3787 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3788                                      struct kobj_attribute *attr,
3789                                      const char *buf, size_t count)
3790 {
3791         int err;
3792         unsigned long value;
3793
3794         err = kstrtoul(buf, 10, &value);
3795         if (err)
3796                 return -EINVAL;
3797
3798         ksm_advisor_max_cpu = value;
3799         return count;
3800 }
3801 KSM_ATTR(advisor_max_cpu);
3802
3803 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3804                                         struct kobj_attribute *attr, char *buf)
3805 {
3806         return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3807 }
3808
3809 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3810                                         struct kobj_attribute *attr,
3811                                         const char *buf, size_t count)
3812 {
3813         int err;
3814         unsigned long value;
3815
3816         err = kstrtoul(buf, 10, &value);
3817         if (err)
3818                 return -EINVAL;
3819
3820         ksm_advisor_min_pages_to_scan = value;
3821         return count;
3822 }
3823 KSM_ATTR(advisor_min_pages_to_scan);
3824
3825 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3826                                         struct kobj_attribute *attr, char *buf)
3827 {
3828         return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3829 }
3830
3831 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3832                                         struct kobj_attribute *attr,
3833                                         const char *buf, size_t count)
3834 {
3835         int err;
3836         unsigned long value;
3837
3838         err = kstrtoul(buf, 10, &value);
3839         if (err)
3840                 return -EINVAL;
3841
3842         ksm_advisor_max_pages_to_scan = value;
3843         return count;
3844 }
3845 KSM_ATTR(advisor_max_pages_to_scan);
3846
3847 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3848                                              struct kobj_attribute *attr, char *buf)
3849 {
3850         return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3851 }
3852
3853 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3854                                               struct kobj_attribute *attr,
3855                                               const char *buf, size_t count)
3856 {
3857         int err;
3858         unsigned long value;
3859
3860         err = kstrtoul(buf, 10, &value);
3861         if (err)
3862                 return -EINVAL;
3863         if (value < 1)
3864                 return -EINVAL;
3865
3866         ksm_advisor_target_scan_time = value;
3867         return count;
3868 }
3869 KSM_ATTR(advisor_target_scan_time);
3870
3871 static struct attribute *ksm_attrs[] = {
3872         &sleep_millisecs_attr.attr,
3873         &pages_to_scan_attr.attr,
3874         &run_attr.attr,
3875         &pages_scanned_attr.attr,
3876         &pages_shared_attr.attr,
3877         &pages_sharing_attr.attr,
3878         &pages_unshared_attr.attr,
3879         &pages_volatile_attr.attr,
3880         &pages_skipped_attr.attr,
3881         &ksm_zero_pages_attr.attr,
3882         &full_scans_attr.attr,
3883 #ifdef CONFIG_NUMA
3884         &merge_across_nodes_attr.attr,
3885 #endif
3886         &max_page_sharing_attr.attr,
3887         &stable_node_chains_attr.attr,
3888         &stable_node_dups_attr.attr,
3889         &stable_node_chains_prune_millisecs_attr.attr,
3890         &use_zero_pages_attr.attr,
3891         &general_profit_attr.attr,
3892         &smart_scan_attr.attr,
3893         &advisor_mode_attr.attr,
3894         &advisor_max_cpu_attr.attr,
3895         &advisor_min_pages_to_scan_attr.attr,
3896         &advisor_max_pages_to_scan_attr.attr,
3897         &advisor_target_scan_time_attr.attr,
3898         NULL,
3899 };
3900
3901 static const struct attribute_group ksm_attr_group = {
3902         .attrs = ksm_attrs,
3903         .name = "ksm",
3904 };
3905 #endif /* CONFIG_SYSFS */
3906
3907 static int __init ksm_init(void)
3908 {
3909         struct task_struct *ksm_thread;
3910         int err;
3911
3912         /* The correct value depends on page size and endianness */
3913         zero_checksum = calc_checksum(ZERO_PAGE(0));
3914         /* Default to false for backwards compatibility */
3915         ksm_use_zero_pages = false;
3916
3917         err = ksm_slab_init();
3918         if (err)
3919                 goto out;
3920
3921         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3922         if (IS_ERR(ksm_thread)) {
3923                 pr_err("ksm: creating kthread failed\n");
3924                 err = PTR_ERR(ksm_thread);
3925                 goto out_free;
3926         }
3927
3928 #ifdef CONFIG_SYSFS
3929         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3930         if (err) {
3931                 pr_err("ksm: register sysfs failed\n");
3932                 kthread_stop(ksm_thread);
3933                 goto out_free;
3934         }
3935 #else
3936         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3937
3938 #endif /* CONFIG_SYSFS */
3939
3940 #ifdef CONFIG_MEMORY_HOTREMOVE
3941         /* There is no significance to this priority 100 */
3942         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3943 #endif
3944         return 0;
3945
3946 out_free:
3947         ksm_slab_free();
3948 out:
3949         return err;
3950 }
3951 subsys_initcall(ksm_init);