Merge tag 'loongarch-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai...
[sfrench/cifs-2.6.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return page_size(page);
111 }
112
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124         unsigned long *pfn)
125 {
126         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127                 return -EINVAL;
128
129         *pfn = address >> PAGE_SHIFT;
130         return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 void vfree(const void *addr)
135 {
136         kfree(addr);
137 }
138 EXPORT_SYMBOL(vfree);
139
140 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
141 {
142         /*
143          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
144          * returns only a logical address.
145          */
146         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
147 }
148 EXPORT_SYMBOL(__vmalloc);
149
150 void *__vmalloc_node_range(unsigned long size, unsigned long align,
151                 unsigned long start, unsigned long end, gfp_t gfp_mask,
152                 pgprot_t prot, unsigned long vm_flags, int node,
153                 const void *caller)
154 {
155         return __vmalloc(size, gfp_mask);
156 }
157
158 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
159                 int node, const void *caller)
160 {
161         return __vmalloc(size, gfp_mask);
162 }
163
164 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
165 {
166         void *ret;
167
168         ret = __vmalloc(size, flags);
169         if (ret) {
170                 struct vm_area_struct *vma;
171
172                 mmap_write_lock(current->mm);
173                 vma = find_vma(current->mm, (unsigned long)ret);
174                 if (vma)
175                         vm_flags_set(vma, VM_USERMAP);
176                 mmap_write_unlock(current->mm);
177         }
178
179         return ret;
180 }
181
182 void *vmalloc_user(unsigned long size)
183 {
184         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user);
187
188 struct page *vmalloc_to_page(const void *addr)
189 {
190         return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196         return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199
200 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
201 {
202         /* Don't allow overflow */
203         if ((unsigned long) addr + count < count)
204                 count = -(unsigned long) addr;
205
206         return copy_to_iter(addr, count, iter);
207 }
208
209 /*
210  *      vmalloc  -  allocate virtually contiguous memory
211  *
212  *      @size:          allocation size
213  *
214  *      Allocate enough pages to cover @size from the page level
215  *      allocator and map them into contiguous kernel virtual space.
216  *
217  *      For tight control over page level allocator and protection flags
218  *      use __vmalloc() instead.
219  */
220 void *vmalloc(unsigned long size)
221 {
222         return __vmalloc(size, GFP_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225
226 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
227
228 /*
229  *      vzalloc - allocate virtually contiguous memory with zero fill
230  *
231  *      @size:          allocation size
232  *
233  *      Allocate enough pages to cover @size from the page level
234  *      allocator and map them into contiguous kernel virtual space.
235  *      The memory allocated is set to zero.
236  *
237  *      For tight control over page level allocator and protection flags
238  *      use __vmalloc() instead.
239  */
240 void *vzalloc(unsigned long size)
241 {
242         return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
243 }
244 EXPORT_SYMBOL(vzalloc);
245
246 /**
247  * vmalloc_node - allocate memory on a specific node
248  * @size:       allocation size
249  * @node:       numa node
250  *
251  * Allocate enough pages to cover @size from the page level
252  * allocator and map them into contiguous kernel virtual space.
253  *
254  * For tight control over page level allocator and protection flags
255  * use __vmalloc() instead.
256  */
257 void *vmalloc_node(unsigned long size, int node)
258 {
259         return vmalloc(size);
260 }
261 EXPORT_SYMBOL(vmalloc_node);
262
263 /**
264  * vzalloc_node - allocate memory on a specific node with zero fill
265  * @size:       allocation size
266  * @node:       numa node
267  *
268  * Allocate enough pages to cover @size from the page level
269  * allocator and map them into contiguous kernel virtual space.
270  * The memory allocated is set to zero.
271  *
272  * For tight control over page level allocator and protection flags
273  * use __vmalloc() instead.
274  */
275 void *vzalloc_node(unsigned long size, int node)
276 {
277         return vzalloc(size);
278 }
279 EXPORT_SYMBOL(vzalloc_node);
280
281 /**
282  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
283  *      @size:          allocation size
284  *
285  *      Allocate enough 32bit PA addressable pages to cover @size from the
286  *      page level allocator and map them into contiguous kernel virtual space.
287  */
288 void *vmalloc_32(unsigned long size)
289 {
290         return __vmalloc(size, GFP_KERNEL);
291 }
292 EXPORT_SYMBOL(vmalloc_32);
293
294 /**
295  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
296  *      @size:          allocation size
297  *
298  * The resulting memory area is 32bit addressable and zeroed so it can be
299  * mapped to userspace without leaking data.
300  *
301  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
302  * remap_vmalloc_range() are permissible.
303  */
304 void *vmalloc_32_user(unsigned long size)
305 {
306         /*
307          * We'll have to sort out the ZONE_DMA bits for 64-bit,
308          * but for now this can simply use vmalloc_user() directly.
309          */
310         return vmalloc_user(size);
311 }
312 EXPORT_SYMBOL(vmalloc_32_user);
313
314 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
315 {
316         BUG();
317         return NULL;
318 }
319 EXPORT_SYMBOL(vmap);
320
321 void vunmap(const void *addr)
322 {
323         BUG();
324 }
325 EXPORT_SYMBOL(vunmap);
326
327 void *vm_map_ram(struct page **pages, unsigned int count, int node)
328 {
329         BUG();
330         return NULL;
331 }
332 EXPORT_SYMBOL(vm_map_ram);
333
334 void vm_unmap_ram(const void *mem, unsigned int count)
335 {
336         BUG();
337 }
338 EXPORT_SYMBOL(vm_unmap_ram);
339
340 void vm_unmap_aliases(void)
341 {
342 }
343 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
344
345 void free_vm_area(struct vm_struct *area)
346 {
347         BUG();
348 }
349 EXPORT_SYMBOL_GPL(free_vm_area);
350
351 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
352                    struct page *page)
353 {
354         return -EINVAL;
355 }
356 EXPORT_SYMBOL(vm_insert_page);
357
358 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359                         unsigned long num)
360 {
361         return -EINVAL;
362 }
363 EXPORT_SYMBOL(vm_map_pages);
364
365 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366                                 unsigned long num)
367 {
368         return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_map_pages_zero);
371
372 /*
373  *  sys_brk() for the most part doesn't need the global kernel
374  *  lock, except when an application is doing something nasty
375  *  like trying to un-brk an area that has already been mapped
376  *  to a regular file.  in this case, the unmapping will need
377  *  to invoke file system routines that need the global lock.
378  */
379 SYSCALL_DEFINE1(brk, unsigned long, brk)
380 {
381         struct mm_struct *mm = current->mm;
382
383         if (brk < mm->start_brk || brk > mm->context.end_brk)
384                 return mm->brk;
385
386         if (mm->brk == brk)
387                 return mm->brk;
388
389         /*
390          * Always allow shrinking brk
391          */
392         if (brk <= mm->brk) {
393                 mm->brk = brk;
394                 return brk;
395         }
396
397         /*
398          * Ok, looks good - let it rip.
399          */
400         flush_icache_user_range(mm->brk, brk);
401         return mm->brk = brk;
402 }
403
404 /*
405  * initialise the percpu counter for VM and region record slabs
406  */
407 void __init mmap_init(void)
408 {
409         int ret;
410
411         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
412         VM_BUG_ON(ret);
413         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
414 }
415
416 /*
417  * validate the region tree
418  * - the caller must hold the region lock
419  */
420 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
421 static noinline void validate_nommu_regions(void)
422 {
423         struct vm_region *region, *last;
424         struct rb_node *p, *lastp;
425
426         lastp = rb_first(&nommu_region_tree);
427         if (!lastp)
428                 return;
429
430         last = rb_entry(lastp, struct vm_region, vm_rb);
431         BUG_ON(last->vm_end <= last->vm_start);
432         BUG_ON(last->vm_top < last->vm_end);
433
434         while ((p = rb_next(lastp))) {
435                 region = rb_entry(p, struct vm_region, vm_rb);
436                 last = rb_entry(lastp, struct vm_region, vm_rb);
437
438                 BUG_ON(region->vm_end <= region->vm_start);
439                 BUG_ON(region->vm_top < region->vm_end);
440                 BUG_ON(region->vm_start < last->vm_top);
441
442                 lastp = p;
443         }
444 }
445 #else
446 static void validate_nommu_regions(void)
447 {
448 }
449 #endif
450
451 /*
452  * add a region into the global tree
453  */
454 static void add_nommu_region(struct vm_region *region)
455 {
456         struct vm_region *pregion;
457         struct rb_node **p, *parent;
458
459         validate_nommu_regions();
460
461         parent = NULL;
462         p = &nommu_region_tree.rb_node;
463         while (*p) {
464                 parent = *p;
465                 pregion = rb_entry(parent, struct vm_region, vm_rb);
466                 if (region->vm_start < pregion->vm_start)
467                         p = &(*p)->rb_left;
468                 else if (region->vm_start > pregion->vm_start)
469                         p = &(*p)->rb_right;
470                 else if (pregion == region)
471                         return;
472                 else
473                         BUG();
474         }
475
476         rb_link_node(&region->vm_rb, parent, p);
477         rb_insert_color(&region->vm_rb, &nommu_region_tree);
478
479         validate_nommu_regions();
480 }
481
482 /*
483  * delete a region from the global tree
484  */
485 static void delete_nommu_region(struct vm_region *region)
486 {
487         BUG_ON(!nommu_region_tree.rb_node);
488
489         validate_nommu_regions();
490         rb_erase(&region->vm_rb, &nommu_region_tree);
491         validate_nommu_regions();
492 }
493
494 /*
495  * free a contiguous series of pages
496  */
497 static void free_page_series(unsigned long from, unsigned long to)
498 {
499         for (; from < to; from += PAGE_SIZE) {
500                 struct page *page = virt_to_page((void *)from);
501
502                 atomic_long_dec(&mmap_pages_allocated);
503                 put_page(page);
504         }
505 }
506
507 /*
508  * release a reference to a region
509  * - the caller must hold the region semaphore for writing, which this releases
510  * - the region may not have been added to the tree yet, in which case vm_top
511  *   will equal vm_start
512  */
513 static void __put_nommu_region(struct vm_region *region)
514         __releases(nommu_region_sem)
515 {
516         BUG_ON(!nommu_region_tree.rb_node);
517
518         if (--region->vm_usage == 0) {
519                 if (region->vm_top > region->vm_start)
520                         delete_nommu_region(region);
521                 up_write(&nommu_region_sem);
522
523                 if (region->vm_file)
524                         fput(region->vm_file);
525
526                 /* IO memory and memory shared directly out of the pagecache
527                  * from ramfs/tmpfs mustn't be released here */
528                 if (region->vm_flags & VM_MAPPED_COPY)
529                         free_page_series(region->vm_start, region->vm_top);
530                 kmem_cache_free(vm_region_jar, region);
531         } else {
532                 up_write(&nommu_region_sem);
533         }
534 }
535
536 /*
537  * release a reference to a region
538  */
539 static void put_nommu_region(struct vm_region *region)
540 {
541         down_write(&nommu_region_sem);
542         __put_nommu_region(region);
543 }
544
545 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
546 {
547         vma->vm_mm = mm;
548
549         /* add the VMA to the mapping */
550         if (vma->vm_file) {
551                 struct address_space *mapping = vma->vm_file->f_mapping;
552
553                 i_mmap_lock_write(mapping);
554                 flush_dcache_mmap_lock(mapping);
555                 vma_interval_tree_insert(vma, &mapping->i_mmap);
556                 flush_dcache_mmap_unlock(mapping);
557                 i_mmap_unlock_write(mapping);
558         }
559 }
560
561 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
562 {
563         vma->vm_mm->map_count--;
564         /* remove the VMA from the mapping */
565         if (vma->vm_file) {
566                 struct address_space *mapping;
567                 mapping = vma->vm_file->f_mapping;
568
569                 i_mmap_lock_write(mapping);
570                 flush_dcache_mmap_lock(mapping);
571                 vma_interval_tree_remove(vma, &mapping->i_mmap);
572                 flush_dcache_mmap_unlock(mapping);
573                 i_mmap_unlock_write(mapping);
574         }
575 }
576
577 /*
578  * delete a VMA from its owning mm_struct and address space
579  */
580 static int delete_vma_from_mm(struct vm_area_struct *vma)
581 {
582         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
583
584         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
585         if (vma_iter_prealloc(&vmi, vma)) {
586                 pr_warn("Allocation of vma tree for process %d failed\n",
587                        current->pid);
588                 return -ENOMEM;
589         }
590         cleanup_vma_from_mm(vma);
591
592         /* remove from the MM's tree and list */
593         vma_iter_clear(&vmi);
594         return 0;
595 }
596 /*
597  * destroy a VMA record
598  */
599 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
600 {
601         if (vma->vm_ops && vma->vm_ops->close)
602                 vma->vm_ops->close(vma);
603         if (vma->vm_file)
604                 fput(vma->vm_file);
605         put_nommu_region(vma->vm_region);
606         vm_area_free(vma);
607 }
608
609 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
610                                              unsigned long start_addr,
611                                              unsigned long end_addr)
612 {
613         unsigned long index = start_addr;
614
615         mmap_assert_locked(mm);
616         return mt_find(&mm->mm_mt, &index, end_addr - 1);
617 }
618 EXPORT_SYMBOL(find_vma_intersection);
619
620 /*
621  * look up the first VMA in which addr resides, NULL if none
622  * - should be called with mm->mmap_lock at least held readlocked
623  */
624 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
625 {
626         VMA_ITERATOR(vmi, mm, addr);
627
628         return vma_iter_load(&vmi);
629 }
630 EXPORT_SYMBOL(find_vma);
631
632 /*
633  * At least xtensa ends up having protection faults even with no
634  * MMU.. No stack expansion, at least.
635  */
636 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
637                         unsigned long addr, struct pt_regs *regs)
638 {
639         struct vm_area_struct *vma;
640
641         mmap_read_lock(mm);
642         vma = vma_lookup(mm, addr);
643         if (!vma)
644                 mmap_read_unlock(mm);
645         return vma;
646 }
647
648 /*
649  * expand a stack to a given address
650  * - not supported under NOMMU conditions
651  */
652 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
653 {
654         return -ENOMEM;
655 }
656
657 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
658 {
659         mmap_read_unlock(mm);
660         return NULL;
661 }
662
663 /*
664  * look up the first VMA exactly that exactly matches addr
665  * - should be called with mm->mmap_lock at least held readlocked
666  */
667 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
668                                              unsigned long addr,
669                                              unsigned long len)
670 {
671         struct vm_area_struct *vma;
672         unsigned long end = addr + len;
673         VMA_ITERATOR(vmi, mm, addr);
674
675         vma = vma_iter_load(&vmi);
676         if (!vma)
677                 return NULL;
678         if (vma->vm_start != addr)
679                 return NULL;
680         if (vma->vm_end != end)
681                 return NULL;
682
683         return vma;
684 }
685
686 /*
687  * determine whether a mapping should be permitted and, if so, what sort of
688  * mapping we're capable of supporting
689  */
690 static int validate_mmap_request(struct file *file,
691                                  unsigned long addr,
692                                  unsigned long len,
693                                  unsigned long prot,
694                                  unsigned long flags,
695                                  unsigned long pgoff,
696                                  unsigned long *_capabilities)
697 {
698         unsigned long capabilities, rlen;
699         int ret;
700
701         /* do the simple checks first */
702         if (flags & MAP_FIXED)
703                 return -EINVAL;
704
705         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
706             (flags & MAP_TYPE) != MAP_SHARED)
707                 return -EINVAL;
708
709         if (!len)
710                 return -EINVAL;
711
712         /* Careful about overflows.. */
713         rlen = PAGE_ALIGN(len);
714         if (!rlen || rlen > TASK_SIZE)
715                 return -ENOMEM;
716
717         /* offset overflow? */
718         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
719                 return -EOVERFLOW;
720
721         if (file) {
722                 /* files must support mmap */
723                 if (!file->f_op->mmap)
724                         return -ENODEV;
725
726                 /* work out if what we've got could possibly be shared
727                  * - we support chardevs that provide their own "memory"
728                  * - we support files/blockdevs that are memory backed
729                  */
730                 if (file->f_op->mmap_capabilities) {
731                         capabilities = file->f_op->mmap_capabilities(file);
732                 } else {
733                         /* no explicit capabilities set, so assume some
734                          * defaults */
735                         switch (file_inode(file)->i_mode & S_IFMT) {
736                         case S_IFREG:
737                         case S_IFBLK:
738                                 capabilities = NOMMU_MAP_COPY;
739                                 break;
740
741                         case S_IFCHR:
742                                 capabilities =
743                                         NOMMU_MAP_DIRECT |
744                                         NOMMU_MAP_READ |
745                                         NOMMU_MAP_WRITE;
746                                 break;
747
748                         default:
749                                 return -EINVAL;
750                         }
751                 }
752
753                 /* eliminate any capabilities that we can't support on this
754                  * device */
755                 if (!file->f_op->get_unmapped_area)
756                         capabilities &= ~NOMMU_MAP_DIRECT;
757                 if (!(file->f_mode & FMODE_CAN_READ))
758                         capabilities &= ~NOMMU_MAP_COPY;
759
760                 /* The file shall have been opened with read permission. */
761                 if (!(file->f_mode & FMODE_READ))
762                         return -EACCES;
763
764                 if (flags & MAP_SHARED) {
765                         /* do checks for writing, appending and locking */
766                         if ((prot & PROT_WRITE) &&
767                             !(file->f_mode & FMODE_WRITE))
768                                 return -EACCES;
769
770                         if (IS_APPEND(file_inode(file)) &&
771                             (file->f_mode & FMODE_WRITE))
772                                 return -EACCES;
773
774                         if (!(capabilities & NOMMU_MAP_DIRECT))
775                                 return -ENODEV;
776
777                         /* we mustn't privatise shared mappings */
778                         capabilities &= ~NOMMU_MAP_COPY;
779                 } else {
780                         /* we're going to read the file into private memory we
781                          * allocate */
782                         if (!(capabilities & NOMMU_MAP_COPY))
783                                 return -ENODEV;
784
785                         /* we don't permit a private writable mapping to be
786                          * shared with the backing device */
787                         if (prot & PROT_WRITE)
788                                 capabilities &= ~NOMMU_MAP_DIRECT;
789                 }
790
791                 if (capabilities & NOMMU_MAP_DIRECT) {
792                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
793                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
794                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
795                             ) {
796                                 capabilities &= ~NOMMU_MAP_DIRECT;
797                                 if (flags & MAP_SHARED) {
798                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
799                                         return -EINVAL;
800                                 }
801                         }
802                 }
803
804                 /* handle executable mappings and implied executable
805                  * mappings */
806                 if (path_noexec(&file->f_path)) {
807                         if (prot & PROT_EXEC)
808                                 return -EPERM;
809                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
810                         /* handle implication of PROT_EXEC by PROT_READ */
811                         if (current->personality & READ_IMPLIES_EXEC) {
812                                 if (capabilities & NOMMU_MAP_EXEC)
813                                         prot |= PROT_EXEC;
814                         }
815                 } else if ((prot & PROT_READ) &&
816                          (prot & PROT_EXEC) &&
817                          !(capabilities & NOMMU_MAP_EXEC)
818                          ) {
819                         /* backing file is not executable, try to copy */
820                         capabilities &= ~NOMMU_MAP_DIRECT;
821                 }
822         } else {
823                 /* anonymous mappings are always memory backed and can be
824                  * privately mapped
825                  */
826                 capabilities = NOMMU_MAP_COPY;
827
828                 /* handle PROT_EXEC implication by PROT_READ */
829                 if ((prot & PROT_READ) &&
830                     (current->personality & READ_IMPLIES_EXEC))
831                         prot |= PROT_EXEC;
832         }
833
834         /* allow the security API to have its say */
835         ret = security_mmap_addr(addr);
836         if (ret < 0)
837                 return ret;
838
839         /* looks okay */
840         *_capabilities = capabilities;
841         return 0;
842 }
843
844 /*
845  * we've determined that we can make the mapping, now translate what we
846  * now know into VMA flags
847  */
848 static unsigned long determine_vm_flags(struct file *file,
849                                         unsigned long prot,
850                                         unsigned long flags,
851                                         unsigned long capabilities)
852 {
853         unsigned long vm_flags;
854
855         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
856
857         if (!file) {
858                 /*
859                  * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
860                  * there is no fork().
861                  */
862                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
863         } else if (flags & MAP_PRIVATE) {
864                 /* MAP_PRIVATE file mapping */
865                 if (capabilities & NOMMU_MAP_DIRECT)
866                         vm_flags |= (capabilities & NOMMU_VMFLAGS);
867                 else
868                         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
869
870                 if (!(prot & PROT_WRITE) && !current->ptrace)
871                         /*
872                          * R/O private file mapping which cannot be used to
873                          * modify memory, especially also not via active ptrace
874                          * (e.g., set breakpoints) or later by upgrading
875                          * permissions (no mprotect()). We can try overlaying
876                          * the file mapping, which will work e.g., on chardevs,
877                          * ramfs/tmpfs/shmfs and romfs/cramf.
878                          */
879                         vm_flags |= VM_MAYOVERLAY;
880         } else {
881                 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
882                 vm_flags |= VM_SHARED | VM_MAYSHARE |
883                             (capabilities & NOMMU_VMFLAGS);
884         }
885
886         return vm_flags;
887 }
888
889 /*
890  * set up a shared mapping on a file (the driver or filesystem provides and
891  * pins the storage)
892  */
893 static int do_mmap_shared_file(struct vm_area_struct *vma)
894 {
895         int ret;
896
897         ret = call_mmap(vma->vm_file, vma);
898         if (ret == 0) {
899                 vma->vm_region->vm_top = vma->vm_region->vm_end;
900                 return 0;
901         }
902         if (ret != -ENOSYS)
903                 return ret;
904
905         /* getting -ENOSYS indicates that direct mmap isn't possible (as
906          * opposed to tried but failed) so we can only give a suitable error as
907          * it's not possible to make a private copy if MAP_SHARED was given */
908         return -ENODEV;
909 }
910
911 /*
912  * set up a private mapping or an anonymous shared mapping
913  */
914 static int do_mmap_private(struct vm_area_struct *vma,
915                            struct vm_region *region,
916                            unsigned long len,
917                            unsigned long capabilities)
918 {
919         unsigned long total, point;
920         void *base;
921         int ret, order;
922
923         /*
924          * Invoke the file's mapping function so that it can keep track of
925          * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
926          * it may attempt to share, which will make is_nommu_shared_mapping()
927          * happy.
928          */
929         if (capabilities & NOMMU_MAP_DIRECT) {
930                 ret = call_mmap(vma->vm_file, vma);
931                 /* shouldn't return success if we're not sharing */
932                 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
933                         ret = -ENOSYS;
934                 if (ret == 0) {
935                         vma->vm_region->vm_top = vma->vm_region->vm_end;
936                         return 0;
937                 }
938                 if (ret != -ENOSYS)
939                         return ret;
940
941                 /* getting an ENOSYS error indicates that direct mmap isn't
942                  * possible (as opposed to tried but failed) so we'll try to
943                  * make a private copy of the data and map that instead */
944         }
945
946
947         /* allocate some memory to hold the mapping
948          * - note that this may not return a page-aligned address if the object
949          *   we're allocating is smaller than a page
950          */
951         order = get_order(len);
952         total = 1 << order;
953         point = len >> PAGE_SHIFT;
954
955         /* we don't want to allocate a power-of-2 sized page set */
956         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
957                 total = point;
958
959         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
960         if (!base)
961                 goto enomem;
962
963         atomic_long_add(total, &mmap_pages_allocated);
964
965         vm_flags_set(vma, VM_MAPPED_COPY);
966         region->vm_flags = vma->vm_flags;
967         region->vm_start = (unsigned long) base;
968         region->vm_end   = region->vm_start + len;
969         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
970
971         vma->vm_start = region->vm_start;
972         vma->vm_end   = region->vm_start + len;
973
974         if (vma->vm_file) {
975                 /* read the contents of a file into the copy */
976                 loff_t fpos;
977
978                 fpos = vma->vm_pgoff;
979                 fpos <<= PAGE_SHIFT;
980
981                 ret = kernel_read(vma->vm_file, base, len, &fpos);
982                 if (ret < 0)
983                         goto error_free;
984
985                 /* clear the last little bit */
986                 if (ret < len)
987                         memset(base + ret, 0, len - ret);
988
989         } else {
990                 vma_set_anonymous(vma);
991         }
992
993         return 0;
994
995 error_free:
996         free_page_series(region->vm_start, region->vm_top);
997         region->vm_start = vma->vm_start = 0;
998         region->vm_end   = vma->vm_end = 0;
999         region->vm_top   = 0;
1000         return ret;
1001
1002 enomem:
1003         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1004                len, current->pid, current->comm);
1005         show_mem();
1006         return -ENOMEM;
1007 }
1008
1009 /*
1010  * handle mapping creation for uClinux
1011  */
1012 unsigned long do_mmap(struct file *file,
1013                         unsigned long addr,
1014                         unsigned long len,
1015                         unsigned long prot,
1016                         unsigned long flags,
1017                         vm_flags_t vm_flags,
1018                         unsigned long pgoff,
1019                         unsigned long *populate,
1020                         struct list_head *uf)
1021 {
1022         struct vm_area_struct *vma;
1023         struct vm_region *region;
1024         struct rb_node *rb;
1025         unsigned long capabilities, result;
1026         int ret;
1027         VMA_ITERATOR(vmi, current->mm, 0);
1028
1029         *populate = 0;
1030
1031         /* decide whether we should attempt the mapping, and if so what sort of
1032          * mapping */
1033         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1034                                     &capabilities);
1035         if (ret < 0)
1036                 return ret;
1037
1038         /* we ignore the address hint */
1039         addr = 0;
1040         len = PAGE_ALIGN(len);
1041
1042         /* we've determined that we can make the mapping, now translate what we
1043          * now know into VMA flags */
1044         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1045
1046
1047         /* we're going to need to record the mapping */
1048         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1049         if (!region)
1050                 goto error_getting_region;
1051
1052         vma = vm_area_alloc(current->mm);
1053         if (!vma)
1054                 goto error_getting_vma;
1055
1056         region->vm_usage = 1;
1057         region->vm_flags = vm_flags;
1058         region->vm_pgoff = pgoff;
1059
1060         vm_flags_init(vma, vm_flags);
1061         vma->vm_pgoff = pgoff;
1062
1063         if (file) {
1064                 region->vm_file = get_file(file);
1065                 vma->vm_file = get_file(file);
1066         }
1067
1068         down_write(&nommu_region_sem);
1069
1070         /* if we want to share, we need to check for regions created by other
1071          * mmap() calls that overlap with our proposed mapping
1072          * - we can only share with a superset match on most regular files
1073          * - shared mappings on character devices and memory backed files are
1074          *   permitted to overlap inexactly as far as we are concerned for in
1075          *   these cases, sharing is handled in the driver or filesystem rather
1076          *   than here
1077          */
1078         if (is_nommu_shared_mapping(vm_flags)) {
1079                 struct vm_region *pregion;
1080                 unsigned long pglen, rpglen, pgend, rpgend, start;
1081
1082                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083                 pgend = pgoff + pglen;
1084
1085                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1086                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1087
1088                         if (!is_nommu_shared_mapping(pregion->vm_flags))
1089                                 continue;
1090
1091                         /* search for overlapping mappings on the same file */
1092                         if (file_inode(pregion->vm_file) !=
1093                             file_inode(file))
1094                                 continue;
1095
1096                         if (pregion->vm_pgoff >= pgend)
1097                                 continue;
1098
1099                         rpglen = pregion->vm_end - pregion->vm_start;
1100                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101                         rpgend = pregion->vm_pgoff + rpglen;
1102                         if (pgoff >= rpgend)
1103                                 continue;
1104
1105                         /* handle inexactly overlapping matches between
1106                          * mappings */
1107                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1108                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1109                                 /* new mapping is not a subset of the region */
1110                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1111                                         goto sharing_violation;
1112                                 continue;
1113                         }
1114
1115                         /* we've found a region we can share */
1116                         pregion->vm_usage++;
1117                         vma->vm_region = pregion;
1118                         start = pregion->vm_start;
1119                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1120                         vma->vm_start = start;
1121                         vma->vm_end = start + len;
1122
1123                         if (pregion->vm_flags & VM_MAPPED_COPY)
1124                                 vm_flags_set(vma, VM_MAPPED_COPY);
1125                         else {
1126                                 ret = do_mmap_shared_file(vma);
1127                                 if (ret < 0) {
1128                                         vma->vm_region = NULL;
1129                                         vma->vm_start = 0;
1130                                         vma->vm_end = 0;
1131                                         pregion->vm_usage--;
1132                                         pregion = NULL;
1133                                         goto error_just_free;
1134                                 }
1135                         }
1136                         fput(region->vm_file);
1137                         kmem_cache_free(vm_region_jar, region);
1138                         region = pregion;
1139                         result = start;
1140                         goto share;
1141                 }
1142
1143                 /* obtain the address at which to make a shared mapping
1144                  * - this is the hook for quasi-memory character devices to
1145                  *   tell us the location of a shared mapping
1146                  */
1147                 if (capabilities & NOMMU_MAP_DIRECT) {
1148                         addr = file->f_op->get_unmapped_area(file, addr, len,
1149                                                              pgoff, flags);
1150                         if (IS_ERR_VALUE(addr)) {
1151                                 ret = addr;
1152                                 if (ret != -ENOSYS)
1153                                         goto error_just_free;
1154
1155                                 /* the driver refused to tell us where to site
1156                                  * the mapping so we'll have to attempt to copy
1157                                  * it */
1158                                 ret = -ENODEV;
1159                                 if (!(capabilities & NOMMU_MAP_COPY))
1160                                         goto error_just_free;
1161
1162                                 capabilities &= ~NOMMU_MAP_DIRECT;
1163                         } else {
1164                                 vma->vm_start = region->vm_start = addr;
1165                                 vma->vm_end = region->vm_end = addr + len;
1166                         }
1167                 }
1168         }
1169
1170         vma->vm_region = region;
1171
1172         /* set up the mapping
1173          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1174          */
1175         if (file && vma->vm_flags & VM_SHARED)
1176                 ret = do_mmap_shared_file(vma);
1177         else
1178                 ret = do_mmap_private(vma, region, len, capabilities);
1179         if (ret < 0)
1180                 goto error_just_free;
1181         add_nommu_region(region);
1182
1183         /* clear anonymous mappings that don't ask for uninitialized data */
1184         if (!vma->vm_file &&
1185             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1186              !(flags & MAP_UNINITIALIZED)))
1187                 memset((void *)region->vm_start, 0,
1188                        region->vm_end - region->vm_start);
1189
1190         /* okay... we have a mapping; now we have to register it */
1191         result = vma->vm_start;
1192
1193         current->mm->total_vm += len >> PAGE_SHIFT;
1194
1195 share:
1196         BUG_ON(!vma->vm_region);
1197         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1198         if (vma_iter_prealloc(&vmi, vma))
1199                 goto error_just_free;
1200
1201         setup_vma_to_mm(vma, current->mm);
1202         current->mm->map_count++;
1203         /* add the VMA to the tree */
1204         vma_iter_store(&vmi, vma);
1205
1206         /* we flush the region from the icache only when the first executable
1207          * mapping of it is made  */
1208         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209                 flush_icache_user_range(region->vm_start, region->vm_end);
1210                 region->vm_icache_flushed = true;
1211         }
1212
1213         up_write(&nommu_region_sem);
1214
1215         return result;
1216
1217 error_just_free:
1218         up_write(&nommu_region_sem);
1219 error:
1220         vma_iter_free(&vmi);
1221         if (region->vm_file)
1222                 fput(region->vm_file);
1223         kmem_cache_free(vm_region_jar, region);
1224         if (vma->vm_file)
1225                 fput(vma->vm_file);
1226         vm_area_free(vma);
1227         return ret;
1228
1229 sharing_violation:
1230         up_write(&nommu_region_sem);
1231         pr_warn("Attempt to share mismatched mappings\n");
1232         ret = -EINVAL;
1233         goto error;
1234
1235 error_getting_vma:
1236         kmem_cache_free(vm_region_jar, region);
1237         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238                         len, current->pid);
1239         show_mem();
1240         return -ENOMEM;
1241
1242 error_getting_region:
1243         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244                         len, current->pid);
1245         show_mem();
1246         return -ENOMEM;
1247 }
1248
1249 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1250                               unsigned long prot, unsigned long flags,
1251                               unsigned long fd, unsigned long pgoff)
1252 {
1253         struct file *file = NULL;
1254         unsigned long retval = -EBADF;
1255
1256         audit_mmap_fd(fd, flags);
1257         if (!(flags & MAP_ANONYMOUS)) {
1258                 file = fget(fd);
1259                 if (!file)
1260                         goto out;
1261         }
1262
1263         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1264
1265         if (file)
1266                 fput(file);
1267 out:
1268         return retval;
1269 }
1270
1271 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272                 unsigned long, prot, unsigned long, flags,
1273                 unsigned long, fd, unsigned long, pgoff)
1274 {
1275         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1276 }
1277
1278 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1279 struct mmap_arg_struct {
1280         unsigned long addr;
1281         unsigned long len;
1282         unsigned long prot;
1283         unsigned long flags;
1284         unsigned long fd;
1285         unsigned long offset;
1286 };
1287
1288 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1289 {
1290         struct mmap_arg_struct a;
1291
1292         if (copy_from_user(&a, arg, sizeof(a)))
1293                 return -EFAULT;
1294         if (offset_in_page(a.offset))
1295                 return -EINVAL;
1296
1297         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1298                                a.offset >> PAGE_SHIFT);
1299 }
1300 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1301
1302 /*
1303  * split a vma into two pieces at address 'addr', a new vma is allocated either
1304  * for the first part or the tail.
1305  */
1306 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1307                      unsigned long addr, int new_below)
1308 {
1309         struct vm_area_struct *new;
1310         struct vm_region *region;
1311         unsigned long npages;
1312         struct mm_struct *mm;
1313
1314         /* we're only permitted to split anonymous regions (these should have
1315          * only a single usage on the region) */
1316         if (vma->vm_file)
1317                 return -ENOMEM;
1318
1319         mm = vma->vm_mm;
1320         if (mm->map_count >= sysctl_max_map_count)
1321                 return -ENOMEM;
1322
1323         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1324         if (!region)
1325                 return -ENOMEM;
1326
1327         new = vm_area_dup(vma);
1328         if (!new)
1329                 goto err_vma_dup;
1330
1331         /* most fields are the same, copy all, and then fixup */
1332         *region = *vma->vm_region;
1333         new->vm_region = region;
1334
1335         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1336
1337         if (new_below) {
1338                 region->vm_top = region->vm_end = new->vm_end = addr;
1339         } else {
1340                 region->vm_start = new->vm_start = addr;
1341                 region->vm_pgoff = new->vm_pgoff += npages;
1342         }
1343
1344         vma_iter_config(vmi, new->vm_start, new->vm_end);
1345         if (vma_iter_prealloc(vmi, vma)) {
1346                 pr_warn("Allocation of vma tree for process %d failed\n",
1347                         current->pid);
1348                 goto err_vmi_preallocate;
1349         }
1350
1351         if (new->vm_ops && new->vm_ops->open)
1352                 new->vm_ops->open(new);
1353
1354         down_write(&nommu_region_sem);
1355         delete_nommu_region(vma->vm_region);
1356         if (new_below) {
1357                 vma->vm_region->vm_start = vma->vm_start = addr;
1358                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1359         } else {
1360                 vma->vm_region->vm_end = vma->vm_end = addr;
1361                 vma->vm_region->vm_top = addr;
1362         }
1363         add_nommu_region(vma->vm_region);
1364         add_nommu_region(new->vm_region);
1365         up_write(&nommu_region_sem);
1366
1367         setup_vma_to_mm(vma, mm);
1368         setup_vma_to_mm(new, mm);
1369         vma_iter_store(vmi, new);
1370         mm->map_count++;
1371         return 0;
1372
1373 err_vmi_preallocate:
1374         vm_area_free(new);
1375 err_vma_dup:
1376         kmem_cache_free(vm_region_jar, region);
1377         return -ENOMEM;
1378 }
1379
1380 /*
1381  * shrink a VMA by removing the specified chunk from either the beginning or
1382  * the end
1383  */
1384 static int vmi_shrink_vma(struct vma_iterator *vmi,
1385                       struct vm_area_struct *vma,
1386                       unsigned long from, unsigned long to)
1387 {
1388         struct vm_region *region;
1389
1390         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1391          * and list */
1392         if (from > vma->vm_start) {
1393                 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1394                         return -ENOMEM;
1395                 vma->vm_end = from;
1396         } else {
1397                 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1398                         return -ENOMEM;
1399                 vma->vm_start = to;
1400         }
1401
1402         /* cut the backing region down to size */
1403         region = vma->vm_region;
1404         BUG_ON(region->vm_usage != 1);
1405
1406         down_write(&nommu_region_sem);
1407         delete_nommu_region(region);
1408         if (from > region->vm_start) {
1409                 to = region->vm_top;
1410                 region->vm_top = region->vm_end = from;
1411         } else {
1412                 region->vm_start = to;
1413         }
1414         add_nommu_region(region);
1415         up_write(&nommu_region_sem);
1416
1417         free_page_series(from, to);
1418         return 0;
1419 }
1420
1421 /*
1422  * release a mapping
1423  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1424  *   VMA, though it need not cover the whole VMA
1425  */
1426 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1427 {
1428         VMA_ITERATOR(vmi, mm, start);
1429         struct vm_area_struct *vma;
1430         unsigned long end;
1431         int ret = 0;
1432
1433         len = PAGE_ALIGN(len);
1434         if (len == 0)
1435                 return -EINVAL;
1436
1437         end = start + len;
1438
1439         /* find the first potentially overlapping VMA */
1440         vma = vma_find(&vmi, end);
1441         if (!vma) {
1442                 static int limit;
1443                 if (limit < 5) {
1444                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1445                                         current->pid, current->comm,
1446                                         start, start + len - 1);
1447                         limit++;
1448                 }
1449                 return -EINVAL;
1450         }
1451
1452         /* we're allowed to split an anonymous VMA but not a file-backed one */
1453         if (vma->vm_file) {
1454                 do {
1455                         if (start > vma->vm_start)
1456                                 return -EINVAL;
1457                         if (end == vma->vm_end)
1458                                 goto erase_whole_vma;
1459                         vma = vma_find(&vmi, end);
1460                 } while (vma);
1461                 return -EINVAL;
1462         } else {
1463                 /* the chunk must be a subset of the VMA found */
1464                 if (start == vma->vm_start && end == vma->vm_end)
1465                         goto erase_whole_vma;
1466                 if (start < vma->vm_start || end > vma->vm_end)
1467                         return -EINVAL;
1468                 if (offset_in_page(start))
1469                         return -EINVAL;
1470                 if (end != vma->vm_end && offset_in_page(end))
1471                         return -EINVAL;
1472                 if (start != vma->vm_start && end != vma->vm_end) {
1473                         ret = split_vma(&vmi, vma, start, 1);
1474                         if (ret < 0)
1475                                 return ret;
1476                 }
1477                 return vmi_shrink_vma(&vmi, vma, start, end);
1478         }
1479
1480 erase_whole_vma:
1481         if (delete_vma_from_mm(vma))
1482                 ret = -ENOMEM;
1483         else
1484                 delete_vma(mm, vma);
1485         return ret;
1486 }
1487
1488 int vm_munmap(unsigned long addr, size_t len)
1489 {
1490         struct mm_struct *mm = current->mm;
1491         int ret;
1492
1493         mmap_write_lock(mm);
1494         ret = do_munmap(mm, addr, len, NULL);
1495         mmap_write_unlock(mm);
1496         return ret;
1497 }
1498 EXPORT_SYMBOL(vm_munmap);
1499
1500 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1501 {
1502         return vm_munmap(addr, len);
1503 }
1504
1505 /*
1506  * release all the mappings made in a process's VM space
1507  */
1508 void exit_mmap(struct mm_struct *mm)
1509 {
1510         VMA_ITERATOR(vmi, mm, 0);
1511         struct vm_area_struct *vma;
1512
1513         if (!mm)
1514                 return;
1515
1516         mm->total_vm = 0;
1517
1518         /*
1519          * Lock the mm to avoid assert complaining even though this is the only
1520          * user of the mm
1521          */
1522         mmap_write_lock(mm);
1523         for_each_vma(vmi, vma) {
1524                 cleanup_vma_from_mm(vma);
1525                 delete_vma(mm, vma);
1526                 cond_resched();
1527         }
1528         __mt_destroy(&mm->mm_mt);
1529         mmap_write_unlock(mm);
1530 }
1531
1532 /*
1533  * expand (or shrink) an existing mapping, potentially moving it at the same
1534  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1535  *
1536  * under NOMMU conditions, we only permit changing a mapping's size, and only
1537  * as long as it stays within the region allocated by do_mmap_private() and the
1538  * block is not shareable
1539  *
1540  * MREMAP_FIXED is not supported under NOMMU conditions
1541  */
1542 static unsigned long do_mremap(unsigned long addr,
1543                         unsigned long old_len, unsigned long new_len,
1544                         unsigned long flags, unsigned long new_addr)
1545 {
1546         struct vm_area_struct *vma;
1547
1548         /* insanity checks first */
1549         old_len = PAGE_ALIGN(old_len);
1550         new_len = PAGE_ALIGN(new_len);
1551         if (old_len == 0 || new_len == 0)
1552                 return (unsigned long) -EINVAL;
1553
1554         if (offset_in_page(addr))
1555                 return -EINVAL;
1556
1557         if (flags & MREMAP_FIXED && new_addr != addr)
1558                 return (unsigned long) -EINVAL;
1559
1560         vma = find_vma_exact(current->mm, addr, old_len);
1561         if (!vma)
1562                 return (unsigned long) -EINVAL;
1563
1564         if (vma->vm_end != vma->vm_start + old_len)
1565                 return (unsigned long) -EFAULT;
1566
1567         if (is_nommu_shared_mapping(vma->vm_flags))
1568                 return (unsigned long) -EPERM;
1569
1570         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1571                 return (unsigned long) -ENOMEM;
1572
1573         /* all checks complete - do it */
1574         vma->vm_end = vma->vm_start + new_len;
1575         return vma->vm_start;
1576 }
1577
1578 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1579                 unsigned long, new_len, unsigned long, flags,
1580                 unsigned long, new_addr)
1581 {
1582         unsigned long ret;
1583
1584         mmap_write_lock(current->mm);
1585         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1586         mmap_write_unlock(current->mm);
1587         return ret;
1588 }
1589
1590 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1591                          unsigned int foll_flags)
1592 {
1593         return NULL;
1594 }
1595
1596 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1597                 unsigned long pfn, unsigned long size, pgprot_t prot)
1598 {
1599         if (addr != (pfn << PAGE_SHIFT))
1600                 return -EINVAL;
1601
1602         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1603         return 0;
1604 }
1605 EXPORT_SYMBOL(remap_pfn_range);
1606
1607 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1608 {
1609         unsigned long pfn = start >> PAGE_SHIFT;
1610         unsigned long vm_len = vma->vm_end - vma->vm_start;
1611
1612         pfn += vma->vm_pgoff;
1613         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1614 }
1615 EXPORT_SYMBOL(vm_iomap_memory);
1616
1617 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1618                         unsigned long pgoff)
1619 {
1620         unsigned int size = vma->vm_end - vma->vm_start;
1621
1622         if (!(vma->vm_flags & VM_USERMAP))
1623                 return -EINVAL;
1624
1625         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1626         vma->vm_end = vma->vm_start + size;
1627
1628         return 0;
1629 }
1630 EXPORT_SYMBOL(remap_vmalloc_range);
1631
1632 vm_fault_t filemap_fault(struct vm_fault *vmf)
1633 {
1634         BUG();
1635         return 0;
1636 }
1637 EXPORT_SYMBOL(filemap_fault);
1638
1639 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1640                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1641 {
1642         BUG();
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(filemap_map_pages);
1646
1647 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1648                               void *buf, int len, unsigned int gup_flags)
1649 {
1650         struct vm_area_struct *vma;
1651         int write = gup_flags & FOLL_WRITE;
1652
1653         if (mmap_read_lock_killable(mm))
1654                 return 0;
1655
1656         /* the access must start within one of the target process's mappings */
1657         vma = find_vma(mm, addr);
1658         if (vma) {
1659                 /* don't overrun this mapping */
1660                 if (addr + len >= vma->vm_end)
1661                         len = vma->vm_end - addr;
1662
1663                 /* only read or write mappings where it is permitted */
1664                 if (write && vma->vm_flags & VM_MAYWRITE)
1665                         copy_to_user_page(vma, NULL, addr,
1666                                          (void *) addr, buf, len);
1667                 else if (!write && vma->vm_flags & VM_MAYREAD)
1668                         copy_from_user_page(vma, NULL, addr,
1669                                             buf, (void *) addr, len);
1670                 else
1671                         len = 0;
1672         } else {
1673                 len = 0;
1674         }
1675
1676         mmap_read_unlock(mm);
1677
1678         return len;
1679 }
1680
1681 /**
1682  * access_remote_vm - access another process' address space
1683  * @mm:         the mm_struct of the target address space
1684  * @addr:       start address to access
1685  * @buf:        source or destination buffer
1686  * @len:        number of bytes to transfer
1687  * @gup_flags:  flags modifying lookup behaviour
1688  *
1689  * The caller must hold a reference on @mm.
1690  */
1691 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1692                 void *buf, int len, unsigned int gup_flags)
1693 {
1694         return __access_remote_vm(mm, addr, buf, len, gup_flags);
1695 }
1696
1697 /*
1698  * Access another process' address space.
1699  * - source/target buffer must be kernel space
1700  */
1701 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1702                 unsigned int gup_flags)
1703 {
1704         struct mm_struct *mm;
1705
1706         if (addr + len < addr)
1707                 return 0;
1708
1709         mm = get_task_mm(tsk);
1710         if (!mm)
1711                 return 0;
1712
1713         len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1714
1715         mmput(mm);
1716         return len;
1717 }
1718 EXPORT_SYMBOL_GPL(access_process_vm);
1719
1720 /**
1721  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1722  * @inode: The inode to check
1723  * @size: The current filesize of the inode
1724  * @newsize: The proposed filesize of the inode
1725  *
1726  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1727  * make sure that any outstanding VMAs aren't broken and then shrink the
1728  * vm_regions that extend beyond so that do_mmap() doesn't
1729  * automatically grant mappings that are too large.
1730  */
1731 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1732                                 size_t newsize)
1733 {
1734         struct vm_area_struct *vma;
1735         struct vm_region *region;
1736         pgoff_t low, high;
1737         size_t r_size, r_top;
1738
1739         low = newsize >> PAGE_SHIFT;
1740         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1741
1742         down_write(&nommu_region_sem);
1743         i_mmap_lock_read(inode->i_mapping);
1744
1745         /* search for VMAs that fall within the dead zone */
1746         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1747                 /* found one - only interested if it's shared out of the page
1748                  * cache */
1749                 if (vma->vm_flags & VM_SHARED) {
1750                         i_mmap_unlock_read(inode->i_mapping);
1751                         up_write(&nommu_region_sem);
1752                         return -ETXTBSY; /* not quite true, but near enough */
1753                 }
1754         }
1755
1756         /* reduce any regions that overlap the dead zone - if in existence,
1757          * these will be pointed to by VMAs that don't overlap the dead zone
1758          *
1759          * we don't check for any regions that start beyond the EOF as there
1760          * shouldn't be any
1761          */
1762         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1763                 if (!(vma->vm_flags & VM_SHARED))
1764                         continue;
1765
1766                 region = vma->vm_region;
1767                 r_size = region->vm_top - region->vm_start;
1768                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1769
1770                 if (r_top > newsize) {
1771                         region->vm_top -= r_top - newsize;
1772                         if (region->vm_end > region->vm_top)
1773                                 region->vm_end = region->vm_top;
1774                 }
1775         }
1776
1777         i_mmap_unlock_read(inode->i_mapping);
1778         up_write(&nommu_region_sem);
1779         return 0;
1780 }
1781
1782 /*
1783  * Initialise sysctl_user_reserve_kbytes.
1784  *
1785  * This is intended to prevent a user from starting a single memory hogging
1786  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1787  * mode.
1788  *
1789  * The default value is min(3% of free memory, 128MB)
1790  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1791  */
1792 static int __meminit init_user_reserve(void)
1793 {
1794         unsigned long free_kbytes;
1795
1796         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1797
1798         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1799         return 0;
1800 }
1801 subsys_initcall(init_user_reserve);
1802
1803 /*
1804  * Initialise sysctl_admin_reserve_kbytes.
1805  *
1806  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1807  * to log in and kill a memory hogging process.
1808  *
1809  * Systems with more than 256MB will reserve 8MB, enough to recover
1810  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1811  * only reserve 3% of free pages by default.
1812  */
1813 static int __meminit init_admin_reserve(void)
1814 {
1815         unsigned long free_kbytes;
1816
1817         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1818
1819         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1820         return 0;
1821 }
1822 subsys_initcall(init_admin_reserve);