net: move rps_sock_flow_table to net_hotdata
[sfrench/cifs-2.6.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <net/page_pool/types.h>
157 #include <net/page_pool/helpers.h>
158 #include <net/rps.h>
159
160 #include "dev.h"
161 #include "net-sysfs.h"
162
163 static DEFINE_SPINLOCK(ptype_lock);
164 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168                                            struct net_device *dev,
169                                            struct netlink_ext_ack *extack);
170
171 static DEFINE_MUTEX(ifalias_mutex);
172
173 /* protects napi_hash addition/deletion and napi_gen_id */
174 static DEFINE_SPINLOCK(napi_hash_lock);
175
176 static unsigned int napi_gen_id = NR_CPUS;
177 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178
179 static DECLARE_RWSEM(devnet_rename_sem);
180
181 static inline void dev_base_seq_inc(struct net *net)
182 {
183         unsigned int val = net->dev_base_seq + 1;
184
185         WRITE_ONCE(net->dev_base_seq, val ?: 1);
186 }
187
188 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 {
190         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
191
192         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
193 }
194
195 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 {
197         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198 }
199
200 static inline void rps_lock_irqsave(struct softnet_data *sd,
201                                     unsigned long *flags)
202 {
203         if (IS_ENABLED(CONFIG_RPS))
204                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206                 local_irq_save(*flags);
207 }
208
209 static inline void rps_lock_irq_disable(struct softnet_data *sd)
210 {
211         if (IS_ENABLED(CONFIG_RPS))
212                 spin_lock_irq(&sd->input_pkt_queue.lock);
213         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214                 local_irq_disable();
215 }
216
217 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218                                           unsigned long *flags)
219 {
220         if (IS_ENABLED(CONFIG_RPS))
221                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
222         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223                 local_irq_restore(*flags);
224 }
225
226 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227 {
228         if (IS_ENABLED(CONFIG_RPS))
229                 spin_unlock_irq(&sd->input_pkt_queue.lock);
230         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231                 local_irq_enable();
232 }
233
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235                                                        const char *name)
236 {
237         struct netdev_name_node *name_node;
238
239         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240         if (!name_node)
241                 return NULL;
242         INIT_HLIST_NODE(&name_node->hlist);
243         name_node->dev = dev;
244         name_node->name = name;
245         return name_node;
246 }
247
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251         struct netdev_name_node *name_node;
252
253         name_node = netdev_name_node_alloc(dev, dev->name);
254         if (!name_node)
255                 return NULL;
256         INIT_LIST_HEAD(&name_node->list);
257         return name_node;
258 }
259
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262         kfree(name_node);
263 }
264
265 static void netdev_name_node_add(struct net *net,
266                                  struct netdev_name_node *name_node)
267 {
268         hlist_add_head_rcu(&name_node->hlist,
269                            dev_name_hash(net, name_node->name));
270 }
271
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274         hlist_del_rcu(&name_node->hlist);
275 }
276
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278                                                         const char *name)
279 {
280         struct hlist_head *head = dev_name_hash(net, name);
281         struct netdev_name_node *name_node;
282
283         hlist_for_each_entry(name_node, head, hlist)
284                 if (!strcmp(name_node->name, name))
285                         return name_node;
286         return NULL;
287 }
288
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290                                                             const char *name)
291 {
292         struct hlist_head *head = dev_name_hash(net, name);
293         struct netdev_name_node *name_node;
294
295         hlist_for_each_entry_rcu(name_node, head, hlist)
296                 if (!strcmp(name_node->name, name))
297                         return name_node;
298         return NULL;
299 }
300
301 bool netdev_name_in_use(struct net *net, const char *name)
302 {
303         return netdev_name_node_lookup(net, name);
304 }
305 EXPORT_SYMBOL(netdev_name_in_use);
306
307 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308 {
309         struct netdev_name_node *name_node;
310         struct net *net = dev_net(dev);
311
312         name_node = netdev_name_node_lookup(net, name);
313         if (name_node)
314                 return -EEXIST;
315         name_node = netdev_name_node_alloc(dev, name);
316         if (!name_node)
317                 return -ENOMEM;
318         netdev_name_node_add(net, name_node);
319         /* The node that holds dev->name acts as a head of per-device list. */
320         list_add_tail_rcu(&name_node->list, &dev->name_node->list);
321
322         return 0;
323 }
324
325 static void netdev_name_node_alt_free(struct rcu_head *head)
326 {
327         struct netdev_name_node *name_node =
328                 container_of(head, struct netdev_name_node, rcu);
329
330         kfree(name_node->name);
331         netdev_name_node_free(name_node);
332 }
333
334 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335 {
336         netdev_name_node_del(name_node);
337         list_del(&name_node->list);
338         call_rcu(&name_node->rcu, netdev_name_node_alt_free);
339 }
340
341 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342 {
343         struct netdev_name_node *name_node;
344         struct net *net = dev_net(dev);
345
346         name_node = netdev_name_node_lookup(net, name);
347         if (!name_node)
348                 return -ENOENT;
349         /* lookup might have found our primary name or a name belonging
350          * to another device.
351          */
352         if (name_node == dev->name_node || name_node->dev != dev)
353                 return -EINVAL;
354
355         __netdev_name_node_alt_destroy(name_node);
356         return 0;
357 }
358
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361         struct netdev_name_node *name_node, *tmp;
362
363         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364                 list_del(&name_node->list);
365                 netdev_name_node_alt_free(&name_node->rcu);
366         }
367 }
368
369 /* Device list insertion */
370 static void list_netdevice(struct net_device *dev)
371 {
372         struct netdev_name_node *name_node;
373         struct net *net = dev_net(dev);
374
375         ASSERT_RTNL();
376
377         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
378         netdev_name_node_add(net, dev->name_node);
379         hlist_add_head_rcu(&dev->index_hlist,
380                            dev_index_hash(net, dev->ifindex));
381
382         netdev_for_each_altname(dev, name_node)
383                 netdev_name_node_add(net, name_node);
384
385         /* We reserved the ifindex, this can't fail */
386         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387
388         dev_base_seq_inc(net);
389 }
390
391 /* Device list removal
392  * caller must respect a RCU grace period before freeing/reusing dev
393  */
394 static void unlist_netdevice(struct net_device *dev)
395 {
396         struct netdev_name_node *name_node;
397         struct net *net = dev_net(dev);
398
399         ASSERT_RTNL();
400
401         xa_erase(&net->dev_by_index, dev->ifindex);
402
403         netdev_for_each_altname(dev, name_node)
404                 netdev_name_node_del(name_node);
405
406         /* Unlink dev from the device chain */
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410
411         dev_base_seq_inc(dev_net(dev));
412 }
413
414 /*
415  *      Our notifier list
416  */
417
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419
420 /*
421  *      Device drivers call our routines to queue packets here. We empty the
422  *      queue in the local softnet handler.
423  */
424
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428 /* Page_pool has a lockless array/stack to alloc/recycle pages.
429  * PP consumers must pay attention to run APIs in the appropriate context
430  * (e.g. NAPI context).
431  */
432 static DEFINE_PER_CPU_ALIGNED(struct page_pool *, system_page_pool);
433
434 #ifdef CONFIG_LOCKDEP
435 /*
436  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437  * according to dev->type
438  */
439 static const unsigned short netdev_lock_type[] = {
440          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455
456 static const char *const netdev_lock_name[] = {
457         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472
473 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475
476 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477 {
478         int i;
479
480         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481                 if (netdev_lock_type[i] == dev_type)
482                         return i;
483         /* the last key is used by default */
484         return ARRAY_SIZE(netdev_lock_type) - 1;
485 }
486
487 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488                                                  unsigned short dev_type)
489 {
490         int i;
491
492         i = netdev_lock_pos(dev_type);
493         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494                                    netdev_lock_name[i]);
495 }
496
497 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498 {
499         int i;
500
501         i = netdev_lock_pos(dev->type);
502         lockdep_set_class_and_name(&dev->addr_list_lock,
503                                    &netdev_addr_lock_key[i],
504                                    netdev_lock_name[i]);
505 }
506 #else
507 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508                                                  unsigned short dev_type)
509 {
510 }
511
512 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 {
514 }
515 #endif
516
517 /*******************************************************************************
518  *
519  *              Protocol management and registration routines
520  *
521  *******************************************************************************/
522
523
524 /*
525  *      Add a protocol ID to the list. Now that the input handler is
526  *      smarter we can dispense with all the messy stuff that used to be
527  *      here.
528  *
529  *      BEWARE!!! Protocol handlers, mangling input packets,
530  *      MUST BE last in hash buckets and checking protocol handlers
531  *      MUST start from promiscuous ptype_all chain in net_bh.
532  *      It is true now, do not change it.
533  *      Explanation follows: if protocol handler, mangling packet, will
534  *      be the first on list, it is not able to sense, that packet
535  *      is cloned and should be copied-on-write, so that it will
536  *      change it and subsequent readers will get broken packet.
537  *                                                      --ANK (980803)
538  */
539
540 static inline struct list_head *ptype_head(const struct packet_type *pt)
541 {
542         if (pt->type == htons(ETH_P_ALL))
543                 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
544         else
545                 return pt->dev ? &pt->dev->ptype_specific :
546                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547 }
548
549 /**
550  *      dev_add_pack - add packet handler
551  *      @pt: packet type declaration
552  *
553  *      Add a protocol handler to the networking stack. The passed &packet_type
554  *      is linked into kernel lists and may not be freed until it has been
555  *      removed from the kernel lists.
556  *
557  *      This call does not sleep therefore it can not
558  *      guarantee all CPU's that are in middle of receiving packets
559  *      will see the new packet type (until the next received packet).
560  */
561
562 void dev_add_pack(struct packet_type *pt)
563 {
564         struct list_head *head = ptype_head(pt);
565
566         spin_lock(&ptype_lock);
567         list_add_rcu(&pt->list, head);
568         spin_unlock(&ptype_lock);
569 }
570 EXPORT_SYMBOL(dev_add_pack);
571
572 /**
573  *      __dev_remove_pack        - remove packet handler
574  *      @pt: packet type declaration
575  *
576  *      Remove a protocol handler that was previously added to the kernel
577  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
578  *      from the kernel lists and can be freed or reused once this function
579  *      returns.
580  *
581  *      The packet type might still be in use by receivers
582  *      and must not be freed until after all the CPU's have gone
583  *      through a quiescent state.
584  */
585 void __dev_remove_pack(struct packet_type *pt)
586 {
587         struct list_head *head = ptype_head(pt);
588         struct packet_type *pt1;
589
590         spin_lock(&ptype_lock);
591
592         list_for_each_entry(pt1, head, list) {
593                 if (pt == pt1) {
594                         list_del_rcu(&pt->list);
595                         goto out;
596                 }
597         }
598
599         pr_warn("dev_remove_pack: %p not found\n", pt);
600 out:
601         spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(__dev_remove_pack);
604
605 /**
606  *      dev_remove_pack  - remove packet handler
607  *      @pt: packet type declaration
608  *
609  *      Remove a protocol handler that was previously added to the kernel
610  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *      from the kernel lists and can be freed or reused once this function
612  *      returns.
613  *
614  *      This call sleeps to guarantee that no CPU is looking at the packet
615  *      type after return.
616  */
617 void dev_remove_pack(struct packet_type *pt)
618 {
619         __dev_remove_pack(pt);
620
621         synchronize_net();
622 }
623 EXPORT_SYMBOL(dev_remove_pack);
624
625
626 /*******************************************************************************
627  *
628  *                          Device Interface Subroutines
629  *
630  *******************************************************************************/
631
632 /**
633  *      dev_get_iflink  - get 'iflink' value of a interface
634  *      @dev: targeted interface
635  *
636  *      Indicates the ifindex the interface is linked to.
637  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
638  */
639
640 int dev_get_iflink(const struct net_device *dev)
641 {
642         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643                 return dev->netdev_ops->ndo_get_iflink(dev);
644
645         return READ_ONCE(dev->ifindex);
646 }
647 EXPORT_SYMBOL(dev_get_iflink);
648
649 /**
650  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
651  *      @dev: targeted interface
652  *      @skb: The packet.
653  *
654  *      For better visibility of tunnel traffic OVS needs to retrieve
655  *      egress tunnel information for a packet. Following API allows
656  *      user to get this info.
657  */
658 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659 {
660         struct ip_tunnel_info *info;
661
662         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663                 return -EINVAL;
664
665         info = skb_tunnel_info_unclone(skb);
666         if (!info)
667                 return -ENOMEM;
668         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669                 return -EINVAL;
670
671         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674
675 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676 {
677         int k = stack->num_paths++;
678
679         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680                 return NULL;
681
682         return &stack->path[k];
683 }
684
685 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686                           struct net_device_path_stack *stack)
687 {
688         const struct net_device *last_dev;
689         struct net_device_path_ctx ctx = {
690                 .dev    = dev,
691         };
692         struct net_device_path *path;
693         int ret = 0;
694
695         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696         stack->num_paths = 0;
697         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698                 last_dev = ctx.dev;
699                 path = dev_fwd_path(stack);
700                 if (!path)
701                         return -1;
702
703                 memset(path, 0, sizeof(struct net_device_path));
704                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705                 if (ret < 0)
706                         return -1;
707
708                 if (WARN_ON_ONCE(last_dev == ctx.dev))
709                         return -1;
710         }
711
712         if (!ctx.dev)
713                 return ret;
714
715         path = dev_fwd_path(stack);
716         if (!path)
717                 return -1;
718         path->type = DEV_PATH_ETHERNET;
719         path->dev = ctx.dev;
720
721         return ret;
722 }
723 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724
725 /**
726  *      __dev_get_by_name       - find a device by its name
727  *      @net: the applicable net namespace
728  *      @name: name to find
729  *
730  *      Find an interface by name. Must be called under RTNL semaphore.
731  *      If the name is found a pointer to the device is returned.
732  *      If the name is not found then %NULL is returned. The
733  *      reference counters are not incremented so the caller must be
734  *      careful with locks.
735  */
736
737 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 {
739         struct netdev_name_node *node_name;
740
741         node_name = netdev_name_node_lookup(net, name);
742         return node_name ? node_name->dev : NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745
746 /**
747  * dev_get_by_name_rcu  - find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760         struct netdev_name_node *node_name;
761
762         node_name = netdev_name_node_lookup_rcu(net, name);
763         return node_name ? node_name->dev : NULL;
764 }
765 EXPORT_SYMBOL(dev_get_by_name_rcu);
766
767 /* Deprecated for new users, call netdev_get_by_name() instead */
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770         struct net_device *dev;
771
772         rcu_read_lock();
773         dev = dev_get_by_name_rcu(net, name);
774         dev_hold(dev);
775         rcu_read_unlock();
776         return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779
780 /**
781  *      netdev_get_by_name() - find a device by its name
782  *      @net: the applicable net namespace
783  *      @name: name to find
784  *      @tracker: tracking object for the acquired reference
785  *      @gfp: allocation flags for the tracker
786  *
787  *      Find an interface by name. This can be called from any
788  *      context and does its own locking. The returned handle has
789  *      the usage count incremented and the caller must use netdev_put() to
790  *      release it when it is no longer needed. %NULL is returned if no
791  *      matching device is found.
792  */
793 struct net_device *netdev_get_by_name(struct net *net, const char *name,
794                                       netdevice_tracker *tracker, gfp_t gfp)
795 {
796         struct net_device *dev;
797
798         dev = dev_get_by_name(net, name);
799         if (dev)
800                 netdev_tracker_alloc(dev, tracker, gfp);
801         return dev;
802 }
803 EXPORT_SYMBOL(netdev_get_by_name);
804
805 /**
806  *      __dev_get_by_index - find a device by its ifindex
807  *      @net: the applicable net namespace
808  *      @ifindex: index of device
809  *
810  *      Search for an interface by index. Returns %NULL if the device
811  *      is not found or a pointer to the device. The device has not
812  *      had its reference counter increased so the caller must be careful
813  *      about locking. The caller must hold the RTNL semaphore.
814  */
815
816 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817 {
818         struct net_device *dev;
819         struct hlist_head *head = dev_index_hash(net, ifindex);
820
821         hlist_for_each_entry(dev, head, index_hlist)
822                 if (dev->ifindex == ifindex)
823                         return dev;
824
825         return NULL;
826 }
827 EXPORT_SYMBOL(__dev_get_by_index);
828
829 /**
830  *      dev_get_by_index_rcu - find a device by its ifindex
831  *      @net: the applicable net namespace
832  *      @ifindex: index of device
833  *
834  *      Search for an interface by index. Returns %NULL if the device
835  *      is not found or a pointer to the device. The device has not
836  *      had its reference counter increased so the caller must be careful
837  *      about locking. The caller must hold RCU lock.
838  */
839
840 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841 {
842         struct net_device *dev;
843         struct hlist_head *head = dev_index_hash(net, ifindex);
844
845         hlist_for_each_entry_rcu(dev, head, index_hlist)
846                 if (dev->ifindex == ifindex)
847                         return dev;
848
849         return NULL;
850 }
851 EXPORT_SYMBOL(dev_get_by_index_rcu);
852
853 /* Deprecated for new users, call netdev_get_by_index() instead */
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857
858         rcu_read_lock();
859         dev = dev_get_by_index_rcu(net, ifindex);
860         dev_hold(dev);
861         rcu_read_unlock();
862         return dev;
863 }
864 EXPORT_SYMBOL(dev_get_by_index);
865
866 /**
867  *      netdev_get_by_index() - find a device by its ifindex
868  *      @net: the applicable net namespace
869  *      @ifindex: index of device
870  *      @tracker: tracking object for the acquired reference
871  *      @gfp: allocation flags for the tracker
872  *
873  *      Search for an interface by index. Returns NULL if the device
874  *      is not found or a pointer to the device. The device returned has
875  *      had a reference added and the pointer is safe until the user calls
876  *      netdev_put() to indicate they have finished with it.
877  */
878 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879                                        netdevice_tracker *tracker, gfp_t gfp)
880 {
881         struct net_device *dev;
882
883         dev = dev_get_by_index(net, ifindex);
884         if (dev)
885                 netdev_tracker_alloc(dev, tracker, gfp);
886         return dev;
887 }
888 EXPORT_SYMBOL(netdev_get_by_index);
889
890 /**
891  *      dev_get_by_napi_id - find a device by napi_id
892  *      @napi_id: ID of the NAPI struct
893  *
894  *      Search for an interface by NAPI ID. Returns %NULL if the device
895  *      is not found or a pointer to the device. The device has not had
896  *      its reference counter increased so the caller must be careful
897  *      about locking. The caller must hold RCU lock.
898  */
899
900 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901 {
902         struct napi_struct *napi;
903
904         WARN_ON_ONCE(!rcu_read_lock_held());
905
906         if (napi_id < MIN_NAPI_ID)
907                 return NULL;
908
909         napi = napi_by_id(napi_id);
910
911         return napi ? napi->dev : NULL;
912 }
913 EXPORT_SYMBOL(dev_get_by_napi_id);
914
915 /**
916  *      netdev_get_name - get a netdevice name, knowing its ifindex.
917  *      @net: network namespace
918  *      @name: a pointer to the buffer where the name will be stored.
919  *      @ifindex: the ifindex of the interface to get the name from.
920  */
921 int netdev_get_name(struct net *net, char *name, int ifindex)
922 {
923         struct net_device *dev;
924         int ret;
925
926         down_read(&devnet_rename_sem);
927         rcu_read_lock();
928
929         dev = dev_get_by_index_rcu(net, ifindex);
930         if (!dev) {
931                 ret = -ENODEV;
932                 goto out;
933         }
934
935         strcpy(name, dev->name);
936
937         ret = 0;
938 out:
939         rcu_read_unlock();
940         up_read(&devnet_rename_sem);
941         return ret;
942 }
943
944 /**
945  *      dev_getbyhwaddr_rcu - find a device by its hardware address
946  *      @net: the applicable net namespace
947  *      @type: media type of device
948  *      @ha: hardware address
949  *
950  *      Search for an interface by MAC address. Returns NULL if the device
951  *      is not found or a pointer to the device.
952  *      The caller must hold RCU or RTNL.
953  *      The returned device has not had its ref count increased
954  *      and the caller must therefore be careful about locking
955  *
956  */
957
958 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959                                        const char *ha)
960 {
961         struct net_device *dev;
962
963         for_each_netdev_rcu(net, dev)
964                 if (dev->type == type &&
965                     !memcmp(dev->dev_addr, ha, dev->addr_len))
966                         return dev;
967
968         return NULL;
969 }
970 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974         struct net_device *dev, *ret = NULL;
975
976         rcu_read_lock();
977         for_each_netdev_rcu(net, dev)
978                 if (dev->type == type) {
979                         dev_hold(dev);
980                         ret = dev;
981                         break;
982                 }
983         rcu_read_unlock();
984         return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988 /**
989  *      __dev_get_by_flags - find any device with given flags
990  *      @net: the applicable net namespace
991  *      @if_flags: IFF_* values
992  *      @mask: bitmask of bits in if_flags to check
993  *
994  *      Search for any interface with the given flags. Returns NULL if a device
995  *      is not found or a pointer to the device. Must be called inside
996  *      rtnl_lock(), and result refcount is unchanged.
997  */
998
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000                                       unsigned short mask)
1001 {
1002         struct net_device *dev, *ret;
1003
1004         ASSERT_RTNL();
1005
1006         ret = NULL;
1007         for_each_netdev(net, dev) {
1008                 if (((dev->flags ^ if_flags) & mask) == 0) {
1009                         ret = dev;
1010                         break;
1011                 }
1012         }
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017 /**
1018  *      dev_valid_name - check if name is okay for network device
1019  *      @name: name string
1020  *
1021  *      Network device names need to be valid file names to
1022  *      allow sysfs to work.  We also disallow any kind of
1023  *      whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027         if (*name == '\0')
1028                 return false;
1029         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030                 return false;
1031         if (!strcmp(name, ".") || !strcmp(name, ".."))
1032                 return false;
1033
1034         while (*name) {
1035                 if (*name == '/' || *name == ':' || isspace(*name))
1036                         return false;
1037                 name++;
1038         }
1039         return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042
1043 /**
1044  *      __dev_alloc_name - allocate a name for a device
1045  *      @net: network namespace to allocate the device name in
1046  *      @name: name format string
1047  *      @res: result name string
1048  *
1049  *      Passed a format string - eg "lt%d" it will try and find a suitable
1050  *      id. It scans list of devices to build up a free map, then chooses
1051  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *      while allocating the name and adding the device in order to avoid
1053  *      duplicates.
1054  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *      Returns the number of the unit assigned or a negative errno code.
1056  */
1057
1058 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059 {
1060         int i = 0;
1061         const char *p;
1062         const int max_netdevices = 8*PAGE_SIZE;
1063         unsigned long *inuse;
1064         struct net_device *d;
1065         char buf[IFNAMSIZ];
1066
1067         /* Verify the string as this thing may have come from the user.
1068          * There must be one "%d" and no other "%" characters.
1069          */
1070         p = strchr(name, '%');
1071         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072                 return -EINVAL;
1073
1074         /* Use one page as a bit array of possible slots */
1075         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1076         if (!inuse)
1077                 return -ENOMEM;
1078
1079         for_each_netdev(net, d) {
1080                 struct netdev_name_node *name_node;
1081
1082                 netdev_for_each_altname(d, name_node) {
1083                         if (!sscanf(name_node->name, name, &i))
1084                                 continue;
1085                         if (i < 0 || i >= max_netdevices)
1086                                 continue;
1087
1088                         /* avoid cases where sscanf is not exact inverse of printf */
1089                         snprintf(buf, IFNAMSIZ, name, i);
1090                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091                                 __set_bit(i, inuse);
1092                 }
1093                 if (!sscanf(d->name, name, &i))
1094                         continue;
1095                 if (i < 0 || i >= max_netdevices)
1096                         continue;
1097
1098                 /* avoid cases where sscanf is not exact inverse of printf */
1099                 snprintf(buf, IFNAMSIZ, name, i);
1100                 if (!strncmp(buf, d->name, IFNAMSIZ))
1101                         __set_bit(i, inuse);
1102         }
1103
1104         i = find_first_zero_bit(inuse, max_netdevices);
1105         bitmap_free(inuse);
1106         if (i == max_netdevices)
1107                 return -ENFILE;
1108
1109         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110         strscpy(buf, name, IFNAMSIZ);
1111         snprintf(res, IFNAMSIZ, buf, i);
1112         return i;
1113 }
1114
1115 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117                                const char *want_name, char *out_name,
1118                                int dup_errno)
1119 {
1120         if (!dev_valid_name(want_name))
1121                 return -EINVAL;
1122
1123         if (strchr(want_name, '%'))
1124                 return __dev_alloc_name(net, want_name, out_name);
1125
1126         if (netdev_name_in_use(net, want_name))
1127                 return -dup_errno;
1128         if (out_name != want_name)
1129                 strscpy(out_name, want_name, IFNAMSIZ);
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_alloc_name - allocate a name for a device
1135  *      @dev: device
1136  *      @name: name format string
1137  *
1138  *      Passed a format string - eg "lt%d" it will try and find a suitable
1139  *      id. It scans list of devices to build up a free map, then chooses
1140  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1141  *      while allocating the name and adding the device in order to avoid
1142  *      duplicates.
1143  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144  *      Returns the number of the unit assigned or a negative errno code.
1145  */
1146
1147 int dev_alloc_name(struct net_device *dev, const char *name)
1148 {
1149         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1150 }
1151 EXPORT_SYMBOL(dev_alloc_name);
1152
1153 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154                               const char *name)
1155 {
1156         int ret;
1157
1158         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1159         return ret < 0 ? ret : 0;
1160 }
1161
1162 /**
1163  *      dev_change_name - change name of a device
1164  *      @dev: device
1165  *      @newname: name (or format string) must be at least IFNAMSIZ
1166  *
1167  *      Change name of a device, can pass format strings "eth%d".
1168  *      for wildcarding.
1169  */
1170 int dev_change_name(struct net_device *dev, const char *newname)
1171 {
1172         unsigned char old_assign_type;
1173         char oldname[IFNAMSIZ];
1174         int err = 0;
1175         int ret;
1176         struct net *net;
1177
1178         ASSERT_RTNL();
1179         BUG_ON(!dev_net(dev));
1180
1181         net = dev_net(dev);
1182
1183         down_write(&devnet_rename_sem);
1184
1185         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186                 up_write(&devnet_rename_sem);
1187                 return 0;
1188         }
1189
1190         memcpy(oldname, dev->name, IFNAMSIZ);
1191
1192         err = dev_get_valid_name(net, dev, newname);
1193         if (err < 0) {
1194                 up_write(&devnet_rename_sem);
1195                 return err;
1196         }
1197
1198         if (oldname[0] && !strchr(oldname, '%'))
1199                 netdev_info(dev, "renamed from %s%s\n", oldname,
1200                             dev->flags & IFF_UP ? " (while UP)" : "");
1201
1202         old_assign_type = dev->name_assign_type;
1203         WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204
1205 rollback:
1206         ret = device_rename(&dev->dev, dev->name);
1207         if (ret) {
1208                 memcpy(dev->name, oldname, IFNAMSIZ);
1209                 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210                 up_write(&devnet_rename_sem);
1211                 return ret;
1212         }
1213
1214         up_write(&devnet_rename_sem);
1215
1216         netdev_adjacent_rename_links(dev, oldname);
1217
1218         netdev_name_node_del(dev->name_node);
1219
1220         synchronize_net();
1221
1222         netdev_name_node_add(net, dev->name_node);
1223
1224         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225         ret = notifier_to_errno(ret);
1226
1227         if (ret) {
1228                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1229                 if (err >= 0) {
1230                         err = ret;
1231                         down_write(&devnet_rename_sem);
1232                         memcpy(dev->name, oldname, IFNAMSIZ);
1233                         memcpy(oldname, newname, IFNAMSIZ);
1234                         WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235                         old_assign_type = NET_NAME_RENAMED;
1236                         goto rollback;
1237                 } else {
1238                         netdev_err(dev, "name change rollback failed: %d\n",
1239                                    ret);
1240                 }
1241         }
1242
1243         return err;
1244 }
1245
1246 /**
1247  *      dev_set_alias - change ifalias of a device
1248  *      @dev: device
1249  *      @alias: name up to IFALIASZ
1250  *      @len: limit of bytes to copy from info
1251  *
1252  *      Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256         struct dev_ifalias *new_alias = NULL;
1257
1258         if (len >= IFALIASZ)
1259                 return -EINVAL;
1260
1261         if (len) {
1262                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263                 if (!new_alias)
1264                         return -ENOMEM;
1265
1266                 memcpy(new_alias->ifalias, alias, len);
1267                 new_alias->ifalias[len] = 0;
1268         }
1269
1270         mutex_lock(&ifalias_mutex);
1271         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272                                         mutex_is_locked(&ifalias_mutex));
1273         mutex_unlock(&ifalias_mutex);
1274
1275         if (new_alias)
1276                 kfree_rcu(new_alias, rcuhead);
1277
1278         return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281
1282 /**
1283  *      dev_get_alias - get ifalias of a device
1284  *      @dev: device
1285  *      @name: buffer to store name of ifalias
1286  *      @len: size of buffer
1287  *
1288  *      get ifalias for a device.  Caller must make sure dev cannot go
1289  *      away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293         const struct dev_ifalias *alias;
1294         int ret = 0;
1295
1296         rcu_read_lock();
1297         alias = rcu_dereference(dev->ifalias);
1298         if (alias)
1299                 ret = snprintf(name, len, "%s", alias->ifalias);
1300         rcu_read_unlock();
1301
1302         return ret;
1303 }
1304
1305 /**
1306  *      netdev_features_change - device changes features
1307  *      @dev: device to cause notification
1308  *
1309  *      Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316
1317 /**
1318  *      netdev_state_change - device changes state
1319  *      @dev: device to cause notification
1320  *
1321  *      Called to indicate a device has changed state. This function calls
1322  *      the notifier chains for netdev_chain and sends a NEWLINK message
1323  *      to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327         if (dev->flags & IFF_UP) {
1328                 struct netdev_notifier_change_info change_info = {
1329                         .info.dev = dev,
1330                 };
1331
1332                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1333                                               &change_info.info);
1334                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1335         }
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352         ASSERT_RTNL();
1353         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370         rtnl_lock();
1371         __netdev_notify_peers(dev);
1372         rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375
1376 static int napi_threaded_poll(void *data);
1377
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380         int err = 0;
1381
1382         /* Create and wake up the kthread once to put it in
1383          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384          * warning and work with loadavg.
1385          */
1386         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387                                 n->dev->name, n->napi_id);
1388         if (IS_ERR(n->thread)) {
1389                 err = PTR_ERR(n->thread);
1390                 pr_err("kthread_run failed with err %d\n", err);
1391                 n->thread = NULL;
1392         }
1393
1394         return err;
1395 }
1396
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399         const struct net_device_ops *ops = dev->netdev_ops;
1400         int ret;
1401
1402         ASSERT_RTNL();
1403         dev_addr_check(dev);
1404
1405         if (!netif_device_present(dev)) {
1406                 /* may be detached because parent is runtime-suspended */
1407                 if (dev->dev.parent)
1408                         pm_runtime_resume(dev->dev.parent);
1409                 if (!netif_device_present(dev))
1410                         return -ENODEV;
1411         }
1412
1413         /* Block netpoll from trying to do any rx path servicing.
1414          * If we don't do this there is a chance ndo_poll_controller
1415          * or ndo_poll may be running while we open the device
1416          */
1417         netpoll_poll_disable(dev);
1418
1419         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420         ret = notifier_to_errno(ret);
1421         if (ret)
1422                 return ret;
1423
1424         set_bit(__LINK_STATE_START, &dev->state);
1425
1426         if (ops->ndo_validate_addr)
1427                 ret = ops->ndo_validate_addr(dev);
1428
1429         if (!ret && ops->ndo_open)
1430                 ret = ops->ndo_open(dev);
1431
1432         netpoll_poll_enable(dev);
1433
1434         if (ret)
1435                 clear_bit(__LINK_STATE_START, &dev->state);
1436         else {
1437                 dev->flags |= IFF_UP;
1438                 dev_set_rx_mode(dev);
1439                 dev_activate(dev);
1440                 add_device_randomness(dev->dev_addr, dev->addr_len);
1441         }
1442
1443         return ret;
1444 }
1445
1446 /**
1447  *      dev_open        - prepare an interface for use.
1448  *      @dev: device to open
1449  *      @extack: netlink extended ack
1450  *
1451  *      Takes a device from down to up state. The device's private open
1452  *      function is invoked and then the multicast lists are loaded. Finally
1453  *      the device is moved into the up state and a %NETDEV_UP message is
1454  *      sent to the netdev notifier chain.
1455  *
1456  *      Calling this function on an active interface is a nop. On a failure
1457  *      a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461         int ret;
1462
1463         if (dev->flags & IFF_UP)
1464                 return 0;
1465
1466         ret = __dev_open(dev, extack);
1467         if (ret < 0)
1468                 return ret;
1469
1470         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1471         call_netdevice_notifiers(NETDEV_UP, dev);
1472
1473         return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479         struct net_device *dev;
1480
1481         ASSERT_RTNL();
1482         might_sleep();
1483
1484         list_for_each_entry(dev, head, close_list) {
1485                 /* Temporarily disable netpoll until the interface is down */
1486                 netpoll_poll_disable(dev);
1487
1488                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489
1490                 clear_bit(__LINK_STATE_START, &dev->state);
1491
1492                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1493                  * can be even on different cpu. So just clear netif_running().
1494                  *
1495                  * dev->stop() will invoke napi_disable() on all of it's
1496                  * napi_struct instances on this device.
1497                  */
1498                 smp_mb__after_atomic(); /* Commit netif_running(). */
1499         }
1500
1501         dev_deactivate_many(head);
1502
1503         list_for_each_entry(dev, head, close_list) {
1504                 const struct net_device_ops *ops = dev->netdev_ops;
1505
1506                 /*
1507                  *      Call the device specific close. This cannot fail.
1508                  *      Only if device is UP
1509                  *
1510                  *      We allow it to be called even after a DETACH hot-plug
1511                  *      event.
1512                  */
1513                 if (ops->ndo_stop)
1514                         ops->ndo_stop(dev);
1515
1516                 dev->flags &= ~IFF_UP;
1517                 netpoll_poll_enable(dev);
1518         }
1519 }
1520
1521 static void __dev_close(struct net_device *dev)
1522 {
1523         LIST_HEAD(single);
1524
1525         list_add(&dev->close_list, &single);
1526         __dev_close_many(&single);
1527         list_del(&single);
1528 }
1529
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532         struct net_device *dev, *tmp;
1533
1534         /* Remove the devices that don't need to be closed */
1535         list_for_each_entry_safe(dev, tmp, head, close_list)
1536                 if (!(dev->flags & IFF_UP))
1537                         list_del_init(&dev->close_list);
1538
1539         __dev_close_many(head);
1540
1541         list_for_each_entry_safe(dev, tmp, head, close_list) {
1542                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1543                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1544                 if (unlink)
1545                         list_del_init(&dev->close_list);
1546         }
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549
1550 /**
1551  *      dev_close - shutdown an interface.
1552  *      @dev: device to shutdown
1553  *
1554  *      This function moves an active device into down state. A
1555  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *      chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561         if (dev->flags & IFF_UP) {
1562                 LIST_HEAD(single);
1563
1564                 list_add(&dev->close_list, &single);
1565                 dev_close_many(&single, true);
1566                 list_del(&single);
1567         }
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570
1571
1572 /**
1573  *      dev_disable_lro - disable Large Receive Offload on a device
1574  *      @dev: device
1575  *
1576  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *      called under RTNL.  This is needed if received packets may be
1578  *      forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582         struct net_device *lower_dev;
1583         struct list_head *iter;
1584
1585         dev->wanted_features &= ~NETIF_F_LRO;
1586         netdev_update_features(dev);
1587
1588         if (unlikely(dev->features & NETIF_F_LRO))
1589                 netdev_WARN(dev, "failed to disable LRO!\n");
1590
1591         netdev_for_each_lower_dev(dev, lower_dev, iter)
1592                 dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595
1596 /**
1597  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *      @dev: device
1599  *
1600  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *      called under RTNL.  This is needed if Generic XDP is installed on
1602  *      the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606         dev->wanted_features &= ~NETIF_F_GRO_HW;
1607         netdev_update_features(dev);
1608
1609         if (unlikely(dev->features & NETIF_F_GRO_HW))
1610                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val)                                          \
1616         case NETDEV_##val:                              \
1617                 return "NETDEV_" __stringify(val);
1618         switch (cmd) {
1619         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630         N(XDP_FEAT_CHANGE)
1631         }
1632 #undef N
1633         return "UNKNOWN_NETDEV_EVENT";
1634 }
1635 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636
1637 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638                                    struct net_device *dev)
1639 {
1640         struct netdev_notifier_info info = {
1641                 .dev = dev,
1642         };
1643
1644         return nb->notifier_call(nb, val, &info);
1645 }
1646
1647 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648                                              struct net_device *dev)
1649 {
1650         int err;
1651
1652         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1653         err = notifier_to_errno(err);
1654         if (err)
1655                 return err;
1656
1657         if (!(dev->flags & IFF_UP))
1658                 return 0;
1659
1660         call_netdevice_notifier(nb, NETDEV_UP, dev);
1661         return 0;
1662 }
1663
1664 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665                                                 struct net_device *dev)
1666 {
1667         if (dev->flags & IFF_UP) {
1668                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669                                         dev);
1670                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671         }
1672         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 }
1674
1675 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676                                                  struct net *net)
1677 {
1678         struct net_device *dev;
1679         int err;
1680
1681         for_each_netdev(net, dev) {
1682                 err = call_netdevice_register_notifiers(nb, dev);
1683                 if (err)
1684                         goto rollback;
1685         }
1686         return 0;
1687
1688 rollback:
1689         for_each_netdev_continue_reverse(net, dev)
1690                 call_netdevice_unregister_notifiers(nb, dev);
1691         return err;
1692 }
1693
1694 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695                                                     struct net *net)
1696 {
1697         struct net_device *dev;
1698
1699         for_each_netdev(net, dev)
1700                 call_netdevice_unregister_notifiers(nb, dev);
1701 }
1702
1703 static int dev_boot_phase = 1;
1704
1705 /**
1706  * register_netdevice_notifier - register a network notifier block
1707  * @nb: notifier
1708  *
1709  * Register a notifier to be called when network device events occur.
1710  * The notifier passed is linked into the kernel structures and must
1711  * not be reused until it has been unregistered. A negative errno code
1712  * is returned on a failure.
1713  *
1714  * When registered all registration and up events are replayed
1715  * to the new notifier to allow device to have a race free
1716  * view of the network device list.
1717  */
1718
1719 int register_netdevice_notifier(struct notifier_block *nb)
1720 {
1721         struct net *net;
1722         int err;
1723
1724         /* Close race with setup_net() and cleanup_net() */
1725         down_write(&pernet_ops_rwsem);
1726         rtnl_lock();
1727         err = raw_notifier_chain_register(&netdev_chain, nb);
1728         if (err)
1729                 goto unlock;
1730         if (dev_boot_phase)
1731                 goto unlock;
1732         for_each_net(net) {
1733                 err = call_netdevice_register_net_notifiers(nb, net);
1734                 if (err)
1735                         goto rollback;
1736         }
1737
1738 unlock:
1739         rtnl_unlock();
1740         up_write(&pernet_ops_rwsem);
1741         return err;
1742
1743 rollback:
1744         for_each_net_continue_reverse(net)
1745                 call_netdevice_unregister_net_notifiers(nb, net);
1746
1747         raw_notifier_chain_unregister(&netdev_chain, nb);
1748         goto unlock;
1749 }
1750 EXPORT_SYMBOL(register_netdevice_notifier);
1751
1752 /**
1753  * unregister_netdevice_notifier - unregister a network notifier block
1754  * @nb: notifier
1755  *
1756  * Unregister a notifier previously registered by
1757  * register_netdevice_notifier(). The notifier is unlinked into the
1758  * kernel structures and may then be reused. A negative errno code
1759  * is returned on a failure.
1760  *
1761  * After unregistering unregister and down device events are synthesized
1762  * for all devices on the device list to the removed notifier to remove
1763  * the need for special case cleanup code.
1764  */
1765
1766 int unregister_netdevice_notifier(struct notifier_block *nb)
1767 {
1768         struct net *net;
1769         int err;
1770
1771         /* Close race with setup_net() and cleanup_net() */
1772         down_write(&pernet_ops_rwsem);
1773         rtnl_lock();
1774         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775         if (err)
1776                 goto unlock;
1777
1778         for_each_net(net)
1779                 call_netdevice_unregister_net_notifiers(nb, net);
1780
1781 unlock:
1782         rtnl_unlock();
1783         up_write(&pernet_ops_rwsem);
1784         return err;
1785 }
1786 EXPORT_SYMBOL(unregister_netdevice_notifier);
1787
1788 static int __register_netdevice_notifier_net(struct net *net,
1789                                              struct notifier_block *nb,
1790                                              bool ignore_call_fail)
1791 {
1792         int err;
1793
1794         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1795         if (err)
1796                 return err;
1797         if (dev_boot_phase)
1798                 return 0;
1799
1800         err = call_netdevice_register_net_notifiers(nb, net);
1801         if (err && !ignore_call_fail)
1802                 goto chain_unregister;
1803
1804         return 0;
1805
1806 chain_unregister:
1807         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1808         return err;
1809 }
1810
1811 static int __unregister_netdevice_notifier_net(struct net *net,
1812                                                struct notifier_block *nb)
1813 {
1814         int err;
1815
1816         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1817         if (err)
1818                 return err;
1819
1820         call_netdevice_unregister_net_notifiers(nb, net);
1821         return 0;
1822 }
1823
1824 /**
1825  * register_netdevice_notifier_net - register a per-netns network notifier block
1826  * @net: network namespace
1827  * @nb: notifier
1828  *
1829  * Register a notifier to be called when network device events occur.
1830  * The notifier passed is linked into the kernel structures and must
1831  * not be reused until it has been unregistered. A negative errno code
1832  * is returned on a failure.
1833  *
1834  * When registered all registration and up events are replayed
1835  * to the new notifier to allow device to have a race free
1836  * view of the network device list.
1837  */
1838
1839 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840 {
1841         int err;
1842
1843         rtnl_lock();
1844         err = __register_netdevice_notifier_net(net, nb, false);
1845         rtnl_unlock();
1846         return err;
1847 }
1848 EXPORT_SYMBOL(register_netdevice_notifier_net);
1849
1850 /**
1851  * unregister_netdevice_notifier_net - unregister a per-netns
1852  *                                     network notifier block
1853  * @net: network namespace
1854  * @nb: notifier
1855  *
1856  * Unregister a notifier previously registered by
1857  * register_netdevice_notifier_net(). The notifier is unlinked from the
1858  * kernel structures and may then be reused. A negative errno code
1859  * is returned on a failure.
1860  *
1861  * After unregistering unregister and down device events are synthesized
1862  * for all devices on the device list to the removed notifier to remove
1863  * the need for special case cleanup code.
1864  */
1865
1866 int unregister_netdevice_notifier_net(struct net *net,
1867                                       struct notifier_block *nb)
1868 {
1869         int err;
1870
1871         rtnl_lock();
1872         err = __unregister_netdevice_notifier_net(net, nb);
1873         rtnl_unlock();
1874         return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877
1878 static void __move_netdevice_notifier_net(struct net *src_net,
1879                                           struct net *dst_net,
1880                                           struct notifier_block *nb)
1881 {
1882         __unregister_netdevice_notifier_net(src_net, nb);
1883         __register_netdevice_notifier_net(dst_net, nb, true);
1884 }
1885
1886 int register_netdevice_notifier_dev_net(struct net_device *dev,
1887                                         struct notifier_block *nb,
1888                                         struct netdev_net_notifier *nn)
1889 {
1890         int err;
1891
1892         rtnl_lock();
1893         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1894         if (!err) {
1895                 nn->nb = nb;
1896                 list_add(&nn->list, &dev->net_notifier_list);
1897         }
1898         rtnl_unlock();
1899         return err;
1900 }
1901 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902
1903 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904                                           struct notifier_block *nb,
1905                                           struct netdev_net_notifier *nn)
1906 {
1907         int err;
1908
1909         rtnl_lock();
1910         list_del(&nn->list);
1911         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1912         rtnl_unlock();
1913         return err;
1914 }
1915 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916
1917 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918                                              struct net *net)
1919 {
1920         struct netdev_net_notifier *nn;
1921
1922         list_for_each_entry(nn, &dev->net_notifier_list, list)
1923                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1924 }
1925
1926 /**
1927  *      call_netdevice_notifiers_info - call all network notifier blocks
1928  *      @val: value passed unmodified to notifier function
1929  *      @info: notifier information data
1930  *
1931  *      Call all network notifier blocks.  Parameters and return value
1932  *      are as for raw_notifier_call_chain().
1933  */
1934
1935 int call_netdevice_notifiers_info(unsigned long val,
1936                                   struct netdev_notifier_info *info)
1937 {
1938         struct net *net = dev_net(info->dev);
1939         int ret;
1940
1941         ASSERT_RTNL();
1942
1943         /* Run per-netns notifier block chain first, then run the global one.
1944          * Hopefully, one day, the global one is going to be removed after
1945          * all notifier block registrators get converted to be per-netns.
1946          */
1947         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1948         if (ret & NOTIFY_STOP_MASK)
1949                 return ret;
1950         return raw_notifier_call_chain(&netdev_chain, val, info);
1951 }
1952
1953 /**
1954  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955  *                                             for and rollback on error
1956  *      @val_up: value passed unmodified to notifier function
1957  *      @val_down: value passed unmodified to the notifier function when
1958  *                 recovering from an error on @val_up
1959  *      @info: notifier information data
1960  *
1961  *      Call all per-netns network notifier blocks, but not notifier blocks on
1962  *      the global notifier chain. Parameters and return value are as for
1963  *      raw_notifier_call_chain_robust().
1964  */
1965
1966 static int
1967 call_netdevice_notifiers_info_robust(unsigned long val_up,
1968                                      unsigned long val_down,
1969                                      struct netdev_notifier_info *info)
1970 {
1971         struct net *net = dev_net(info->dev);
1972
1973         ASSERT_RTNL();
1974
1975         return raw_notifier_call_chain_robust(&net->netdev_chain,
1976                                               val_up, val_down, info);
1977 }
1978
1979 static int call_netdevice_notifiers_extack(unsigned long val,
1980                                            struct net_device *dev,
1981                                            struct netlink_ext_ack *extack)
1982 {
1983         struct netdev_notifier_info info = {
1984                 .dev = dev,
1985                 .extack = extack,
1986         };
1987
1988         return call_netdevice_notifiers_info(val, &info);
1989 }
1990
1991 /**
1992  *      call_netdevice_notifiers - call all network notifier blocks
1993  *      @val: value passed unmodified to notifier function
1994  *      @dev: net_device pointer passed unmodified to notifier function
1995  *
1996  *      Call all network notifier blocks.  Parameters and return value
1997  *      are as for raw_notifier_call_chain().
1998  */
1999
2000 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001 {
2002         return call_netdevice_notifiers_extack(val, dev, NULL);
2003 }
2004 EXPORT_SYMBOL(call_netdevice_notifiers);
2005
2006 /**
2007  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2008  *      @val: value passed unmodified to notifier function
2009  *      @dev: net_device pointer passed unmodified to notifier function
2010  *      @arg: additional u32 argument passed to the notifier function
2011  *
2012  *      Call all network notifier blocks.  Parameters and return value
2013  *      are as for raw_notifier_call_chain().
2014  */
2015 static int call_netdevice_notifiers_mtu(unsigned long val,
2016                                         struct net_device *dev, u32 arg)
2017 {
2018         struct netdev_notifier_info_ext info = {
2019                 .info.dev = dev,
2020                 .ext.mtu = arg,
2021         };
2022
2023         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024
2025         return call_netdevice_notifiers_info(val, &info.info);
2026 }
2027
2028 #ifdef CONFIG_NET_INGRESS
2029 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030
2031 void net_inc_ingress_queue(void)
2032 {
2033         static_branch_inc(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036
2037 void net_dec_ingress_queue(void)
2038 {
2039         static_branch_dec(&ingress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042 #endif
2043
2044 #ifdef CONFIG_NET_EGRESS
2045 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046
2047 void net_inc_egress_queue(void)
2048 {
2049         static_branch_inc(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052
2053 void net_dec_egress_queue(void)
2054 {
2055         static_branch_dec(&egress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058 #endif
2059
2060 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061 EXPORT_SYMBOL(netstamp_needed_key);
2062 #ifdef CONFIG_JUMP_LABEL
2063 static atomic_t netstamp_needed_deferred;
2064 static atomic_t netstamp_wanted;
2065 static void netstamp_clear(struct work_struct *work)
2066 {
2067         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2068         int wanted;
2069
2070         wanted = atomic_add_return(deferred, &netstamp_wanted);
2071         if (wanted > 0)
2072                 static_branch_enable(&netstamp_needed_key);
2073         else
2074                 static_branch_disable(&netstamp_needed_key);
2075 }
2076 static DECLARE_WORK(netstamp_work, netstamp_clear);
2077 #endif
2078
2079 void net_enable_timestamp(void)
2080 {
2081 #ifdef CONFIG_JUMP_LABEL
2082         int wanted = atomic_read(&netstamp_wanted);
2083
2084         while (wanted > 0) {
2085                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2086                         return;
2087         }
2088         atomic_inc(&netstamp_needed_deferred);
2089         schedule_work(&netstamp_work);
2090 #else
2091         static_branch_inc(&netstamp_needed_key);
2092 #endif
2093 }
2094 EXPORT_SYMBOL(net_enable_timestamp);
2095
2096 void net_disable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099         int wanted = atomic_read(&netstamp_wanted);
2100
2101         while (wanted > 1) {
2102                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2103                         return;
2104         }
2105         atomic_dec(&netstamp_needed_deferred);
2106         schedule_work(&netstamp_work);
2107 #else
2108         static_branch_dec(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_disable_timestamp);
2112
2113 static inline void net_timestamp_set(struct sk_buff *skb)
2114 {
2115         skb->tstamp = 0;
2116         skb->mono_delivery_time = 0;
2117         if (static_branch_unlikely(&netstamp_needed_key))
2118                 skb->tstamp = ktime_get_real();
2119 }
2120
2121 #define net_timestamp_check(COND, SKB)                          \
2122         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2123                 if ((COND) && !(SKB)->tstamp)                   \
2124                         (SKB)->tstamp = ktime_get_real();       \
2125         }                                                       \
2126
2127 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128 {
2129         return __is_skb_forwardable(dev, skb, true);
2130 }
2131 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132
2133 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134                               bool check_mtu)
2135 {
2136         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137
2138         if (likely(!ret)) {
2139                 skb->protocol = eth_type_trans(skb, dev);
2140                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2141         }
2142
2143         return ret;
2144 }
2145
2146 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147 {
2148         return __dev_forward_skb2(dev, skb, true);
2149 }
2150 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151
2152 /**
2153  * dev_forward_skb - loopback an skb to another netif
2154  *
2155  * @dev: destination network device
2156  * @skb: buffer to forward
2157  *
2158  * return values:
2159  *      NET_RX_SUCCESS  (no congestion)
2160  *      NET_RX_DROP     (packet was dropped, but freed)
2161  *
2162  * dev_forward_skb can be used for injecting an skb from the
2163  * start_xmit function of one device into the receive queue
2164  * of another device.
2165  *
2166  * The receiving device may be in another namespace, so
2167  * we have to clear all information in the skb that could
2168  * impact namespace isolation.
2169  */
2170 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173 }
2174 EXPORT_SYMBOL_GPL(dev_forward_skb);
2175
2176 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177 {
2178         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2179 }
2180
2181 static inline int deliver_skb(struct sk_buff *skb,
2182                               struct packet_type *pt_prev,
2183                               struct net_device *orig_dev)
2184 {
2185         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186                 return -ENOMEM;
2187         refcount_inc(&skb->users);
2188         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189 }
2190
2191 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192                                           struct packet_type **pt,
2193                                           struct net_device *orig_dev,
2194                                           __be16 type,
2195                                           struct list_head *ptype_list)
2196 {
2197         struct packet_type *ptype, *pt_prev = *pt;
2198
2199         list_for_each_entry_rcu(ptype, ptype_list, list) {
2200                 if (ptype->type != type)
2201                         continue;
2202                 if (pt_prev)
2203                         deliver_skb(skb, pt_prev, orig_dev);
2204                 pt_prev = ptype;
2205         }
2206         *pt = pt_prev;
2207 }
2208
2209 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210 {
2211         if (!ptype->af_packet_priv || !skb->sk)
2212                 return false;
2213
2214         if (ptype->id_match)
2215                 return ptype->id_match(ptype, skb->sk);
2216         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217                 return true;
2218
2219         return false;
2220 }
2221
2222 /**
2223  * dev_nit_active - return true if any network interface taps are in use
2224  *
2225  * @dev: network device to check for the presence of taps
2226  */
2227 bool dev_nit_active(struct net_device *dev)
2228 {
2229         return !list_empty(&net_hotdata.ptype_all) ||
2230                !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct list_head *ptype_list = &net_hotdata.ptype_all;
2242         struct packet_type *ptype, *pt_prev = NULL;
2243         struct sk_buff *skb2 = NULL;
2244
2245         rcu_read_lock();
2246 again:
2247         list_for_each_entry_rcu(ptype, ptype_list, list) {
2248                 if (ptype->ignore_outgoing)
2249                         continue;
2250
2251                 /* Never send packets back to the socket
2252                  * they originated from - MvS (miquels@drinkel.ow.org)
2253                  */
2254                 if (skb_loop_sk(ptype, skb))
2255                         continue;
2256
2257                 if (pt_prev) {
2258                         deliver_skb(skb2, pt_prev, skb->dev);
2259                         pt_prev = ptype;
2260                         continue;
2261                 }
2262
2263                 /* need to clone skb, done only once */
2264                 skb2 = skb_clone(skb, GFP_ATOMIC);
2265                 if (!skb2)
2266                         goto out_unlock;
2267
2268                 net_timestamp_set(skb2);
2269
2270                 /* skb->nh should be correctly
2271                  * set by sender, so that the second statement is
2272                  * just protection against buggy protocols.
2273                  */
2274                 skb_reset_mac_header(skb2);
2275
2276                 if (skb_network_header(skb2) < skb2->data ||
2277                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2278                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279                                              ntohs(skb2->protocol),
2280                                              dev->name);
2281                         skb_reset_network_header(skb2);
2282                 }
2283
2284                 skb2->transport_header = skb2->network_header;
2285                 skb2->pkt_type = PACKET_OUTGOING;
2286                 pt_prev = ptype;
2287         }
2288
2289         if (ptype_list == &net_hotdata.ptype_all) {
2290                 ptype_list = &dev->ptype_all;
2291                 goto again;
2292         }
2293 out_unlock:
2294         if (pt_prev) {
2295                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2296                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297                 else
2298                         kfree_skb(skb2);
2299         }
2300         rcu_read_unlock();
2301 }
2302 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303
2304 /**
2305  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306  * @dev: Network device
2307  * @txq: number of queues available
2308  *
2309  * If real_num_tx_queues is changed the tc mappings may no longer be
2310  * valid. To resolve this verify the tc mapping remains valid and if
2311  * not NULL the mapping. With no priorities mapping to this
2312  * offset/count pair it will no longer be used. In the worst case TC0
2313  * is invalid nothing can be done so disable priority mappings. If is
2314  * expected that drivers will fix this mapping if they can before
2315  * calling netif_set_real_num_tx_queues.
2316  */
2317 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318 {
2319         int i;
2320         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321
2322         /* If TC0 is invalidated disable TC mapping */
2323         if (tc->offset + tc->count > txq) {
2324                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325                 dev->num_tc = 0;
2326                 return;
2327         }
2328
2329         /* Invalidated prio to tc mappings set to TC0 */
2330         for (i = 1; i < TC_BITMASK + 1; i++) {
2331                 int q = netdev_get_prio_tc_map(dev, i);
2332
2333                 tc = &dev->tc_to_txq[q];
2334                 if (tc->offset + tc->count > txq) {
2335                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336                                     i, q);
2337                         netdev_set_prio_tc_map(dev, i, 0);
2338                 }
2339         }
2340 }
2341
2342 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343 {
2344         if (dev->num_tc) {
2345                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346                 int i;
2347
2348                 /* walk through the TCs and see if it falls into any of them */
2349                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350                         if ((txq - tc->offset) < tc->count)
2351                                 return i;
2352                 }
2353
2354                 /* didn't find it, just return -1 to indicate no match */
2355                 return -1;
2356         }
2357
2358         return 0;
2359 }
2360 EXPORT_SYMBOL(netdev_txq_to_tc);
2361
2362 #ifdef CONFIG_XPS
2363 static struct static_key xps_needed __read_mostly;
2364 static struct static_key xps_rxqs_needed __read_mostly;
2365 static DEFINE_MUTEX(xps_map_mutex);
2366 #define xmap_dereference(P)             \
2367         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368
2369 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370                              struct xps_dev_maps *old_maps, int tci, u16 index)
2371 {
2372         struct xps_map *map = NULL;
2373         int pos;
2374
2375         map = xmap_dereference(dev_maps->attr_map[tci]);
2376         if (!map)
2377                 return false;
2378
2379         for (pos = map->len; pos--;) {
2380                 if (map->queues[pos] != index)
2381                         continue;
2382
2383                 if (map->len > 1) {
2384                         map->queues[pos] = map->queues[--map->len];
2385                         break;
2386                 }
2387
2388                 if (old_maps)
2389                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391                 kfree_rcu(map, rcu);
2392                 return false;
2393         }
2394
2395         return true;
2396 }
2397
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399                                  struct xps_dev_maps *dev_maps,
2400                                  int cpu, u16 offset, u16 count)
2401 {
2402         int num_tc = dev_maps->num_tc;
2403         bool active = false;
2404         int tci;
2405
2406         for (tci = cpu * num_tc; num_tc--; tci++) {
2407                 int i, j;
2408
2409                 for (i = count, j = offset; i--; j++) {
2410                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411                                 break;
2412                 }
2413
2414                 active |= i < 0;
2415         }
2416
2417         return active;
2418 }
2419
2420 static void reset_xps_maps(struct net_device *dev,
2421                            struct xps_dev_maps *dev_maps,
2422                            enum xps_map_type type)
2423 {
2424         static_key_slow_dec_cpuslocked(&xps_needed);
2425         if (type == XPS_RXQS)
2426                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427
2428         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429
2430         kfree_rcu(dev_maps, rcu);
2431 }
2432
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434                            u16 offset, u16 count)
2435 {
2436         struct xps_dev_maps *dev_maps;
2437         bool active = false;
2438         int i, j;
2439
2440         dev_maps = xmap_dereference(dev->xps_maps[type]);
2441         if (!dev_maps)
2442                 return;
2443
2444         for (j = 0; j < dev_maps->nr_ids; j++)
2445                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446         if (!active)
2447                 reset_xps_maps(dev, dev_maps, type);
2448
2449         if (type == XPS_CPUS) {
2450                 for (i = offset + (count - 1); count--; i--)
2451                         netdev_queue_numa_node_write(
2452                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453         }
2454 }
2455
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457                                    u16 count)
2458 {
2459         if (!static_key_false(&xps_needed))
2460                 return;
2461
2462         cpus_read_lock();
2463         mutex_lock(&xps_map_mutex);
2464
2465         if (static_key_false(&xps_rxqs_needed))
2466                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2467
2468         clean_xps_maps(dev, XPS_CPUS, offset, count);
2469
2470         mutex_unlock(&xps_map_mutex);
2471         cpus_read_unlock();
2472 }
2473
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480                                       u16 index, bool is_rxqs_map)
2481 {
2482         struct xps_map *new_map;
2483         int alloc_len = XPS_MIN_MAP_ALLOC;
2484         int i, pos;
2485
2486         for (pos = 0; map && pos < map->len; pos++) {
2487                 if (map->queues[pos] != index)
2488                         continue;
2489                 return map;
2490         }
2491
2492         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493         if (map) {
2494                 if (pos < map->alloc_len)
2495                         return map;
2496
2497                 alloc_len = map->alloc_len * 2;
2498         }
2499
2500         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501          *  map
2502          */
2503         if (is_rxqs_map)
2504                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505         else
2506                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507                                        cpu_to_node(attr_index));
2508         if (!new_map)
2509                 return NULL;
2510
2511         for (i = 0; i < pos; i++)
2512                 new_map->queues[i] = map->queues[i];
2513         new_map->alloc_len = alloc_len;
2514         new_map->len = pos;
2515
2516         return new_map;
2517 }
2518
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521                               struct xps_dev_maps *new_dev_maps, int index,
2522                               int tc, bool skip_tc)
2523 {
2524         int i, tci = index * dev_maps->num_tc;
2525         struct xps_map *map;
2526
2527         /* copy maps belonging to foreign traffic classes */
2528         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529                 if (i == tc && skip_tc)
2530                         continue;
2531
2532                 /* fill in the new device map from the old device map */
2533                 map = xmap_dereference(dev_maps->attr_map[tci]);
2534                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535         }
2536 }
2537
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540                           u16 index, enum xps_map_type type)
2541 {
2542         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543         const unsigned long *online_mask = NULL;
2544         bool active = false, copy = false;
2545         int i, j, tci, numa_node_id = -2;
2546         int maps_sz, num_tc = 1, tc = 0;
2547         struct xps_map *map, *new_map;
2548         unsigned int nr_ids;
2549
2550         WARN_ON_ONCE(index >= dev->num_tx_queues);
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012                 netif_set_gso_ipv4_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:        netdev to update
3019  * @segs:       max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027         dev->tso_max_segs = segs;
3028         if (segs < READ_ONCE(dev->gso_max_segs))
3029                 netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:         netdev to update
3036  * @from:       netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040         netif_set_tso_max_size(to, from->tso_max_size);
3041         netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053         cpumask_var_t cpus;
3054         int cpu, count = 0;
3055
3056         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057                 return 1;
3058
3059         cpumask_copy(cpus, cpu_online_mask);
3060         for_each_cpu(cpu, cpus) {
3061                 ++count;
3062                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063         }
3064         free_cpumask_var(cpus);
3065
3066         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072         struct softnet_data *sd;
3073         unsigned long flags;
3074
3075         local_irq_save(flags);
3076         sd = this_cpu_ptr(&softnet_data);
3077         q->next_sched = NULL;
3078         *sd->output_queue_tailp = q;
3079         sd->output_queue_tailp = &q->next_sched;
3080         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081         local_irq_restore(flags);
3082 }
3083
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087                 __netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090
3091 struct dev_kfree_skb_cb {
3092         enum skb_drop_reason reason;
3093 };
3094
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097         return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102         rcu_read_lock();
3103         if (!netif_xmit_stopped(txq)) {
3104                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3105
3106                 __netif_schedule(q);
3107         }
3108         rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115                 struct Qdisc *q;
3116
3117                 rcu_read_lock();
3118                 q = rcu_dereference(dev_queue->qdisc);
3119                 __netif_schedule(q);
3120                 rcu_read_unlock();
3121         }
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124
3125 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126 {
3127         unsigned long flags;
3128
3129         if (unlikely(!skb))
3130                 return;
3131
3132         if (likely(refcount_read(&skb->users) == 1)) {
3133                 smp_rmb();
3134                 refcount_set(&skb->users, 0);
3135         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3136                 return;
3137         }
3138         get_kfree_skb_cb(skb)->reason = reason;
3139         local_irq_save(flags);
3140         skb->next = __this_cpu_read(softnet_data.completion_queue);
3141         __this_cpu_write(softnet_data.completion_queue, skb);
3142         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143         local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146
3147 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148 {
3149         if (in_hardirq() || irqs_disabled())
3150                 dev_kfree_skb_irq_reason(skb, reason);
3151         else
3152                 kfree_skb_reason(skb, reason);
3153 }
3154 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155
3156
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166             netif_running(dev)) {
3167                 netif_tx_stop_all_queues(dev);
3168         }
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181             netif_running(dev)) {
3182                 netif_tx_wake_all_queues(dev);
3183                 __netdev_watchdog_up(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193                        const struct net_device *sb_dev,
3194                        struct sk_buff *skb)
3195 {
3196         u32 hash;
3197         u16 qoffset = 0;
3198         u16 qcount = dev->real_num_tx_queues;
3199
3200         if (dev->num_tc) {
3201                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202
3203                 qoffset = sb_dev->tc_to_txq[tc].offset;
3204                 qcount = sb_dev->tc_to_txq[tc].count;
3205                 if (unlikely(!qcount)) {
3206                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207                                              sb_dev->name, qoffset, tc);
3208                         qoffset = 0;
3209                         qcount = dev->real_num_tx_queues;
3210                 }
3211         }
3212
3213         if (skb_rx_queue_recorded(skb)) {
3214                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215                 hash = skb_get_rx_queue(skb);
3216                 if (hash >= qoffset)
3217                         hash -= qoffset;
3218                 while (unlikely(hash >= qcount))
3219                         hash -= qcount;
3220                 return hash + qoffset;
3221         }
3222
3223         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224 }
3225
3226 void skb_warn_bad_offload(const struct sk_buff *skb)
3227 {
3228         static const netdev_features_t null_features;
3229         struct net_device *dev = skb->dev;
3230         const char *name = "";
3231
3232         if (!net_ratelimit())
3233                 return;
3234
3235         if (dev) {
3236                 if (dev->dev.parent)
3237                         name = dev_driver_string(dev->dev.parent);
3238                 else
3239                         name = netdev_name(dev);
3240         }
3241         skb_dump(KERN_WARNING, skb, false);
3242         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243              name, dev ? &dev->features : &null_features,
3244              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245 }
3246
3247 /*
3248  * Invalidate hardware checksum when packet is to be mangled, and
3249  * complete checksum manually on outgoing path.
3250  */
3251 int skb_checksum_help(struct sk_buff *skb)
3252 {
3253         __wsum csum;
3254         int ret = 0, offset;
3255
3256         if (skb->ip_summed == CHECKSUM_COMPLETE)
3257                 goto out_set_summed;
3258
3259         if (unlikely(skb_is_gso(skb))) {
3260                 skb_warn_bad_offload(skb);
3261                 return -EINVAL;
3262         }
3263
3264         /* Before computing a checksum, we should make sure no frag could
3265          * be modified by an external entity : checksum could be wrong.
3266          */
3267         if (skb_has_shared_frag(skb)) {
3268                 ret = __skb_linearize(skb);
3269                 if (ret)
3270                         goto out;
3271         }
3272
3273         offset = skb_checksum_start_offset(skb);
3274         ret = -EINVAL;
3275         if (unlikely(offset >= skb_headlen(skb))) {
3276                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278                           offset, skb_headlen(skb));
3279                 goto out;
3280         }
3281         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282
3283         offset += skb->csum_offset;
3284         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287                           offset + sizeof(__sum16), skb_headlen(skb));
3288                 goto out;
3289         }
3290         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3291         if (ret)
3292                 goto out;
3293
3294         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3295 out_set_summed:
3296         skb->ip_summed = CHECKSUM_NONE;
3297 out:
3298         return ret;
3299 }
3300 EXPORT_SYMBOL(skb_checksum_help);
3301
3302 int skb_crc32c_csum_help(struct sk_buff *skb)
3303 {
3304         __le32 crc32c_csum;
3305         int ret = 0, offset, start;
3306
3307         if (skb->ip_summed != CHECKSUM_PARTIAL)
3308                 goto out;
3309
3310         if (unlikely(skb_is_gso(skb)))
3311                 goto out;
3312
3313         /* Before computing a checksum, we should make sure no frag could
3314          * be modified by an external entity : checksum could be wrong.
3315          */
3316         if (unlikely(skb_has_shared_frag(skb))) {
3317                 ret = __skb_linearize(skb);
3318                 if (ret)
3319                         goto out;
3320         }
3321         start = skb_checksum_start_offset(skb);
3322         offset = start + offsetof(struct sctphdr, checksum);
3323         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324                 ret = -EINVAL;
3325                 goto out;
3326         }
3327
3328         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3329         if (ret)
3330                 goto out;
3331
3332         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333                                                   skb->len - start, ~(__u32)0,
3334                                                   crc32c_csum_stub));
3335         *(__le32 *)(skb->data + offset) = crc32c_csum;
3336         skb_reset_csum_not_inet(skb);
3337 out:
3338         return ret;
3339 }
3340
3341 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342 {
3343         __be16 type = skb->protocol;
3344
3345         /* Tunnel gso handlers can set protocol to ethernet. */
3346         if (type == htons(ETH_P_TEB)) {
3347                 struct ethhdr *eth;
3348
3349                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350                         return 0;
3351
3352                 eth = (struct ethhdr *)skb->data;
3353                 type = eth->h_proto;
3354         }
3355
3356         return vlan_get_protocol_and_depth(skb, type, depth);
3357 }
3358
3359
3360 /* Take action when hardware reception checksum errors are detected. */
3361 #ifdef CONFIG_BUG
3362 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364         netdev_err(dev, "hw csum failure\n");
3365         skb_dump(KERN_ERR, skb, true);
3366         dump_stack();
3367 }
3368
3369 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370 {
3371         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372 }
3373 EXPORT_SYMBOL(netdev_rx_csum_fault);
3374 #endif
3375
3376 /* XXX: check that highmem exists at all on the given machine. */
3377 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 #ifdef CONFIG_HIGHMEM
3380         int i;
3381
3382         if (!(dev->features & NETIF_F_HIGHDMA)) {
3383                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385
3386                         if (PageHighMem(skb_frag_page(frag)))
3387                                 return 1;
3388                 }
3389         }
3390 #endif
3391         return 0;
3392 }
3393
3394 /* If MPLS offload request, verify we are testing hardware MPLS features
3395  * instead of standard features for the netdev.
3396  */
3397 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399                                            netdev_features_t features,
3400                                            __be16 type)
3401 {
3402         if (eth_p_mpls(type))
3403                 features &= skb->dev->mpls_features;
3404
3405         return features;
3406 }
3407 #else
3408 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409                                            netdev_features_t features,
3410                                            __be16 type)
3411 {
3412         return features;
3413 }
3414 #endif
3415
3416 static netdev_features_t harmonize_features(struct sk_buff *skb,
3417         netdev_features_t features)
3418 {
3419         __be16 type;
3420
3421         type = skb_network_protocol(skb, NULL);
3422         features = net_mpls_features(skb, features, type);
3423
3424         if (skb->ip_summed != CHECKSUM_NONE &&
3425             !can_checksum_protocol(features, type)) {
3426                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427         }
3428         if (illegal_highdma(skb->dev, skb))
3429                 features &= ~NETIF_F_SG;
3430
3431         return features;
3432 }
3433
3434 netdev_features_t passthru_features_check(struct sk_buff *skb,
3435                                           struct net_device *dev,
3436                                           netdev_features_t features)
3437 {
3438         return features;
3439 }
3440 EXPORT_SYMBOL(passthru_features_check);
3441
3442 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443                                              struct net_device *dev,
3444                                              netdev_features_t features)
3445 {
3446         return vlan_features_check(skb, features);
3447 }
3448
3449 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450                                             struct net_device *dev,
3451                                             netdev_features_t features)
3452 {
3453         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454
3455         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456                 return features & ~NETIF_F_GSO_MASK;
3457
3458         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459                 return features & ~NETIF_F_GSO_MASK;
3460
3461         if (!skb_shinfo(skb)->gso_type) {
3462                 skb_warn_bad_offload(skb);
3463                 return features & ~NETIF_F_GSO_MASK;
3464         }
3465
3466         /* Support for GSO partial features requires software
3467          * intervention before we can actually process the packets
3468          * so we need to strip support for any partial features now
3469          * and we can pull them back in after we have partially
3470          * segmented the frame.
3471          */
3472         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473                 features &= ~dev->gso_partial_features;
3474
3475         /* Make sure to clear the IPv4 ID mangling feature if the
3476          * IPv4 header has the potential to be fragmented.
3477          */
3478         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479                 struct iphdr *iph = skb->encapsulation ?
3480                                     inner_ip_hdr(skb) : ip_hdr(skb);
3481
3482                 if (!(iph->frag_off & htons(IP_DF)))
3483                         features &= ~NETIF_F_TSO_MANGLEID;
3484         }
3485
3486         return features;
3487 }
3488
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491         struct net_device *dev = skb->dev;
3492         netdev_features_t features = dev->features;
3493
3494         if (skb_is_gso(skb))
3495                 features = gso_features_check(skb, dev, features);
3496
3497         /* If encapsulation offload request, verify we are testing
3498          * hardware encapsulation features instead of standard
3499          * features for the netdev
3500          */
3501         if (skb->encapsulation)
3502                 features &= dev->hw_enc_features;
3503
3504         if (skb_vlan_tagged(skb))
3505                 features = netdev_intersect_features(features,
3506                                                      dev->vlan_features |
3507                                                      NETIF_F_HW_VLAN_CTAG_TX |
3508                                                      NETIF_F_HW_VLAN_STAG_TX);
3509
3510         if (dev->netdev_ops->ndo_features_check)
3511                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512                                                                 features);
3513         else
3514                 features &= dflt_features_check(skb, dev, features);
3515
3516         return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521                     struct netdev_queue *txq, bool more)
3522 {
3523         unsigned int len;
3524         int rc;
3525
3526         if (dev_nit_active(dev))
3527                 dev_queue_xmit_nit(skb, dev);
3528
3529         len = skb->len;
3530         trace_net_dev_start_xmit(skb, dev);
3531         rc = netdev_start_xmit(skb, dev, txq, more);
3532         trace_net_dev_xmit(skb, rc, dev, len);
3533
3534         return rc;
3535 }
3536
3537 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538                                     struct netdev_queue *txq, int *ret)
3539 {
3540         struct sk_buff *skb = first;
3541         int rc = NETDEV_TX_OK;
3542
3543         while (skb) {
3544                 struct sk_buff *next = skb->next;
3545
3546                 skb_mark_not_on_list(skb);
3547                 rc = xmit_one(skb, dev, txq, next != NULL);
3548                 if (unlikely(!dev_xmit_complete(rc))) {
3549                         skb->next = next;
3550                         goto out;
3551                 }
3552
3553                 skb = next;
3554                 if (netif_tx_queue_stopped(txq) && skb) {
3555                         rc = NETDEV_TX_BUSY;
3556                         break;
3557                 }
3558         }
3559
3560 out:
3561         *ret = rc;
3562         return skb;
3563 }
3564
3565 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566                                           netdev_features_t features)
3567 {
3568         if (skb_vlan_tag_present(skb) &&
3569             !vlan_hw_offload_capable(features, skb->vlan_proto))
3570                 skb = __vlan_hwaccel_push_inside(skb);
3571         return skb;
3572 }
3573
3574 int skb_csum_hwoffload_help(struct sk_buff *skb,
3575                             const netdev_features_t features)
3576 {
3577         if (unlikely(skb_csum_is_sctp(skb)))
3578                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579                         skb_crc32c_csum_help(skb);
3580
3581         if (features & NETIF_F_HW_CSUM)
3582                 return 0;
3583
3584         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585                 switch (skb->csum_offset) {
3586                 case offsetof(struct tcphdr, check):
3587                 case offsetof(struct udphdr, check):
3588                         return 0;
3589                 }
3590         }
3591
3592         return skb_checksum_help(skb);
3593 }
3594 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595
3596 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597 {
3598         netdev_features_t features;
3599
3600         features = netif_skb_features(skb);
3601         skb = validate_xmit_vlan(skb, features);
3602         if (unlikely(!skb))
3603                 goto out_null;
3604
3605         skb = sk_validate_xmit_skb(skb, dev);
3606         if (unlikely(!skb))
3607                 goto out_null;
3608
3609         if (netif_needs_gso(skb, features)) {
3610                 struct sk_buff *segs;
3611
3612                 segs = skb_gso_segment(skb, features);
3613                 if (IS_ERR(segs)) {
3614                         goto out_kfree_skb;
3615                 } else if (segs) {
3616                         consume_skb(skb);
3617                         skb = segs;
3618                 }
3619         } else {
3620                 if (skb_needs_linearize(skb, features) &&
3621                     __skb_linearize(skb))
3622                         goto out_kfree_skb;
3623
3624                 /* If packet is not checksummed and device does not
3625                  * support checksumming for this protocol, complete
3626                  * checksumming here.
3627                  */
3628                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629                         if (skb->encapsulation)
3630                                 skb_set_inner_transport_header(skb,
3631                                                                skb_checksum_start_offset(skb));
3632                         else
3633                                 skb_set_transport_header(skb,
3634                                                          skb_checksum_start_offset(skb));
3635                         if (skb_csum_hwoffload_help(skb, features))
3636                                 goto out_kfree_skb;
3637                 }
3638         }
3639
3640         skb = validate_xmit_xfrm(skb, features, again);
3641
3642         return skb;
3643
3644 out_kfree_skb:
3645         kfree_skb(skb);
3646 out_null:
3647         dev_core_stats_tx_dropped_inc(dev);
3648         return NULL;
3649 }
3650
3651 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652 {
3653         struct sk_buff *next, *head = NULL, *tail;
3654
3655         for (; skb != NULL; skb = next) {
3656                 next = skb->next;
3657                 skb_mark_not_on_list(skb);
3658
3659                 /* in case skb wont be segmented, point to itself */
3660                 skb->prev = skb;
3661
3662                 skb = validate_xmit_skb(skb, dev, again);
3663                 if (!skb)
3664                         continue;
3665
3666                 if (!head)
3667                         head = skb;
3668                 else
3669                         tail->next = skb;
3670                 /* If skb was segmented, skb->prev points to
3671                  * the last segment. If not, it still contains skb.
3672                  */
3673                 tail = skb->prev;
3674         }
3675         return head;
3676 }
3677 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678
3679 static void qdisc_pkt_len_init(struct sk_buff *skb)
3680 {
3681         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682
3683         qdisc_skb_cb(skb)->pkt_len = skb->len;
3684
3685         /* To get more precise estimation of bytes sent on wire,
3686          * we add to pkt_len the headers size of all segments
3687          */
3688         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689                 u16 gso_segs = shinfo->gso_segs;
3690                 unsigned int hdr_len;
3691
3692                 /* mac layer + network layer */
3693                 hdr_len = skb_transport_offset(skb);
3694
3695                 /* + transport layer */
3696                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697                         const struct tcphdr *th;
3698                         struct tcphdr _tcphdr;
3699
3700                         th = skb_header_pointer(skb, hdr_len,
3701                                                 sizeof(_tcphdr), &_tcphdr);
3702                         if (likely(th))
3703                                 hdr_len += __tcp_hdrlen(th);
3704                 } else {
3705                         struct udphdr _udphdr;
3706
3707                         if (skb_header_pointer(skb, hdr_len,
3708                                                sizeof(_udphdr), &_udphdr))
3709                                 hdr_len += sizeof(struct udphdr);
3710                 }
3711
3712                 if (shinfo->gso_type & SKB_GSO_DODGY)
3713                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714                                                 shinfo->gso_size);
3715
3716                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717         }
3718 }
3719
3720 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721                              struct sk_buff **to_free,
3722                              struct netdev_queue *txq)
3723 {
3724         int rc;
3725
3726         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727         if (rc == NET_XMIT_SUCCESS)
3728                 trace_qdisc_enqueue(q, txq, skb);
3729         return rc;
3730 }
3731
3732 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733                                  struct net_device *dev,
3734                                  struct netdev_queue *txq)
3735 {
3736         spinlock_t *root_lock = qdisc_lock(q);
3737         struct sk_buff *to_free = NULL;
3738         bool contended;
3739         int rc;
3740
3741         qdisc_calculate_pkt_len(skb, q);
3742
3743         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3744
3745         if (q->flags & TCQ_F_NOLOCK) {
3746                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3747                     qdisc_run_begin(q)) {
3748                         /* Retest nolock_qdisc_is_empty() within the protection
3749                          * of q->seqlock to protect from racing with requeuing.
3750                          */
3751                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3752                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753                                 __qdisc_run(q);
3754                                 qdisc_run_end(q);
3755
3756                                 goto no_lock_out;
3757                         }
3758
3759                         qdisc_bstats_cpu_update(q, skb);
3760                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3761                             !nolock_qdisc_is_empty(q))
3762                                 __qdisc_run(q);
3763
3764                         qdisc_run_end(q);
3765                         return NET_XMIT_SUCCESS;
3766                 }
3767
3768                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769                 qdisc_run(q);
3770
3771 no_lock_out:
3772                 if (unlikely(to_free))
3773                         kfree_skb_list_reason(to_free,
3774                                               tcf_get_drop_reason(to_free));
3775                 return rc;
3776         }
3777
3778         /*
3779          * Heuristic to force contended enqueues to serialize on a
3780          * separate lock before trying to get qdisc main lock.
3781          * This permits qdisc->running owner to get the lock more
3782          * often and dequeue packets faster.
3783          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3784          * and then other tasks will only enqueue packets. The packets will be
3785          * sent after the qdisc owner is scheduled again. To prevent this
3786          * scenario the task always serialize on the lock.
3787          */
3788         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3789         if (unlikely(contended))
3790                 spin_lock(&q->busylock);
3791
3792         spin_lock(root_lock);
3793         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3794                 __qdisc_drop(skb, &to_free);
3795                 rc = NET_XMIT_DROP;
3796         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3797                    qdisc_run_begin(q)) {
3798                 /*
3799                  * This is a work-conserving queue; there are no old skbs
3800                  * waiting to be sent out; and the qdisc is not running -
3801                  * xmit the skb directly.
3802                  */
3803
3804                 qdisc_bstats_update(q, skb);
3805
3806                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3807                         if (unlikely(contended)) {
3808                                 spin_unlock(&q->busylock);
3809                                 contended = false;
3810                         }
3811                         __qdisc_run(q);
3812                 }
3813
3814                 qdisc_run_end(q);
3815                 rc = NET_XMIT_SUCCESS;
3816         } else {
3817                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818                 if (qdisc_run_begin(q)) {
3819                         if (unlikely(contended)) {
3820                                 spin_unlock(&q->busylock);
3821                                 contended = false;
3822                         }
3823                         __qdisc_run(q);
3824                         qdisc_run_end(q);
3825                 }
3826         }
3827         spin_unlock(root_lock);
3828         if (unlikely(to_free))
3829                 kfree_skb_list_reason(to_free,
3830                                       tcf_get_drop_reason(to_free));
3831         if (unlikely(contended))
3832                 spin_unlock(&q->busylock);
3833         return rc;
3834 }
3835
3836 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3837 static void skb_update_prio(struct sk_buff *skb)
3838 {
3839         const struct netprio_map *map;
3840         const struct sock *sk;
3841         unsigned int prioidx;
3842
3843         if (skb->priority)
3844                 return;
3845         map = rcu_dereference_bh(skb->dev->priomap);
3846         if (!map)
3847                 return;
3848         sk = skb_to_full_sk(skb);
3849         if (!sk)
3850                 return;
3851
3852         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853
3854         if (prioidx < map->priomap_len)
3855                 skb->priority = map->priomap[prioidx];
3856 }
3857 #else
3858 #define skb_update_prio(skb)
3859 #endif
3860
3861 /**
3862  *      dev_loopback_xmit - loop back @skb
3863  *      @net: network namespace this loopback is happening in
3864  *      @sk:  sk needed to be a netfilter okfn
3865  *      @skb: buffer to transmit
3866  */
3867 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3868 {
3869         skb_reset_mac_header(skb);
3870         __skb_pull(skb, skb_network_offset(skb));
3871         skb->pkt_type = PACKET_LOOPBACK;
3872         if (skb->ip_summed == CHECKSUM_NONE)
3873                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3874         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3875         skb_dst_force(skb);
3876         netif_rx(skb);
3877         return 0;
3878 }
3879 EXPORT_SYMBOL(dev_loopback_xmit);
3880
3881 #ifdef CONFIG_NET_EGRESS
3882 static struct netdev_queue *
3883 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3884 {
3885         int qm = skb_get_queue_mapping(skb);
3886
3887         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3888 }
3889
3890 static bool netdev_xmit_txqueue_skipped(void)
3891 {
3892         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3893 }
3894
3895 void netdev_xmit_skip_txqueue(bool skip)
3896 {
3897         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3898 }
3899 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3900 #endif /* CONFIG_NET_EGRESS */
3901
3902 #ifdef CONFIG_NET_XGRESS
3903 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3904                   enum skb_drop_reason *drop_reason)
3905 {
3906         int ret = TC_ACT_UNSPEC;
3907 #ifdef CONFIG_NET_CLS_ACT
3908         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3909         struct tcf_result res;
3910
3911         if (!miniq)
3912                 return ret;
3913
3914         tc_skb_cb(skb)->mru = 0;
3915         tc_skb_cb(skb)->post_ct = false;
3916         tcf_set_drop_reason(skb, *drop_reason);
3917
3918         mini_qdisc_bstats_cpu_update(miniq, skb);
3919         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3920         /* Only tcf related quirks below. */
3921         switch (ret) {
3922         case TC_ACT_SHOT:
3923                 *drop_reason = tcf_get_drop_reason(skb);
3924                 mini_qdisc_qstats_cpu_drop(miniq);
3925                 break;
3926         case TC_ACT_OK:
3927         case TC_ACT_RECLASSIFY:
3928                 skb->tc_index = TC_H_MIN(res.classid);
3929                 break;
3930         }
3931 #endif /* CONFIG_NET_CLS_ACT */
3932         return ret;
3933 }
3934
3935 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3936
3937 void tcx_inc(void)
3938 {
3939         static_branch_inc(&tcx_needed_key);
3940 }
3941
3942 void tcx_dec(void)
3943 {
3944         static_branch_dec(&tcx_needed_key);
3945 }
3946
3947 static __always_inline enum tcx_action_base
3948 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3949         const bool needs_mac)
3950 {
3951         const struct bpf_mprog_fp *fp;
3952         const struct bpf_prog *prog;
3953         int ret = TCX_NEXT;
3954
3955         if (needs_mac)
3956                 __skb_push(skb, skb->mac_len);
3957         bpf_mprog_foreach_prog(entry, fp, prog) {
3958                 bpf_compute_data_pointers(skb);
3959                 ret = bpf_prog_run(prog, skb);
3960                 if (ret != TCX_NEXT)
3961                         break;
3962         }
3963         if (needs_mac)
3964                 __skb_pull(skb, skb->mac_len);
3965         return tcx_action_code(skb, ret);
3966 }
3967
3968 static __always_inline struct sk_buff *
3969 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3970                    struct net_device *orig_dev, bool *another)
3971 {
3972         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3973         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3974         int sch_ret;
3975
3976         if (!entry)
3977                 return skb;
3978         if (*pt_prev) {
3979                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3980                 *pt_prev = NULL;
3981         }
3982
3983         qdisc_skb_cb(skb)->pkt_len = skb->len;
3984         tcx_set_ingress(skb, true);
3985
3986         if (static_branch_unlikely(&tcx_needed_key)) {
3987                 sch_ret = tcx_run(entry, skb, true);
3988                 if (sch_ret != TC_ACT_UNSPEC)
3989                         goto ingress_verdict;
3990         }
3991         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
3992 ingress_verdict:
3993         switch (sch_ret) {
3994         case TC_ACT_REDIRECT:
3995                 /* skb_mac_header check was done by BPF, so we can safely
3996                  * push the L2 header back before redirecting to another
3997                  * netdev.
3998                  */
3999                 __skb_push(skb, skb->mac_len);
4000                 if (skb_do_redirect(skb) == -EAGAIN) {
4001                         __skb_pull(skb, skb->mac_len);
4002                         *another = true;
4003                         break;
4004                 }
4005                 *ret = NET_RX_SUCCESS;
4006                 return NULL;
4007         case TC_ACT_SHOT:
4008                 kfree_skb_reason(skb, drop_reason);
4009                 *ret = NET_RX_DROP;
4010                 return NULL;
4011         /* used by tc_run */
4012         case TC_ACT_STOLEN:
4013         case TC_ACT_QUEUED:
4014         case TC_ACT_TRAP:
4015                 consume_skb(skb);
4016                 fallthrough;
4017         case TC_ACT_CONSUMED:
4018                 *ret = NET_RX_SUCCESS;
4019                 return NULL;
4020         }
4021
4022         return skb;
4023 }
4024
4025 static __always_inline struct sk_buff *
4026 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4027 {
4028         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4029         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4030         int sch_ret;
4031
4032         if (!entry)
4033                 return skb;
4034
4035         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4036          * already set by the caller.
4037          */
4038         if (static_branch_unlikely(&tcx_needed_key)) {
4039                 sch_ret = tcx_run(entry, skb, false);
4040                 if (sch_ret != TC_ACT_UNSPEC)
4041                         goto egress_verdict;
4042         }
4043         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4044 egress_verdict:
4045         switch (sch_ret) {
4046         case TC_ACT_REDIRECT:
4047                 /* No need to push/pop skb's mac_header here on egress! */
4048                 skb_do_redirect(skb);
4049                 *ret = NET_XMIT_SUCCESS;
4050                 return NULL;
4051         case TC_ACT_SHOT:
4052                 kfree_skb_reason(skb, drop_reason);
4053                 *ret = NET_XMIT_DROP;
4054                 return NULL;
4055         /* used by tc_run */
4056         case TC_ACT_STOLEN:
4057         case TC_ACT_QUEUED:
4058         case TC_ACT_TRAP:
4059                 consume_skb(skb);
4060                 fallthrough;
4061         case TC_ACT_CONSUMED:
4062                 *ret = NET_XMIT_SUCCESS;
4063                 return NULL;
4064         }
4065
4066         return skb;
4067 }
4068 #else
4069 static __always_inline struct sk_buff *
4070 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4071                    struct net_device *orig_dev, bool *another)
4072 {
4073         return skb;
4074 }
4075
4076 static __always_inline struct sk_buff *
4077 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4078 {
4079         return skb;
4080 }
4081 #endif /* CONFIG_NET_XGRESS */
4082
4083 #ifdef CONFIG_XPS
4084 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4085                                struct xps_dev_maps *dev_maps, unsigned int tci)
4086 {
4087         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4088         struct xps_map *map;
4089         int queue_index = -1;
4090
4091         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4092                 return queue_index;
4093
4094         tci *= dev_maps->num_tc;
4095         tci += tc;
4096
4097         map = rcu_dereference(dev_maps->attr_map[tci]);
4098         if (map) {
4099                 if (map->len == 1)
4100                         queue_index = map->queues[0];
4101                 else
4102                         queue_index = map->queues[reciprocal_scale(
4103                                                 skb_get_hash(skb), map->len)];
4104                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4105                         queue_index = -1;
4106         }
4107         return queue_index;
4108 }
4109 #endif
4110
4111 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4112                          struct sk_buff *skb)
4113 {
4114 #ifdef CONFIG_XPS
4115         struct xps_dev_maps *dev_maps;
4116         struct sock *sk = skb->sk;
4117         int queue_index = -1;
4118
4119         if (!static_key_false(&xps_needed))
4120                 return -1;
4121
4122         rcu_read_lock();
4123         if (!static_key_false(&xps_rxqs_needed))
4124                 goto get_cpus_map;
4125
4126         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4127         if (dev_maps) {
4128                 int tci = sk_rx_queue_get(sk);
4129
4130                 if (tci >= 0)
4131                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4132                                                           tci);
4133         }
4134
4135 get_cpus_map:
4136         if (queue_index < 0) {
4137                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4138                 if (dev_maps) {
4139                         unsigned int tci = skb->sender_cpu - 1;
4140
4141                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4142                                                           tci);
4143                 }
4144         }
4145         rcu_read_unlock();
4146
4147         return queue_index;
4148 #else
4149         return -1;
4150 #endif
4151 }
4152
4153 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4154                      struct net_device *sb_dev)
4155 {
4156         return 0;
4157 }
4158 EXPORT_SYMBOL(dev_pick_tx_zero);
4159
4160 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4161                        struct net_device *sb_dev)
4162 {
4163         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4164 }
4165 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4166
4167 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4168                      struct net_device *sb_dev)
4169 {
4170         struct sock *sk = skb->sk;
4171         int queue_index = sk_tx_queue_get(sk);
4172
4173         sb_dev = sb_dev ? : dev;
4174
4175         if (queue_index < 0 || skb->ooo_okay ||
4176             queue_index >= dev->real_num_tx_queues) {
4177                 int new_index = get_xps_queue(dev, sb_dev, skb);
4178
4179                 if (new_index < 0)
4180                         new_index = skb_tx_hash(dev, sb_dev, skb);
4181
4182                 if (queue_index != new_index && sk &&
4183                     sk_fullsock(sk) &&
4184                     rcu_access_pointer(sk->sk_dst_cache))
4185                         sk_tx_queue_set(sk, new_index);
4186
4187                 queue_index = new_index;
4188         }
4189
4190         return queue_index;
4191 }
4192 EXPORT_SYMBOL(netdev_pick_tx);
4193
4194 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4195                                          struct sk_buff *skb,
4196                                          struct net_device *sb_dev)
4197 {
4198         int queue_index = 0;
4199
4200 #ifdef CONFIG_XPS
4201         u32 sender_cpu = skb->sender_cpu - 1;
4202
4203         if (sender_cpu >= (u32)NR_CPUS)
4204                 skb->sender_cpu = raw_smp_processor_id() + 1;
4205 #endif
4206
4207         if (dev->real_num_tx_queues != 1) {
4208                 const struct net_device_ops *ops = dev->netdev_ops;
4209
4210                 if (ops->ndo_select_queue)
4211                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4212                 else
4213                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4214
4215                 queue_index = netdev_cap_txqueue(dev, queue_index);
4216         }
4217
4218         skb_set_queue_mapping(skb, queue_index);
4219         return netdev_get_tx_queue(dev, queue_index);
4220 }
4221
4222 /**
4223  * __dev_queue_xmit() - transmit a buffer
4224  * @skb:        buffer to transmit
4225  * @sb_dev:     suboordinate device used for L2 forwarding offload
4226  *
4227  * Queue a buffer for transmission to a network device. The caller must
4228  * have set the device and priority and built the buffer before calling
4229  * this function. The function can be called from an interrupt.
4230  *
4231  * When calling this method, interrupts MUST be enabled. This is because
4232  * the BH enable code must have IRQs enabled so that it will not deadlock.
4233  *
4234  * Regardless of the return value, the skb is consumed, so it is currently
4235  * difficult to retry a send to this method. (You can bump the ref count
4236  * before sending to hold a reference for retry if you are careful.)
4237  *
4238  * Return:
4239  * * 0                          - buffer successfully transmitted
4240  * * positive qdisc return code - NET_XMIT_DROP etc.
4241  * * negative errno             - other errors
4242  */
4243 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4244 {
4245         struct net_device *dev = skb->dev;
4246         struct netdev_queue *txq = NULL;
4247         struct Qdisc *q;
4248         int rc = -ENOMEM;
4249         bool again = false;
4250
4251         skb_reset_mac_header(skb);
4252         skb_assert_len(skb);
4253
4254         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4255                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4256
4257         /* Disable soft irqs for various locks below. Also
4258          * stops preemption for RCU.
4259          */
4260         rcu_read_lock_bh();
4261
4262         skb_update_prio(skb);
4263
4264         qdisc_pkt_len_init(skb);
4265         tcx_set_ingress(skb, false);
4266 #ifdef CONFIG_NET_EGRESS
4267         if (static_branch_unlikely(&egress_needed_key)) {
4268                 if (nf_hook_egress_active()) {
4269                         skb = nf_hook_egress(skb, &rc, dev);
4270                         if (!skb)
4271                                 goto out;
4272                 }
4273
4274                 netdev_xmit_skip_txqueue(false);
4275
4276                 nf_skip_egress(skb, true);
4277                 skb = sch_handle_egress(skb, &rc, dev);
4278                 if (!skb)
4279                         goto out;
4280                 nf_skip_egress(skb, false);
4281
4282                 if (netdev_xmit_txqueue_skipped())
4283                         txq = netdev_tx_queue_mapping(dev, skb);
4284         }
4285 #endif
4286         /* If device/qdisc don't need skb->dst, release it right now while
4287          * its hot in this cpu cache.
4288          */
4289         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4290                 skb_dst_drop(skb);
4291         else
4292                 skb_dst_force(skb);
4293
4294         if (!txq)
4295                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4296
4297         q = rcu_dereference_bh(txq->qdisc);
4298
4299         trace_net_dev_queue(skb);
4300         if (q->enqueue) {
4301                 rc = __dev_xmit_skb(skb, q, dev, txq);
4302                 goto out;
4303         }
4304
4305         /* The device has no queue. Common case for software devices:
4306          * loopback, all the sorts of tunnels...
4307
4308          * Really, it is unlikely that netif_tx_lock protection is necessary
4309          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4310          * counters.)
4311          * However, it is possible, that they rely on protection
4312          * made by us here.
4313
4314          * Check this and shot the lock. It is not prone from deadlocks.
4315          *Either shot noqueue qdisc, it is even simpler 8)
4316          */
4317         if (dev->flags & IFF_UP) {
4318                 int cpu = smp_processor_id(); /* ok because BHs are off */
4319
4320                 /* Other cpus might concurrently change txq->xmit_lock_owner
4321                  * to -1 or to their cpu id, but not to our id.
4322                  */
4323                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4324                         if (dev_xmit_recursion())
4325                                 goto recursion_alert;
4326
4327                         skb = validate_xmit_skb(skb, dev, &again);
4328                         if (!skb)
4329                                 goto out;
4330
4331                         HARD_TX_LOCK(dev, txq, cpu);
4332
4333                         if (!netif_xmit_stopped(txq)) {
4334                                 dev_xmit_recursion_inc();
4335                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4336                                 dev_xmit_recursion_dec();
4337                                 if (dev_xmit_complete(rc)) {
4338                                         HARD_TX_UNLOCK(dev, txq);
4339                                         goto out;
4340                                 }
4341                         }
4342                         HARD_TX_UNLOCK(dev, txq);
4343                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4344                                              dev->name);
4345                 } else {
4346                         /* Recursion is detected! It is possible,
4347                          * unfortunately
4348                          */
4349 recursion_alert:
4350                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4351                                              dev->name);
4352                 }
4353         }
4354
4355         rc = -ENETDOWN;
4356         rcu_read_unlock_bh();
4357
4358         dev_core_stats_tx_dropped_inc(dev);
4359         kfree_skb_list(skb);
4360         return rc;
4361 out:
4362         rcu_read_unlock_bh();
4363         return rc;
4364 }
4365 EXPORT_SYMBOL(__dev_queue_xmit);
4366
4367 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4368 {
4369         struct net_device *dev = skb->dev;
4370         struct sk_buff *orig_skb = skb;
4371         struct netdev_queue *txq;
4372         int ret = NETDEV_TX_BUSY;
4373         bool again = false;
4374
4375         if (unlikely(!netif_running(dev) ||
4376                      !netif_carrier_ok(dev)))
4377                 goto drop;
4378
4379         skb = validate_xmit_skb_list(skb, dev, &again);
4380         if (skb != orig_skb)
4381                 goto drop;
4382
4383         skb_set_queue_mapping(skb, queue_id);
4384         txq = skb_get_tx_queue(dev, skb);
4385
4386         local_bh_disable();
4387
4388         dev_xmit_recursion_inc();
4389         HARD_TX_LOCK(dev, txq, smp_processor_id());
4390         if (!netif_xmit_frozen_or_drv_stopped(txq))
4391                 ret = netdev_start_xmit(skb, dev, txq, false);
4392         HARD_TX_UNLOCK(dev, txq);
4393         dev_xmit_recursion_dec();
4394
4395         local_bh_enable();
4396         return ret;
4397 drop:
4398         dev_core_stats_tx_dropped_inc(dev);
4399         kfree_skb_list(skb);
4400         return NET_XMIT_DROP;
4401 }
4402 EXPORT_SYMBOL(__dev_direct_xmit);
4403
4404 /*************************************************************************
4405  *                      Receiver routines
4406  *************************************************************************/
4407
4408 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4409 int weight_p __read_mostly = 64;           /* old backlog weight */
4410 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4411 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4412
4413 /* Called with irq disabled */
4414 static inline void ____napi_schedule(struct softnet_data *sd,
4415                                      struct napi_struct *napi)
4416 {
4417         struct task_struct *thread;
4418
4419         lockdep_assert_irqs_disabled();
4420
4421         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4422                 /* Paired with smp_mb__before_atomic() in
4423                  * napi_enable()/dev_set_threaded().
4424                  * Use READ_ONCE() to guarantee a complete
4425                  * read on napi->thread. Only call
4426                  * wake_up_process() when it's not NULL.
4427                  */
4428                 thread = READ_ONCE(napi->thread);
4429                 if (thread) {
4430                         /* Avoid doing set_bit() if the thread is in
4431                          * INTERRUPTIBLE state, cause napi_thread_wait()
4432                          * makes sure to proceed with napi polling
4433                          * if the thread is explicitly woken from here.
4434                          */
4435                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4436                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4437                         wake_up_process(thread);
4438                         return;
4439                 }
4440         }
4441
4442         list_add_tail(&napi->poll_list, &sd->poll_list);
4443         WRITE_ONCE(napi->list_owner, smp_processor_id());
4444         /* If not called from net_rx_action()
4445          * we have to raise NET_RX_SOFTIRQ.
4446          */
4447         if (!sd->in_net_rx_action)
4448                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4449 }
4450
4451 #ifdef CONFIG_RPS
4452
4453 struct static_key_false rps_needed __read_mostly;
4454 EXPORT_SYMBOL(rps_needed);
4455 struct static_key_false rfs_needed __read_mostly;
4456 EXPORT_SYMBOL(rfs_needed);
4457
4458 static struct rps_dev_flow *
4459 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4460             struct rps_dev_flow *rflow, u16 next_cpu)
4461 {
4462         if (next_cpu < nr_cpu_ids) {
4463 #ifdef CONFIG_RFS_ACCEL
4464                 struct netdev_rx_queue *rxqueue;
4465                 struct rps_dev_flow_table *flow_table;
4466                 struct rps_dev_flow *old_rflow;
4467                 u32 flow_id;
4468                 u16 rxq_index;
4469                 int rc;
4470
4471                 /* Should we steer this flow to a different hardware queue? */
4472                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4473                     !(dev->features & NETIF_F_NTUPLE))
4474                         goto out;
4475                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4476                 if (rxq_index == skb_get_rx_queue(skb))
4477                         goto out;
4478
4479                 rxqueue = dev->_rx + rxq_index;
4480                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4481                 if (!flow_table)
4482                         goto out;
4483                 flow_id = skb_get_hash(skb) & flow_table->mask;
4484                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4485                                                         rxq_index, flow_id);
4486                 if (rc < 0)
4487                         goto out;
4488                 old_rflow = rflow;
4489                 rflow = &flow_table->flows[flow_id];
4490                 rflow->filter = rc;
4491                 if (old_rflow->filter == rflow->filter)
4492                         old_rflow->filter = RPS_NO_FILTER;
4493         out:
4494 #endif
4495                 rflow->last_qtail =
4496                         per_cpu(softnet_data, next_cpu).input_queue_head;
4497         }
4498
4499         rflow->cpu = next_cpu;
4500         return rflow;
4501 }
4502
4503 /*
4504  * get_rps_cpu is called from netif_receive_skb and returns the target
4505  * CPU from the RPS map of the receiving queue for a given skb.
4506  * rcu_read_lock must be held on entry.
4507  */
4508 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4509                        struct rps_dev_flow **rflowp)
4510 {
4511         const struct rps_sock_flow_table *sock_flow_table;
4512         struct netdev_rx_queue *rxqueue = dev->_rx;
4513         struct rps_dev_flow_table *flow_table;
4514         struct rps_map *map;
4515         int cpu = -1;
4516         u32 tcpu;
4517         u32 hash;
4518
4519         if (skb_rx_queue_recorded(skb)) {
4520                 u16 index = skb_get_rx_queue(skb);
4521
4522                 if (unlikely(index >= dev->real_num_rx_queues)) {
4523                         WARN_ONCE(dev->real_num_rx_queues > 1,
4524                                   "%s received packet on queue %u, but number "
4525                                   "of RX queues is %u\n",
4526                                   dev->name, index, dev->real_num_rx_queues);
4527                         goto done;
4528                 }
4529                 rxqueue += index;
4530         }
4531
4532         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4533
4534         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4535         map = rcu_dereference(rxqueue->rps_map);
4536         if (!flow_table && !map)
4537                 goto done;
4538
4539         skb_reset_network_header(skb);
4540         hash = skb_get_hash(skb);
4541         if (!hash)
4542                 goto done;
4543
4544         sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4545         if (flow_table && sock_flow_table) {
4546                 struct rps_dev_flow *rflow;
4547                 u32 next_cpu;
4548                 u32 ident;
4549
4550                 /* First check into global flow table if there is a match.
4551                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4552                  */
4553                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4554                 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4555                         goto try_rps;
4556
4557                 next_cpu = ident & net_hotdata.rps_cpu_mask;
4558
4559                 /* OK, now we know there is a match,
4560                  * we can look at the local (per receive queue) flow table
4561                  */
4562                 rflow = &flow_table->flows[hash & flow_table->mask];
4563                 tcpu = rflow->cpu;
4564
4565                 /*
4566                  * If the desired CPU (where last recvmsg was done) is
4567                  * different from current CPU (one in the rx-queue flow
4568                  * table entry), switch if one of the following holds:
4569                  *   - Current CPU is unset (>= nr_cpu_ids).
4570                  *   - Current CPU is offline.
4571                  *   - The current CPU's queue tail has advanced beyond the
4572                  *     last packet that was enqueued using this table entry.
4573                  *     This guarantees that all previous packets for the flow
4574                  *     have been dequeued, thus preserving in order delivery.
4575                  */
4576                 if (unlikely(tcpu != next_cpu) &&
4577                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4578                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4579                       rflow->last_qtail)) >= 0)) {
4580                         tcpu = next_cpu;
4581                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4582                 }
4583
4584                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4585                         *rflowp = rflow;
4586                         cpu = tcpu;
4587                         goto done;
4588                 }
4589         }
4590
4591 try_rps:
4592
4593         if (map) {
4594                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4595                 if (cpu_online(tcpu)) {
4596                         cpu = tcpu;
4597                         goto done;
4598                 }
4599         }
4600
4601 done:
4602         return cpu;
4603 }
4604
4605 #ifdef CONFIG_RFS_ACCEL
4606
4607 /**
4608  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4609  * @dev: Device on which the filter was set
4610  * @rxq_index: RX queue index
4611  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4612  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4613  *
4614  * Drivers that implement ndo_rx_flow_steer() should periodically call
4615  * this function for each installed filter and remove the filters for
4616  * which it returns %true.
4617  */
4618 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4619                          u32 flow_id, u16 filter_id)
4620 {
4621         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4622         struct rps_dev_flow_table *flow_table;
4623         struct rps_dev_flow *rflow;
4624         bool expire = true;
4625         unsigned int cpu;
4626
4627         rcu_read_lock();
4628         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4629         if (flow_table && flow_id <= flow_table->mask) {
4630                 rflow = &flow_table->flows[flow_id];
4631                 cpu = READ_ONCE(rflow->cpu);
4632                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4633                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4634                            rflow->last_qtail) <
4635                      (int)(10 * flow_table->mask)))
4636                         expire = false;
4637         }
4638         rcu_read_unlock();
4639         return expire;
4640 }
4641 EXPORT_SYMBOL(rps_may_expire_flow);
4642
4643 #endif /* CONFIG_RFS_ACCEL */
4644
4645 /* Called from hardirq (IPI) context */
4646 static void rps_trigger_softirq(void *data)
4647 {
4648         struct softnet_data *sd = data;
4649
4650         ____napi_schedule(sd, &sd->backlog);
4651         sd->received_rps++;
4652 }
4653
4654 #endif /* CONFIG_RPS */
4655
4656 /* Called from hardirq (IPI) context */
4657 static void trigger_rx_softirq(void *data)
4658 {
4659         struct softnet_data *sd = data;
4660
4661         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4662         smp_store_release(&sd->defer_ipi_scheduled, 0);
4663 }
4664
4665 /*
4666  * After we queued a packet into sd->input_pkt_queue,
4667  * we need to make sure this queue is serviced soon.
4668  *
4669  * - If this is another cpu queue, link it to our rps_ipi_list,
4670  *   and make sure we will process rps_ipi_list from net_rx_action().
4671  *
4672  * - If this is our own queue, NAPI schedule our backlog.
4673  *   Note that this also raises NET_RX_SOFTIRQ.
4674  */
4675 static void napi_schedule_rps(struct softnet_data *sd)
4676 {
4677         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4678
4679 #ifdef CONFIG_RPS
4680         if (sd != mysd) {
4681                 sd->rps_ipi_next = mysd->rps_ipi_list;
4682                 mysd->rps_ipi_list = sd;
4683
4684                 /* If not called from net_rx_action() or napi_threaded_poll()
4685                  * we have to raise NET_RX_SOFTIRQ.
4686                  */
4687                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4688                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4689                 return;
4690         }
4691 #endif /* CONFIG_RPS */
4692         __napi_schedule_irqoff(&mysd->backlog);
4693 }
4694
4695 #ifdef CONFIG_NET_FLOW_LIMIT
4696 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4697 #endif
4698
4699 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4700 {
4701 #ifdef CONFIG_NET_FLOW_LIMIT
4702         struct sd_flow_limit *fl;
4703         struct softnet_data *sd;
4704         unsigned int old_flow, new_flow;
4705
4706         if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4707                 return false;
4708
4709         sd = this_cpu_ptr(&softnet_data);
4710
4711         rcu_read_lock();
4712         fl = rcu_dereference(sd->flow_limit);
4713         if (fl) {
4714                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4715                 old_flow = fl->history[fl->history_head];
4716                 fl->history[fl->history_head] = new_flow;
4717
4718                 fl->history_head++;
4719                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4720
4721                 if (likely(fl->buckets[old_flow]))
4722                         fl->buckets[old_flow]--;
4723
4724                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4725                         fl->count++;
4726                         rcu_read_unlock();
4727                         return true;
4728                 }
4729         }
4730         rcu_read_unlock();
4731 #endif
4732         return false;
4733 }
4734
4735 /*
4736  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4737  * queue (may be a remote CPU queue).
4738  */
4739 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4740                               unsigned int *qtail)
4741 {
4742         enum skb_drop_reason reason;
4743         struct softnet_data *sd;
4744         unsigned long flags;
4745         unsigned int qlen;
4746
4747         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4748         sd = &per_cpu(softnet_data, cpu);
4749
4750         rps_lock_irqsave(sd, &flags);
4751         if (!netif_running(skb->dev))
4752                 goto drop;
4753         qlen = skb_queue_len(&sd->input_pkt_queue);
4754         if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4755             !skb_flow_limit(skb, qlen)) {
4756                 if (qlen) {
4757 enqueue:
4758                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4759                         input_queue_tail_incr_save(sd, qtail);
4760                         rps_unlock_irq_restore(sd, &flags);
4761                         return NET_RX_SUCCESS;
4762                 }
4763
4764                 /* Schedule NAPI for backlog device
4765                  * We can use non atomic operation since we own the queue lock
4766                  */
4767                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4768                         napi_schedule_rps(sd);
4769                 goto enqueue;
4770         }
4771         reason = SKB_DROP_REASON_CPU_BACKLOG;
4772
4773 drop:
4774         sd->dropped++;
4775         rps_unlock_irq_restore(sd, &flags);
4776
4777         dev_core_stats_rx_dropped_inc(skb->dev);
4778         kfree_skb_reason(skb, reason);
4779         return NET_RX_DROP;
4780 }
4781
4782 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4783 {
4784         struct net_device *dev = skb->dev;
4785         struct netdev_rx_queue *rxqueue;
4786
4787         rxqueue = dev->_rx;
4788
4789         if (skb_rx_queue_recorded(skb)) {
4790                 u16 index = skb_get_rx_queue(skb);
4791
4792                 if (unlikely(index >= dev->real_num_rx_queues)) {
4793                         WARN_ONCE(dev->real_num_rx_queues > 1,
4794                                   "%s received packet on queue %u, but number "
4795                                   "of RX queues is %u\n",
4796                                   dev->name, index, dev->real_num_rx_queues);
4797
4798                         return rxqueue; /* Return first rxqueue */
4799                 }
4800                 rxqueue += index;
4801         }
4802         return rxqueue;
4803 }
4804
4805 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4806                              struct bpf_prog *xdp_prog)
4807 {
4808         void *orig_data, *orig_data_end, *hard_start;
4809         struct netdev_rx_queue *rxqueue;
4810         bool orig_bcast, orig_host;
4811         u32 mac_len, frame_sz;
4812         __be16 orig_eth_type;
4813         struct ethhdr *eth;
4814         u32 metalen, act;
4815         int off;
4816
4817         /* The XDP program wants to see the packet starting at the MAC
4818          * header.
4819          */
4820         mac_len = skb->data - skb_mac_header(skb);
4821         hard_start = skb->data - skb_headroom(skb);
4822
4823         /* SKB "head" area always have tailroom for skb_shared_info */
4824         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4825         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4826
4827         rxqueue = netif_get_rxqueue(skb);
4828         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4829         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4830                          skb_headlen(skb) + mac_len, true);
4831         if (skb_is_nonlinear(skb)) {
4832                 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4833                 xdp_buff_set_frags_flag(xdp);
4834         } else {
4835                 xdp_buff_clear_frags_flag(xdp);
4836         }
4837
4838         orig_data_end = xdp->data_end;
4839         orig_data = xdp->data;
4840         eth = (struct ethhdr *)xdp->data;
4841         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4842         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4843         orig_eth_type = eth->h_proto;
4844
4845         act = bpf_prog_run_xdp(xdp_prog, xdp);
4846
4847         /* check if bpf_xdp_adjust_head was used */
4848         off = xdp->data - orig_data;
4849         if (off) {
4850                 if (off > 0)
4851                         __skb_pull(skb, off);
4852                 else if (off < 0)
4853                         __skb_push(skb, -off);
4854
4855                 skb->mac_header += off;
4856                 skb_reset_network_header(skb);
4857         }
4858
4859         /* check if bpf_xdp_adjust_tail was used */
4860         off = xdp->data_end - orig_data_end;
4861         if (off != 0) {
4862                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4863                 skb->len += off; /* positive on grow, negative on shrink */
4864         }
4865
4866         /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4867          * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4868          */
4869         if (xdp_buff_has_frags(xdp))
4870                 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4871         else
4872                 skb->data_len = 0;
4873
4874         /* check if XDP changed eth hdr such SKB needs update */
4875         eth = (struct ethhdr *)xdp->data;
4876         if ((orig_eth_type != eth->h_proto) ||
4877             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4878                                                   skb->dev->dev_addr)) ||
4879             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4880                 __skb_push(skb, ETH_HLEN);
4881                 skb->pkt_type = PACKET_HOST;
4882                 skb->protocol = eth_type_trans(skb, skb->dev);
4883         }
4884
4885         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4886          * before calling us again on redirect path. We do not call do_redirect
4887          * as we leave that up to the caller.
4888          *
4889          * Caller is responsible for managing lifetime of skb (i.e. calling
4890          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4891          */
4892         switch (act) {
4893         case XDP_REDIRECT:
4894         case XDP_TX:
4895                 __skb_push(skb, mac_len);
4896                 break;
4897         case XDP_PASS:
4898                 metalen = xdp->data - xdp->data_meta;
4899                 if (metalen)
4900                         skb_metadata_set(skb, metalen);
4901                 break;
4902         }
4903
4904         return act;
4905 }
4906
4907 static int
4908 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4909 {
4910         struct sk_buff *skb = *pskb;
4911         int err, hroom, troom;
4912
4913         if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4914                 return 0;
4915
4916         /* In case we have to go down the path and also linearize,
4917          * then lets do the pskb_expand_head() work just once here.
4918          */
4919         hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4920         troom = skb->tail + skb->data_len - skb->end;
4921         err = pskb_expand_head(skb,
4922                                hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4923                                troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4924         if (err)
4925                 return err;
4926
4927         return skb_linearize(skb);
4928 }
4929
4930 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4931                                      struct xdp_buff *xdp,
4932                                      struct bpf_prog *xdp_prog)
4933 {
4934         struct sk_buff *skb = *pskb;
4935         u32 mac_len, act = XDP_DROP;
4936
4937         /* Reinjected packets coming from act_mirred or similar should
4938          * not get XDP generic processing.
4939          */
4940         if (skb_is_redirected(skb))
4941                 return XDP_PASS;
4942
4943         /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4944          * bytes. This is the guarantee that also native XDP provides,
4945          * thus we need to do it here as well.
4946          */
4947         mac_len = skb->data - skb_mac_header(skb);
4948         __skb_push(skb, mac_len);
4949
4950         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4951             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4952                 if (netif_skb_check_for_xdp(pskb, xdp_prog))
4953                         goto do_drop;
4954         }
4955
4956         __skb_pull(*pskb, mac_len);
4957
4958         act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
4959         switch (act) {
4960         case XDP_REDIRECT:
4961         case XDP_TX:
4962         case XDP_PASS:
4963                 break;
4964         default:
4965                 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
4966                 fallthrough;
4967         case XDP_ABORTED:
4968                 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
4969                 fallthrough;
4970         case XDP_DROP:
4971         do_drop:
4972                 kfree_skb(*pskb);
4973                 break;
4974         }
4975
4976         return act;
4977 }
4978
4979 /* When doing generic XDP we have to bypass the qdisc layer and the
4980  * network taps in order to match in-driver-XDP behavior. This also means
4981  * that XDP packets are able to starve other packets going through a qdisc,
4982  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4983  * queues, so they do not have this starvation issue.
4984  */
4985 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4986 {
4987         struct net_device *dev = skb->dev;
4988         struct netdev_queue *txq;
4989         bool free_skb = true;
4990         int cpu, rc;
4991
4992         txq = netdev_core_pick_tx(dev, skb, NULL);
4993         cpu = smp_processor_id();
4994         HARD_TX_LOCK(dev, txq, cpu);
4995         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4996                 rc = netdev_start_xmit(skb, dev, txq, 0);
4997                 if (dev_xmit_complete(rc))
4998                         free_skb = false;
4999         }
5000         HARD_TX_UNLOCK(dev, txq);
5001         if (free_skb) {
5002                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5003                 dev_core_stats_tx_dropped_inc(dev);
5004                 kfree_skb(skb);
5005         }
5006 }
5007
5008 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5009
5010 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5011 {
5012         if (xdp_prog) {
5013                 struct xdp_buff xdp;
5014                 u32 act;
5015                 int err;
5016
5017                 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5018                 if (act != XDP_PASS) {
5019                         switch (act) {
5020                         case XDP_REDIRECT:
5021                                 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5022                                                               &xdp, xdp_prog);
5023                                 if (err)
5024                                         goto out_redir;
5025                                 break;
5026                         case XDP_TX:
5027                                 generic_xdp_tx(*pskb, xdp_prog);
5028                                 break;
5029                         }
5030                         return XDP_DROP;
5031                 }
5032         }
5033         return XDP_PASS;
5034 out_redir:
5035         kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5036         return XDP_DROP;
5037 }
5038 EXPORT_SYMBOL_GPL(do_xdp_generic);
5039
5040 static int netif_rx_internal(struct sk_buff *skb)
5041 {
5042         int ret;
5043
5044         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5045
5046         trace_netif_rx(skb);
5047
5048 #ifdef CONFIG_RPS
5049         if (static_branch_unlikely(&rps_needed)) {
5050                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5051                 int cpu;
5052
5053                 rcu_read_lock();
5054
5055                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5056                 if (cpu < 0)
5057                         cpu = smp_processor_id();
5058
5059                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5060
5061                 rcu_read_unlock();
5062         } else
5063 #endif
5064         {
5065                 unsigned int qtail;
5066
5067                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5068         }
5069         return ret;
5070 }
5071
5072 /**
5073  *      __netif_rx      -       Slightly optimized version of netif_rx
5074  *      @skb: buffer to post
5075  *
5076  *      This behaves as netif_rx except that it does not disable bottom halves.
5077  *      As a result this function may only be invoked from the interrupt context
5078  *      (either hard or soft interrupt).
5079  */
5080 int __netif_rx(struct sk_buff *skb)
5081 {
5082         int ret;
5083
5084         lockdep_assert_once(hardirq_count() | softirq_count());
5085
5086         trace_netif_rx_entry(skb);
5087         ret = netif_rx_internal(skb);
5088         trace_netif_rx_exit(ret);
5089         return ret;
5090 }
5091 EXPORT_SYMBOL(__netif_rx);
5092
5093 /**
5094  *      netif_rx        -       post buffer to the network code
5095  *      @skb: buffer to post
5096  *
5097  *      This function receives a packet from a device driver and queues it for
5098  *      the upper (protocol) levels to process via the backlog NAPI device. It
5099  *      always succeeds. The buffer may be dropped during processing for
5100  *      congestion control or by the protocol layers.
5101  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5102  *      driver should use NAPI and GRO.
5103  *      This function can used from interrupt and from process context. The
5104  *      caller from process context must not disable interrupts before invoking
5105  *      this function.
5106  *
5107  *      return values:
5108  *      NET_RX_SUCCESS  (no congestion)
5109  *      NET_RX_DROP     (packet was dropped)
5110  *
5111  */
5112 int netif_rx(struct sk_buff *skb)
5113 {
5114         bool need_bh_off = !(hardirq_count() | softirq_count());
5115         int ret;
5116
5117         if (need_bh_off)
5118                 local_bh_disable();
5119         trace_netif_rx_entry(skb);
5120         ret = netif_rx_internal(skb);
5121         trace_netif_rx_exit(ret);
5122         if (need_bh_off)
5123                 local_bh_enable();
5124         return ret;
5125 }
5126 EXPORT_SYMBOL(netif_rx);
5127
5128 static __latent_entropy void net_tx_action(struct softirq_action *h)
5129 {
5130         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5131
5132         if (sd->completion_queue) {
5133                 struct sk_buff *clist;
5134
5135                 local_irq_disable();
5136                 clist = sd->completion_queue;
5137                 sd->completion_queue = NULL;
5138                 local_irq_enable();
5139
5140                 while (clist) {
5141                         struct sk_buff *skb = clist;
5142
5143                         clist = clist->next;
5144
5145                         WARN_ON(refcount_read(&skb->users));
5146                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5147                                 trace_consume_skb(skb, net_tx_action);
5148                         else
5149                                 trace_kfree_skb(skb, net_tx_action,
5150                                                 get_kfree_skb_cb(skb)->reason);
5151
5152                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5153                                 __kfree_skb(skb);
5154                         else
5155                                 __napi_kfree_skb(skb,
5156                                                  get_kfree_skb_cb(skb)->reason);
5157                 }
5158         }
5159
5160         if (sd->output_queue) {
5161                 struct Qdisc *head;
5162
5163                 local_irq_disable();
5164                 head = sd->output_queue;
5165                 sd->output_queue = NULL;
5166                 sd->output_queue_tailp = &sd->output_queue;
5167                 local_irq_enable();
5168
5169                 rcu_read_lock();
5170
5171                 while (head) {
5172                         struct Qdisc *q = head;
5173                         spinlock_t *root_lock = NULL;
5174
5175                         head = head->next_sched;
5176
5177                         /* We need to make sure head->next_sched is read
5178                          * before clearing __QDISC_STATE_SCHED
5179                          */
5180                         smp_mb__before_atomic();
5181
5182                         if (!(q->flags & TCQ_F_NOLOCK)) {
5183                                 root_lock = qdisc_lock(q);
5184                                 spin_lock(root_lock);
5185                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5186                                                      &q->state))) {
5187                                 /* There is a synchronize_net() between
5188                                  * STATE_DEACTIVATED flag being set and
5189                                  * qdisc_reset()/some_qdisc_is_busy() in
5190                                  * dev_deactivate(), so we can safely bail out
5191                                  * early here to avoid data race between
5192                                  * qdisc_deactivate() and some_qdisc_is_busy()
5193                                  * for lockless qdisc.
5194                                  */
5195                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5196                                 continue;
5197                         }
5198
5199                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5200                         qdisc_run(q);
5201                         if (root_lock)
5202                                 spin_unlock(root_lock);
5203                 }
5204
5205                 rcu_read_unlock();
5206         }
5207
5208         xfrm_dev_backlog(sd);
5209 }
5210
5211 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5212 /* This hook is defined here for ATM LANE */
5213 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5214                              unsigned char *addr) __read_mostly;
5215 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5216 #endif
5217
5218 /**
5219  *      netdev_is_rx_handler_busy - check if receive handler is registered
5220  *      @dev: device to check
5221  *
5222  *      Check if a receive handler is already registered for a given device.
5223  *      Return true if there one.
5224  *
5225  *      The caller must hold the rtnl_mutex.
5226  */
5227 bool netdev_is_rx_handler_busy(struct net_device *dev)
5228 {
5229         ASSERT_RTNL();
5230         return dev && rtnl_dereference(dev->rx_handler);
5231 }
5232 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5233
5234 /**
5235  *      netdev_rx_handler_register - register receive handler
5236  *      @dev: device to register a handler for
5237  *      @rx_handler: receive handler to register
5238  *      @rx_handler_data: data pointer that is used by rx handler
5239  *
5240  *      Register a receive handler for a device. This handler will then be
5241  *      called from __netif_receive_skb. A negative errno code is returned
5242  *      on a failure.
5243  *
5244  *      The caller must hold the rtnl_mutex.
5245  *
5246  *      For a general description of rx_handler, see enum rx_handler_result.
5247  */
5248 int netdev_rx_handler_register(struct net_device *dev,
5249                                rx_handler_func_t *rx_handler,
5250                                void *rx_handler_data)
5251 {
5252         if (netdev_is_rx_handler_busy(dev))
5253                 return -EBUSY;
5254
5255         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5256                 return -EINVAL;
5257
5258         /* Note: rx_handler_data must be set before rx_handler */
5259         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5260         rcu_assign_pointer(dev->rx_handler, rx_handler);
5261
5262         return 0;
5263 }
5264 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5265
5266 /**
5267  *      netdev_rx_handler_unregister - unregister receive handler
5268  *      @dev: device to unregister a handler from
5269  *
5270  *      Unregister a receive handler from a device.
5271  *
5272  *      The caller must hold the rtnl_mutex.
5273  */
5274 void netdev_rx_handler_unregister(struct net_device *dev)
5275 {
5276
5277         ASSERT_RTNL();
5278         RCU_INIT_POINTER(dev->rx_handler, NULL);
5279         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5280          * section has a guarantee to see a non NULL rx_handler_data
5281          * as well.
5282          */
5283         synchronize_net();
5284         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5285 }
5286 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5287
5288 /*
5289  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5290  * the special handling of PFMEMALLOC skbs.
5291  */
5292 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5293 {
5294         switch (skb->protocol) {
5295         case htons(ETH_P_ARP):
5296         case htons(ETH_P_IP):
5297         case htons(ETH_P_IPV6):
5298         case htons(ETH_P_8021Q):
5299         case htons(ETH_P_8021AD):
5300                 return true;
5301         default:
5302                 return false;
5303         }
5304 }
5305
5306 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5307                              int *ret, struct net_device *orig_dev)
5308 {
5309         if (nf_hook_ingress_active(skb)) {
5310                 int ingress_retval;
5311
5312                 if (*pt_prev) {
5313                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5314                         *pt_prev = NULL;
5315                 }
5316
5317                 rcu_read_lock();
5318                 ingress_retval = nf_hook_ingress(skb);
5319                 rcu_read_unlock();
5320                 return ingress_retval;
5321         }
5322         return 0;
5323 }
5324
5325 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5326                                     struct packet_type **ppt_prev)
5327 {
5328         struct packet_type *ptype, *pt_prev;
5329         rx_handler_func_t *rx_handler;
5330         struct sk_buff *skb = *pskb;
5331         struct net_device *orig_dev;
5332         bool deliver_exact = false;
5333         int ret = NET_RX_DROP;
5334         __be16 type;
5335
5336         net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5337
5338         trace_netif_receive_skb(skb);
5339
5340         orig_dev = skb->dev;
5341
5342         skb_reset_network_header(skb);
5343         if (!skb_transport_header_was_set(skb))
5344                 skb_reset_transport_header(skb);
5345         skb_reset_mac_len(skb);
5346
5347         pt_prev = NULL;
5348
5349 another_round:
5350         skb->skb_iif = skb->dev->ifindex;
5351
5352         __this_cpu_inc(softnet_data.processed);
5353
5354         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5355                 int ret2;
5356
5357                 migrate_disable();
5358                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5359                                       &skb);
5360                 migrate_enable();
5361
5362                 if (ret2 != XDP_PASS) {
5363                         ret = NET_RX_DROP;
5364                         goto out;
5365                 }
5366         }
5367
5368         if (eth_type_vlan(skb->protocol)) {
5369                 skb = skb_vlan_untag(skb);
5370                 if (unlikely(!skb))
5371                         goto out;
5372         }
5373
5374         if (skb_skip_tc_classify(skb))
5375                 goto skip_classify;
5376
5377         if (pfmemalloc)
5378                 goto skip_taps;
5379
5380         list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5381                 if (pt_prev)
5382                         ret = deliver_skb(skb, pt_prev, orig_dev);
5383                 pt_prev = ptype;
5384         }
5385
5386         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5387                 if (pt_prev)
5388                         ret = deliver_skb(skb, pt_prev, orig_dev);
5389                 pt_prev = ptype;
5390         }
5391
5392 skip_taps:
5393 #ifdef CONFIG_NET_INGRESS
5394         if (static_branch_unlikely(&ingress_needed_key)) {
5395                 bool another = false;
5396
5397                 nf_skip_egress(skb, true);
5398                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5399                                          &another);
5400                 if (another)
5401                         goto another_round;
5402                 if (!skb)
5403                         goto out;
5404
5405                 nf_skip_egress(skb, false);
5406                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5407                         goto out;
5408         }
5409 #endif
5410         skb_reset_redirect(skb);
5411 skip_classify:
5412         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5413                 goto drop;
5414
5415         if (skb_vlan_tag_present(skb)) {
5416                 if (pt_prev) {
5417                         ret = deliver_skb(skb, pt_prev, orig_dev);
5418                         pt_prev = NULL;
5419                 }
5420                 if (vlan_do_receive(&skb))
5421                         goto another_round;
5422                 else if (unlikely(!skb))
5423                         goto out;
5424         }
5425
5426         rx_handler = rcu_dereference(skb->dev->rx_handler);
5427         if (rx_handler) {
5428                 if (pt_prev) {
5429                         ret = deliver_skb(skb, pt_prev, orig_dev);
5430                         pt_prev = NULL;
5431                 }
5432                 switch (rx_handler(&skb)) {
5433                 case RX_HANDLER_CONSUMED:
5434                         ret = NET_RX_SUCCESS;
5435                         goto out;
5436                 case RX_HANDLER_ANOTHER:
5437                         goto another_round;
5438                 case RX_HANDLER_EXACT:
5439                         deliver_exact = true;
5440                         break;
5441                 case RX_HANDLER_PASS:
5442                         break;
5443                 default:
5444                         BUG();
5445                 }
5446         }
5447
5448         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5449 check_vlan_id:
5450                 if (skb_vlan_tag_get_id(skb)) {
5451                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5452                          * find vlan device.
5453                          */
5454                         skb->pkt_type = PACKET_OTHERHOST;
5455                 } else if (eth_type_vlan(skb->protocol)) {
5456                         /* Outer header is 802.1P with vlan 0, inner header is
5457                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5458                          * not find vlan dev for vlan id 0.
5459                          */
5460                         __vlan_hwaccel_clear_tag(skb);
5461                         skb = skb_vlan_untag(skb);
5462                         if (unlikely(!skb))
5463                                 goto out;
5464                         if (vlan_do_receive(&skb))
5465                                 /* After stripping off 802.1P header with vlan 0
5466                                  * vlan dev is found for inner header.
5467                                  */
5468                                 goto another_round;
5469                         else if (unlikely(!skb))
5470                                 goto out;
5471                         else
5472                                 /* We have stripped outer 802.1P vlan 0 header.
5473                                  * But could not find vlan dev.
5474                                  * check again for vlan id to set OTHERHOST.
5475                                  */
5476                                 goto check_vlan_id;
5477                 }
5478                 /* Note: we might in the future use prio bits
5479                  * and set skb->priority like in vlan_do_receive()
5480                  * For the time being, just ignore Priority Code Point
5481                  */
5482                 __vlan_hwaccel_clear_tag(skb);
5483         }
5484
5485         type = skb->protocol;
5486
5487         /* deliver only exact match when indicated */
5488         if (likely(!deliver_exact)) {
5489                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5490                                        &ptype_base[ntohs(type) &
5491                                                    PTYPE_HASH_MASK]);
5492         }
5493
5494         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495                                &orig_dev->ptype_specific);
5496
5497         if (unlikely(skb->dev != orig_dev)) {
5498                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5499                                        &skb->dev->ptype_specific);
5500         }
5501
5502         if (pt_prev) {
5503                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5504                         goto drop;
5505                 *ppt_prev = pt_prev;
5506         } else {
5507 drop:
5508                 if (!deliver_exact)
5509                         dev_core_stats_rx_dropped_inc(skb->dev);
5510                 else
5511                         dev_core_stats_rx_nohandler_inc(skb->dev);
5512                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5513                 /* Jamal, now you will not able to escape explaining
5514                  * me how you were going to use this. :-)
5515                  */
5516                 ret = NET_RX_DROP;
5517         }
5518
5519 out:
5520         /* The invariant here is that if *ppt_prev is not NULL
5521          * then skb should also be non-NULL.
5522          *
5523          * Apparently *ppt_prev assignment above holds this invariant due to
5524          * skb dereferencing near it.
5525          */
5526         *pskb = skb;
5527         return ret;
5528 }
5529
5530 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5531 {
5532         struct net_device *orig_dev = skb->dev;
5533         struct packet_type *pt_prev = NULL;
5534         int ret;
5535
5536         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5537         if (pt_prev)
5538                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5539                                          skb->dev, pt_prev, orig_dev);
5540         return ret;
5541 }
5542
5543 /**
5544  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5545  *      @skb: buffer to process
5546  *
5547  *      More direct receive version of netif_receive_skb().  It should
5548  *      only be used by callers that have a need to skip RPS and Generic XDP.
5549  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5550  *
5551  *      This function may only be called from softirq context and interrupts
5552  *      should be enabled.
5553  *
5554  *      Return values (usually ignored):
5555  *      NET_RX_SUCCESS: no congestion
5556  *      NET_RX_DROP: packet was dropped
5557  */
5558 int netif_receive_skb_core(struct sk_buff *skb)
5559 {
5560         int ret;
5561
5562         rcu_read_lock();
5563         ret = __netif_receive_skb_one_core(skb, false);
5564         rcu_read_unlock();
5565
5566         return ret;
5567 }
5568 EXPORT_SYMBOL(netif_receive_skb_core);
5569
5570 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5571                                                   struct packet_type *pt_prev,
5572                                                   struct net_device *orig_dev)
5573 {
5574         struct sk_buff *skb, *next;
5575
5576         if (!pt_prev)
5577                 return;
5578         if (list_empty(head))
5579                 return;
5580         if (pt_prev->list_func != NULL)
5581                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5582                                    ip_list_rcv, head, pt_prev, orig_dev);
5583         else
5584                 list_for_each_entry_safe(skb, next, head, list) {
5585                         skb_list_del_init(skb);
5586                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5587                 }
5588 }
5589
5590 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5591 {
5592         /* Fast-path assumptions:
5593          * - There is no RX handler.
5594          * - Only one packet_type matches.
5595          * If either of these fails, we will end up doing some per-packet
5596          * processing in-line, then handling the 'last ptype' for the whole
5597          * sublist.  This can't cause out-of-order delivery to any single ptype,
5598          * because the 'last ptype' must be constant across the sublist, and all
5599          * other ptypes are handled per-packet.
5600          */
5601         /* Current (common) ptype of sublist */
5602         struct packet_type *pt_curr = NULL;
5603         /* Current (common) orig_dev of sublist */
5604         struct net_device *od_curr = NULL;
5605         struct list_head sublist;
5606         struct sk_buff *skb, *next;
5607
5608         INIT_LIST_HEAD(&sublist);
5609         list_for_each_entry_safe(skb, next, head, list) {
5610                 struct net_device *orig_dev = skb->dev;
5611                 struct packet_type *pt_prev = NULL;
5612
5613                 skb_list_del_init(skb);
5614                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5615                 if (!pt_prev)
5616                         continue;
5617                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5618                         /* dispatch old sublist */
5619                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5620                         /* start new sublist */
5621                         INIT_LIST_HEAD(&sublist);
5622                         pt_curr = pt_prev;
5623                         od_curr = orig_dev;
5624                 }
5625                 list_add_tail(&skb->list, &sublist);
5626         }
5627
5628         /* dispatch final sublist */
5629         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5630 }
5631
5632 static int __netif_receive_skb(struct sk_buff *skb)
5633 {
5634         int ret;
5635
5636         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5637                 unsigned int noreclaim_flag;
5638
5639                 /*
5640                  * PFMEMALLOC skbs are special, they should
5641                  * - be delivered to SOCK_MEMALLOC sockets only
5642                  * - stay away from userspace
5643                  * - have bounded memory usage
5644                  *
5645                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5646                  * context down to all allocation sites.
5647                  */
5648                 noreclaim_flag = memalloc_noreclaim_save();
5649                 ret = __netif_receive_skb_one_core(skb, true);
5650                 memalloc_noreclaim_restore(noreclaim_flag);
5651         } else
5652                 ret = __netif_receive_skb_one_core(skb, false);
5653
5654         return ret;
5655 }
5656
5657 static void __netif_receive_skb_list(struct list_head *head)
5658 {
5659         unsigned long noreclaim_flag = 0;
5660         struct sk_buff *skb, *next;
5661         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5662
5663         list_for_each_entry_safe(skb, next, head, list) {
5664                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5665                         struct list_head sublist;
5666
5667                         /* Handle the previous sublist */
5668                         list_cut_before(&sublist, head, &skb->list);
5669                         if (!list_empty(&sublist))
5670                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5671                         pfmemalloc = !pfmemalloc;
5672                         /* See comments in __netif_receive_skb */
5673                         if (pfmemalloc)
5674                                 noreclaim_flag = memalloc_noreclaim_save();
5675                         else
5676                                 memalloc_noreclaim_restore(noreclaim_flag);
5677                 }
5678         }
5679         /* Handle the remaining sublist */
5680         if (!list_empty(head))
5681                 __netif_receive_skb_list_core(head, pfmemalloc);
5682         /* Restore pflags */
5683         if (pfmemalloc)
5684                 memalloc_noreclaim_restore(noreclaim_flag);
5685 }
5686
5687 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5688 {
5689         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5690         struct bpf_prog *new = xdp->prog;
5691         int ret = 0;
5692
5693         switch (xdp->command) {
5694         case XDP_SETUP_PROG:
5695                 rcu_assign_pointer(dev->xdp_prog, new);
5696                 if (old)
5697                         bpf_prog_put(old);
5698
5699                 if (old && !new) {
5700                         static_branch_dec(&generic_xdp_needed_key);
5701                 } else if (new && !old) {
5702                         static_branch_inc(&generic_xdp_needed_key);
5703                         dev_disable_lro(dev);
5704                         dev_disable_gro_hw(dev);
5705                 }
5706                 break;
5707
5708         default:
5709                 ret = -EINVAL;
5710                 break;
5711         }
5712
5713         return ret;
5714 }
5715
5716 static int netif_receive_skb_internal(struct sk_buff *skb)
5717 {
5718         int ret;
5719
5720         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5721
5722         if (skb_defer_rx_timestamp(skb))
5723                 return NET_RX_SUCCESS;
5724
5725         rcu_read_lock();
5726 #ifdef CONFIG_RPS
5727         if (static_branch_unlikely(&rps_needed)) {
5728                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5729                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730
5731                 if (cpu >= 0) {
5732                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5733                         rcu_read_unlock();
5734                         return ret;
5735                 }
5736         }
5737 #endif
5738         ret = __netif_receive_skb(skb);
5739         rcu_read_unlock();
5740         return ret;
5741 }
5742
5743 void netif_receive_skb_list_internal(struct list_head *head)
5744 {
5745         struct sk_buff *skb, *next;
5746         struct list_head sublist;
5747
5748         INIT_LIST_HEAD(&sublist);
5749         list_for_each_entry_safe(skb, next, head, list) {
5750                 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5751                                     skb);
5752                 skb_list_del_init(skb);
5753                 if (!skb_defer_rx_timestamp(skb))
5754                         list_add_tail(&skb->list, &sublist);
5755         }
5756         list_splice_init(&sublist, head);
5757
5758         rcu_read_lock();
5759 #ifdef CONFIG_RPS
5760         if (static_branch_unlikely(&rps_needed)) {
5761                 list_for_each_entry_safe(skb, next, head, list) {
5762                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5763                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5764
5765                         if (cpu >= 0) {
5766                                 /* Will be handled, remove from list */
5767                                 skb_list_del_init(skb);
5768                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5769                         }
5770                 }
5771         }
5772 #endif
5773         __netif_receive_skb_list(head);
5774         rcu_read_unlock();
5775 }
5776
5777 /**
5778  *      netif_receive_skb - process receive buffer from network
5779  *      @skb: buffer to process
5780  *
5781  *      netif_receive_skb() is the main receive data processing function.
5782  *      It always succeeds. The buffer may be dropped during processing
5783  *      for congestion control or by the protocol layers.
5784  *
5785  *      This function may only be called from softirq context and interrupts
5786  *      should be enabled.
5787  *
5788  *      Return values (usually ignored):
5789  *      NET_RX_SUCCESS: no congestion
5790  *      NET_RX_DROP: packet was dropped
5791  */
5792 int netif_receive_skb(struct sk_buff *skb)
5793 {
5794         int ret;
5795
5796         trace_netif_receive_skb_entry(skb);
5797
5798         ret = netif_receive_skb_internal(skb);
5799         trace_netif_receive_skb_exit(ret);
5800
5801         return ret;
5802 }
5803 EXPORT_SYMBOL(netif_receive_skb);
5804
5805 /**
5806  *      netif_receive_skb_list - process many receive buffers from network
5807  *      @head: list of skbs to process.
5808  *
5809  *      Since return value of netif_receive_skb() is normally ignored, and
5810  *      wouldn't be meaningful for a list, this function returns void.
5811  *
5812  *      This function may only be called from softirq context and interrupts
5813  *      should be enabled.
5814  */
5815 void netif_receive_skb_list(struct list_head *head)
5816 {
5817         struct sk_buff *skb;
5818
5819         if (list_empty(head))
5820                 return;
5821         if (trace_netif_receive_skb_list_entry_enabled()) {
5822                 list_for_each_entry(skb, head, list)
5823                         trace_netif_receive_skb_list_entry(skb);
5824         }
5825         netif_receive_skb_list_internal(head);
5826         trace_netif_receive_skb_list_exit(0);
5827 }
5828 EXPORT_SYMBOL(netif_receive_skb_list);
5829
5830 static DEFINE_PER_CPU(struct work_struct, flush_works);
5831
5832 /* Network device is going away, flush any packets still pending */
5833 static void flush_backlog(struct work_struct *work)
5834 {
5835         struct sk_buff *skb, *tmp;
5836         struct softnet_data *sd;
5837
5838         local_bh_disable();
5839         sd = this_cpu_ptr(&softnet_data);
5840
5841         rps_lock_irq_disable(sd);
5842         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5843                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5844                         __skb_unlink(skb, &sd->input_pkt_queue);
5845                         dev_kfree_skb_irq(skb);
5846                         input_queue_head_incr(sd);
5847                 }
5848         }
5849         rps_unlock_irq_enable(sd);
5850
5851         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5852                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5853                         __skb_unlink(skb, &sd->process_queue);
5854                         kfree_skb(skb);
5855                         input_queue_head_incr(sd);
5856                 }
5857         }
5858         local_bh_enable();
5859 }
5860
5861 static bool flush_required(int cpu)
5862 {
5863 #if IS_ENABLED(CONFIG_RPS)
5864         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5865         bool do_flush;
5866
5867         rps_lock_irq_disable(sd);
5868
5869         /* as insertion into process_queue happens with the rps lock held,
5870          * process_queue access may race only with dequeue
5871          */
5872         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5873                    !skb_queue_empty_lockless(&sd->process_queue);
5874         rps_unlock_irq_enable(sd);
5875
5876         return do_flush;
5877 #endif
5878         /* without RPS we can't safely check input_pkt_queue: during a
5879          * concurrent remote skb_queue_splice() we can detect as empty both
5880          * input_pkt_queue and process_queue even if the latter could end-up
5881          * containing a lot of packets.
5882          */
5883         return true;
5884 }
5885
5886 static void flush_all_backlogs(void)
5887 {
5888         static cpumask_t flush_cpus;
5889         unsigned int cpu;
5890
5891         /* since we are under rtnl lock protection we can use static data
5892          * for the cpumask and avoid allocating on stack the possibly
5893          * large mask
5894          */
5895         ASSERT_RTNL();
5896
5897         cpus_read_lock();
5898
5899         cpumask_clear(&flush_cpus);
5900         for_each_online_cpu(cpu) {
5901                 if (flush_required(cpu)) {
5902                         queue_work_on(cpu, system_highpri_wq,
5903                                       per_cpu_ptr(&flush_works, cpu));
5904                         cpumask_set_cpu(cpu, &flush_cpus);
5905                 }
5906         }
5907
5908         /* we can have in flight packet[s] on the cpus we are not flushing,
5909          * synchronize_net() in unregister_netdevice_many() will take care of
5910          * them
5911          */
5912         for_each_cpu(cpu, &flush_cpus)
5913                 flush_work(per_cpu_ptr(&flush_works, cpu));
5914
5915         cpus_read_unlock();
5916 }
5917
5918 static void net_rps_send_ipi(struct softnet_data *remsd)
5919 {
5920 #ifdef CONFIG_RPS
5921         while (remsd) {
5922                 struct softnet_data *next = remsd->rps_ipi_next;
5923
5924                 if (cpu_online(remsd->cpu))
5925                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5926                 remsd = next;
5927         }
5928 #endif
5929 }
5930
5931 /*
5932  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5933  * Note: called with local irq disabled, but exits with local irq enabled.
5934  */
5935 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5936 {
5937 #ifdef CONFIG_RPS
5938         struct softnet_data *remsd = sd->rps_ipi_list;
5939
5940         if (remsd) {
5941                 sd->rps_ipi_list = NULL;
5942
5943                 local_irq_enable();
5944
5945                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5946                 net_rps_send_ipi(remsd);
5947         } else
5948 #endif
5949                 local_irq_enable();
5950 }
5951
5952 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5953 {
5954 #ifdef CONFIG_RPS
5955         return sd->rps_ipi_list != NULL;
5956 #else
5957         return false;
5958 #endif
5959 }
5960
5961 static int process_backlog(struct napi_struct *napi, int quota)
5962 {
5963         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5964         bool again = true;
5965         int work = 0;
5966
5967         /* Check if we have pending ipi, its better to send them now,
5968          * not waiting net_rx_action() end.
5969          */
5970         if (sd_has_rps_ipi_waiting(sd)) {
5971                 local_irq_disable();
5972                 net_rps_action_and_irq_enable(sd);
5973         }
5974
5975         napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
5976         while (again) {
5977                 struct sk_buff *skb;
5978
5979                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5980                         rcu_read_lock();
5981                         __netif_receive_skb(skb);
5982                         rcu_read_unlock();
5983                         input_queue_head_incr(sd);
5984                         if (++work >= quota)
5985                                 return work;
5986
5987                 }
5988
5989                 rps_lock_irq_disable(sd);
5990                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5991                         /*
5992                          * Inline a custom version of __napi_complete().
5993                          * only current cpu owns and manipulates this napi,
5994                          * and NAPI_STATE_SCHED is the only possible flag set
5995                          * on backlog.
5996                          * We can use a plain write instead of clear_bit(),
5997                          * and we dont need an smp_mb() memory barrier.
5998                          */
5999                         napi->state = 0;
6000                         again = false;
6001                 } else {
6002                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6003                                                    &sd->process_queue);
6004                 }
6005                 rps_unlock_irq_enable(sd);
6006         }
6007
6008         return work;
6009 }
6010
6011 /**
6012  * __napi_schedule - schedule for receive
6013  * @n: entry to schedule
6014  *
6015  * The entry's receive function will be scheduled to run.
6016  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6017  */
6018 void __napi_schedule(struct napi_struct *n)
6019 {
6020         unsigned long flags;
6021
6022         local_irq_save(flags);
6023         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6024         local_irq_restore(flags);
6025 }
6026 EXPORT_SYMBOL(__napi_schedule);
6027
6028 /**
6029  *      napi_schedule_prep - check if napi can be scheduled
6030  *      @n: napi context
6031  *
6032  * Test if NAPI routine is already running, and if not mark
6033  * it as running.  This is used as a condition variable to
6034  * insure only one NAPI poll instance runs.  We also make
6035  * sure there is no pending NAPI disable.
6036  */
6037 bool napi_schedule_prep(struct napi_struct *n)
6038 {
6039         unsigned long new, val = READ_ONCE(n->state);
6040
6041         do {
6042                 if (unlikely(val & NAPIF_STATE_DISABLE))
6043                         return false;
6044                 new = val | NAPIF_STATE_SCHED;
6045
6046                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6047                  * This was suggested by Alexander Duyck, as compiler
6048                  * emits better code than :
6049                  * if (val & NAPIF_STATE_SCHED)
6050                  *     new |= NAPIF_STATE_MISSED;
6051                  */
6052                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6053                                                    NAPIF_STATE_MISSED;
6054         } while (!try_cmpxchg(&n->state, &val, new));
6055
6056         return !(val & NAPIF_STATE_SCHED);
6057 }
6058 EXPORT_SYMBOL(napi_schedule_prep);
6059
6060 /**
6061  * __napi_schedule_irqoff - schedule for receive
6062  * @n: entry to schedule
6063  *
6064  * Variant of __napi_schedule() assuming hard irqs are masked.
6065  *
6066  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6067  * because the interrupt disabled assumption might not be true
6068  * due to force-threaded interrupts and spinlock substitution.
6069  */
6070 void __napi_schedule_irqoff(struct napi_struct *n)
6071 {
6072         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6073                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6074         else
6075                 __napi_schedule(n);
6076 }
6077 EXPORT_SYMBOL(__napi_schedule_irqoff);
6078
6079 bool napi_complete_done(struct napi_struct *n, int work_done)
6080 {
6081         unsigned long flags, val, new, timeout = 0;
6082         bool ret = true;
6083
6084         /*
6085          * 1) Don't let napi dequeue from the cpu poll list
6086          *    just in case its running on a different cpu.
6087          * 2) If we are busy polling, do nothing here, we have
6088          *    the guarantee we will be called later.
6089          */
6090         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6091                                  NAPIF_STATE_IN_BUSY_POLL)))
6092                 return false;
6093
6094         if (work_done) {
6095                 if (n->gro_bitmask)
6096                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6098         }
6099         if (n->defer_hard_irqs_count > 0) {
6100                 n->defer_hard_irqs_count--;
6101                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6102                 if (timeout)
6103                         ret = false;
6104         }
6105         if (n->gro_bitmask) {
6106                 /* When the NAPI instance uses a timeout and keeps postponing
6107                  * it, we need to bound somehow the time packets are kept in
6108                  * the GRO layer
6109                  */
6110                 napi_gro_flush(n, !!timeout);
6111         }
6112
6113         gro_normal_list(n);
6114
6115         if (unlikely(!list_empty(&n->poll_list))) {
6116                 /* If n->poll_list is not empty, we need to mask irqs */
6117                 local_irq_save(flags);
6118                 list_del_init(&n->poll_list);
6119                 local_irq_restore(flags);
6120         }
6121         WRITE_ONCE(n->list_owner, -1);
6122
6123         val = READ_ONCE(n->state);
6124         do {
6125                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6126
6127                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6128                               NAPIF_STATE_SCHED_THREADED |
6129                               NAPIF_STATE_PREFER_BUSY_POLL);
6130
6131                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6132                  * because we will call napi->poll() one more time.
6133                  * This C code was suggested by Alexander Duyck to help gcc.
6134                  */
6135                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6136                                                     NAPIF_STATE_SCHED;
6137         } while (!try_cmpxchg(&n->state, &val, new));
6138
6139         if (unlikely(val & NAPIF_STATE_MISSED)) {
6140                 __napi_schedule(n);
6141                 return false;
6142         }
6143
6144         if (timeout)
6145                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6146                               HRTIMER_MODE_REL_PINNED);
6147         return ret;
6148 }
6149 EXPORT_SYMBOL(napi_complete_done);
6150
6151 /* must be called under rcu_read_lock(), as we dont take a reference */
6152 struct napi_struct *napi_by_id(unsigned int napi_id)
6153 {
6154         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6155         struct napi_struct *napi;
6156
6157         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6158                 if (napi->napi_id == napi_id)
6159                         return napi;
6160
6161         return NULL;
6162 }
6163
6164 static void skb_defer_free_flush(struct softnet_data *sd)
6165 {
6166         struct sk_buff *skb, *next;
6167
6168         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6169         if (!READ_ONCE(sd->defer_list))
6170                 return;
6171
6172         spin_lock(&sd->defer_lock);
6173         skb = sd->defer_list;
6174         sd->defer_list = NULL;
6175         sd->defer_count = 0;
6176         spin_unlock(&sd->defer_lock);
6177
6178         while (skb != NULL) {
6179                 next = skb->next;
6180                 napi_consume_skb(skb, 1);
6181                 skb = next;
6182         }
6183 }
6184
6185 #if defined(CONFIG_NET_RX_BUSY_POLL)
6186
6187 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6188 {
6189         if (!skip_schedule) {
6190                 gro_normal_list(napi);
6191                 __napi_schedule(napi);
6192                 return;
6193         }
6194
6195         if (napi->gro_bitmask) {
6196                 /* flush too old packets
6197                  * If HZ < 1000, flush all packets.
6198                  */
6199                 napi_gro_flush(napi, HZ >= 1000);
6200         }
6201
6202         gro_normal_list(napi);
6203         clear_bit(NAPI_STATE_SCHED, &napi->state);
6204 }
6205
6206 enum {
6207         NAPI_F_PREFER_BUSY_POLL = 1,
6208         NAPI_F_END_ON_RESCHED   = 2,
6209 };
6210
6211 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6212                            unsigned flags, u16 budget)
6213 {
6214         bool skip_schedule = false;
6215         unsigned long timeout;
6216         int rc;
6217
6218         /* Busy polling means there is a high chance device driver hard irq
6219          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6220          * set in napi_schedule_prep().
6221          * Since we are about to call napi->poll() once more, we can safely
6222          * clear NAPI_STATE_MISSED.
6223          *
6224          * Note: x86 could use a single "lock and ..." instruction
6225          * to perform these two clear_bit()
6226          */
6227         clear_bit(NAPI_STATE_MISSED, &napi->state);
6228         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6229
6230         local_bh_disable();
6231
6232         if (flags & NAPI_F_PREFER_BUSY_POLL) {
6233                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6234                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6235                 if (napi->defer_hard_irqs_count && timeout) {
6236                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6237                         skip_schedule = true;
6238                 }
6239         }
6240
6241         /* All we really want here is to re-enable device interrupts.
6242          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6243          */
6244         rc = napi->poll(napi, budget);
6245         /* We can't gro_normal_list() here, because napi->poll() might have
6246          * rearmed the napi (napi_complete_done()) in which case it could
6247          * already be running on another CPU.
6248          */
6249         trace_napi_poll(napi, rc, budget);
6250         netpoll_poll_unlock(have_poll_lock);
6251         if (rc == budget)
6252                 __busy_poll_stop(napi, skip_schedule);
6253         local_bh_enable();
6254 }
6255
6256 static void __napi_busy_loop(unsigned int napi_id,
6257                       bool (*loop_end)(void *, unsigned long),
6258                       void *loop_end_arg, unsigned flags, u16 budget)
6259 {
6260         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6261         int (*napi_poll)(struct napi_struct *napi, int budget);
6262         void *have_poll_lock = NULL;
6263         struct napi_struct *napi;
6264
6265         WARN_ON_ONCE(!rcu_read_lock_held());
6266
6267 restart:
6268         napi_poll = NULL;
6269
6270         napi = napi_by_id(napi_id);
6271         if (!napi)
6272                 return;
6273
6274         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6275                 preempt_disable();
6276         for (;;) {
6277                 int work = 0;
6278
6279                 local_bh_disable();
6280                 if (!napi_poll) {
6281                         unsigned long val = READ_ONCE(napi->state);
6282
6283                         /* If multiple threads are competing for this napi,
6284                          * we avoid dirtying napi->state as much as we can.
6285                          */
6286                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6287                                    NAPIF_STATE_IN_BUSY_POLL)) {
6288                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6289                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6290                                 goto count;
6291                         }
6292                         if (cmpxchg(&napi->state, val,
6293                                     val | NAPIF_STATE_IN_BUSY_POLL |
6294                                           NAPIF_STATE_SCHED) != val) {
6295                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6296                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297                                 goto count;
6298                         }
6299                         have_poll_lock = netpoll_poll_lock(napi);
6300                         napi_poll = napi->poll;
6301                 }
6302                 work = napi_poll(napi, budget);
6303                 trace_napi_poll(napi, work, budget);
6304                 gro_normal_list(napi);
6305 count:
6306                 if (work > 0)
6307                         __NET_ADD_STATS(dev_net(napi->dev),
6308                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6309                 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6310                 local_bh_enable();
6311
6312                 if (!loop_end || loop_end(loop_end_arg, start_time))
6313                         break;
6314
6315                 if (unlikely(need_resched())) {
6316                         if (flags & NAPI_F_END_ON_RESCHED)
6317                                 break;
6318                         if (napi_poll)
6319                                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6320                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6321                                 preempt_enable();
6322                         rcu_read_unlock();
6323                         cond_resched();
6324                         rcu_read_lock();
6325                         if (loop_end(loop_end_arg, start_time))
6326                                 return;
6327                         goto restart;
6328                 }
6329                 cpu_relax();
6330         }
6331         if (napi_poll)
6332                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6333         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6334                 preempt_enable();
6335 }
6336
6337 void napi_busy_loop_rcu(unsigned int napi_id,
6338                         bool (*loop_end)(void *, unsigned long),
6339                         void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6340 {
6341         unsigned flags = NAPI_F_END_ON_RESCHED;
6342
6343         if (prefer_busy_poll)
6344                 flags |= NAPI_F_PREFER_BUSY_POLL;
6345
6346         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6347 }
6348
6349 void napi_busy_loop(unsigned int napi_id,
6350                     bool (*loop_end)(void *, unsigned long),
6351                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6352 {
6353         unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6354
6355         rcu_read_lock();
6356         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6357         rcu_read_unlock();
6358 }
6359 EXPORT_SYMBOL(napi_busy_loop);
6360
6361 #endif /* CONFIG_NET_RX_BUSY_POLL */
6362
6363 static void napi_hash_add(struct napi_struct *napi)
6364 {
6365         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6366                 return;
6367
6368         spin_lock(&napi_hash_lock);
6369
6370         /* 0..NR_CPUS range is reserved for sender_cpu use */
6371         do {
6372                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6373                         napi_gen_id = MIN_NAPI_ID;
6374         } while (napi_by_id(napi_gen_id));
6375         napi->napi_id = napi_gen_id;
6376
6377         hlist_add_head_rcu(&napi->napi_hash_node,
6378                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6379
6380         spin_unlock(&napi_hash_lock);
6381 }
6382
6383 /* Warning : caller is responsible to make sure rcu grace period
6384  * is respected before freeing memory containing @napi
6385  */
6386 static void napi_hash_del(struct napi_struct *napi)
6387 {
6388         spin_lock(&napi_hash_lock);
6389
6390         hlist_del_init_rcu(&napi->napi_hash_node);
6391
6392         spin_unlock(&napi_hash_lock);
6393 }
6394
6395 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6396 {
6397         struct napi_struct *napi;
6398
6399         napi = container_of(timer, struct napi_struct, timer);
6400
6401         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6402          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6403          */
6404         if (!napi_disable_pending(napi) &&
6405             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6406                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6407                 __napi_schedule_irqoff(napi);
6408         }
6409
6410         return HRTIMER_NORESTART;
6411 }
6412
6413 static void init_gro_hash(struct napi_struct *napi)
6414 {
6415         int i;
6416
6417         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6418                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6419                 napi->gro_hash[i].count = 0;
6420         }
6421         napi->gro_bitmask = 0;
6422 }
6423
6424 int dev_set_threaded(struct net_device *dev, bool threaded)
6425 {
6426         struct napi_struct *napi;
6427         int err = 0;
6428
6429         if (dev->threaded == threaded)
6430                 return 0;
6431
6432         if (threaded) {
6433                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6434                         if (!napi->thread) {
6435                                 err = napi_kthread_create(napi);
6436                                 if (err) {
6437                                         threaded = false;
6438                                         break;
6439                                 }
6440                         }
6441                 }
6442         }
6443
6444         dev->threaded = threaded;
6445
6446         /* Make sure kthread is created before THREADED bit
6447          * is set.
6448          */
6449         smp_mb__before_atomic();
6450
6451         /* Setting/unsetting threaded mode on a napi might not immediately
6452          * take effect, if the current napi instance is actively being
6453          * polled. In this case, the switch between threaded mode and
6454          * softirq mode will happen in the next round of napi_schedule().
6455          * This should not cause hiccups/stalls to the live traffic.
6456          */
6457         list_for_each_entry(napi, &dev->napi_list, dev_list)
6458                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6459
6460         return err;
6461 }
6462 EXPORT_SYMBOL(dev_set_threaded);
6463
6464 /**
6465  * netif_queue_set_napi - Associate queue with the napi
6466  * @dev: device to which NAPI and queue belong
6467  * @queue_index: Index of queue
6468  * @type: queue type as RX or TX
6469  * @napi: NAPI context, pass NULL to clear previously set NAPI
6470  *
6471  * Set queue with its corresponding napi context. This should be done after
6472  * registering the NAPI handler for the queue-vector and the queues have been
6473  * mapped to the corresponding interrupt vector.
6474  */
6475 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6476                           enum netdev_queue_type type, struct napi_struct *napi)
6477 {
6478         struct netdev_rx_queue *rxq;
6479         struct netdev_queue *txq;
6480
6481         if (WARN_ON_ONCE(napi && !napi->dev))
6482                 return;
6483         if (dev->reg_state >= NETREG_REGISTERED)
6484                 ASSERT_RTNL();
6485
6486         switch (type) {
6487         case NETDEV_QUEUE_TYPE_RX:
6488                 rxq = __netif_get_rx_queue(dev, queue_index);
6489                 rxq->napi = napi;
6490                 return;
6491         case NETDEV_QUEUE_TYPE_TX:
6492                 txq = netdev_get_tx_queue(dev, queue_index);
6493                 txq->napi = napi;
6494                 return;
6495         default:
6496                 return;
6497         }
6498 }
6499 EXPORT_SYMBOL(netif_queue_set_napi);
6500
6501 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6502                            int (*poll)(struct napi_struct *, int), int weight)
6503 {
6504         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6505                 return;
6506
6507         INIT_LIST_HEAD(&napi->poll_list);
6508         INIT_HLIST_NODE(&napi->napi_hash_node);
6509         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6510         napi->timer.function = napi_watchdog;
6511         init_gro_hash(napi);
6512         napi->skb = NULL;
6513         INIT_LIST_HEAD(&napi->rx_list);
6514         napi->rx_count = 0;
6515         napi->poll = poll;
6516         if (weight > NAPI_POLL_WEIGHT)
6517                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6518                                 weight);
6519         napi->weight = weight;
6520         napi->dev = dev;
6521 #ifdef CONFIG_NETPOLL
6522         napi->poll_owner = -1;
6523 #endif
6524         napi->list_owner = -1;
6525         set_bit(NAPI_STATE_SCHED, &napi->state);
6526         set_bit(NAPI_STATE_NPSVC, &napi->state);
6527         list_add_rcu(&napi->dev_list, &dev->napi_list);
6528         napi_hash_add(napi);
6529         napi_get_frags_check(napi);
6530         /* Create kthread for this napi if dev->threaded is set.
6531          * Clear dev->threaded if kthread creation failed so that
6532          * threaded mode will not be enabled in napi_enable().
6533          */
6534         if (dev->threaded && napi_kthread_create(napi))
6535                 dev->threaded = 0;
6536         netif_napi_set_irq(napi, -1);
6537 }
6538 EXPORT_SYMBOL(netif_napi_add_weight);
6539
6540 void napi_disable(struct napi_struct *n)
6541 {
6542         unsigned long val, new;
6543
6544         might_sleep();
6545         set_bit(NAPI_STATE_DISABLE, &n->state);
6546
6547         val = READ_ONCE(n->state);
6548         do {
6549                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6550                         usleep_range(20, 200);
6551                         val = READ_ONCE(n->state);
6552                 }
6553
6554                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6555                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6556         } while (!try_cmpxchg(&n->state, &val, new));
6557
6558         hrtimer_cancel(&n->timer);
6559
6560         clear_bit(NAPI_STATE_DISABLE, &n->state);
6561 }
6562 EXPORT_SYMBOL(napi_disable);
6563
6564 /**
6565  *      napi_enable - enable NAPI scheduling
6566  *      @n: NAPI context
6567  *
6568  * Resume NAPI from being scheduled on this context.
6569  * Must be paired with napi_disable.
6570  */
6571 void napi_enable(struct napi_struct *n)
6572 {
6573         unsigned long new, val = READ_ONCE(n->state);
6574
6575         do {
6576                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6577
6578                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6579                 if (n->dev->threaded && n->thread)
6580                         new |= NAPIF_STATE_THREADED;
6581         } while (!try_cmpxchg(&n->state, &val, new));
6582 }
6583 EXPORT_SYMBOL(napi_enable);
6584
6585 static void flush_gro_hash(struct napi_struct *napi)
6586 {
6587         int i;
6588
6589         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6590                 struct sk_buff *skb, *n;
6591
6592                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6593                         kfree_skb(skb);
6594                 napi->gro_hash[i].count = 0;
6595         }
6596 }
6597
6598 /* Must be called in process context */
6599 void __netif_napi_del(struct napi_struct *napi)
6600 {
6601         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6602                 return;
6603
6604         napi_hash_del(napi);
6605         list_del_rcu(&napi->dev_list);
6606         napi_free_frags(napi);
6607
6608         flush_gro_hash(napi);
6609         napi->gro_bitmask = 0;
6610
6611         if (napi->thread) {
6612                 kthread_stop(napi->thread);
6613                 napi->thread = NULL;
6614         }
6615 }
6616 EXPORT_SYMBOL(__netif_napi_del);
6617
6618 static int __napi_poll(struct napi_struct *n, bool *repoll)
6619 {
6620         int work, weight;
6621
6622         weight = n->weight;
6623
6624         /* This NAPI_STATE_SCHED test is for avoiding a race
6625          * with netpoll's poll_napi().  Only the entity which
6626          * obtains the lock and sees NAPI_STATE_SCHED set will
6627          * actually make the ->poll() call.  Therefore we avoid
6628          * accidentally calling ->poll() when NAPI is not scheduled.
6629          */
6630         work = 0;
6631         if (napi_is_scheduled(n)) {
6632                 work = n->poll(n, weight);
6633                 trace_napi_poll(n, work, weight);
6634
6635                 xdp_do_check_flushed(n);
6636         }
6637
6638         if (unlikely(work > weight))
6639                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6640                                 n->poll, work, weight);
6641
6642         if (likely(work < weight))
6643                 return work;
6644
6645         /* Drivers must not modify the NAPI state if they
6646          * consume the entire weight.  In such cases this code
6647          * still "owns" the NAPI instance and therefore can
6648          * move the instance around on the list at-will.
6649          */
6650         if (unlikely(napi_disable_pending(n))) {
6651                 napi_complete(n);
6652                 return work;
6653         }
6654
6655         /* The NAPI context has more processing work, but busy-polling
6656          * is preferred. Exit early.
6657          */
6658         if (napi_prefer_busy_poll(n)) {
6659                 if (napi_complete_done(n, work)) {
6660                         /* If timeout is not set, we need to make sure
6661                          * that the NAPI is re-scheduled.
6662                          */
6663                         napi_schedule(n);
6664                 }
6665                 return work;
6666         }
6667
6668         if (n->gro_bitmask) {
6669                 /* flush too old packets
6670                  * If HZ < 1000, flush all packets.
6671                  */
6672                 napi_gro_flush(n, HZ >= 1000);
6673         }
6674
6675         gro_normal_list(n);
6676
6677         /* Some drivers may have called napi_schedule
6678          * prior to exhausting their budget.
6679          */
6680         if (unlikely(!list_empty(&n->poll_list))) {
6681                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6682                              n->dev ? n->dev->name : "backlog");
6683                 return work;
6684         }
6685
6686         *repoll = true;
6687
6688         return work;
6689 }
6690
6691 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6692 {
6693         bool do_repoll = false;
6694         void *have;
6695         int work;
6696
6697         list_del_init(&n->poll_list);
6698
6699         have = netpoll_poll_lock(n);
6700
6701         work = __napi_poll(n, &do_repoll);
6702
6703         if (do_repoll)
6704                 list_add_tail(&n->poll_list, repoll);
6705
6706         netpoll_poll_unlock(have);
6707
6708         return work;
6709 }
6710
6711 static int napi_thread_wait(struct napi_struct *napi)
6712 {
6713         bool woken = false;
6714
6715         set_current_state(TASK_INTERRUPTIBLE);
6716
6717         while (!kthread_should_stop()) {
6718                 /* Testing SCHED_THREADED bit here to make sure the current
6719                  * kthread owns this napi and could poll on this napi.
6720                  * Testing SCHED bit is not enough because SCHED bit might be
6721                  * set by some other busy poll thread or by napi_disable().
6722                  */
6723                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6724                         WARN_ON(!list_empty(&napi->poll_list));
6725                         __set_current_state(TASK_RUNNING);
6726                         return 0;
6727                 }
6728
6729                 schedule();
6730                 /* woken being true indicates this thread owns this napi. */
6731                 woken = true;
6732                 set_current_state(TASK_INTERRUPTIBLE);
6733         }
6734         __set_current_state(TASK_RUNNING);
6735
6736         return -1;
6737 }
6738
6739 static int napi_threaded_poll(void *data)
6740 {
6741         struct napi_struct *napi = data;
6742         struct softnet_data *sd;
6743         void *have;
6744
6745         while (!napi_thread_wait(napi)) {
6746                 for (;;) {
6747                         bool repoll = false;
6748
6749                         local_bh_disable();
6750                         sd = this_cpu_ptr(&softnet_data);
6751                         sd->in_napi_threaded_poll = true;
6752
6753                         have = netpoll_poll_lock(napi);
6754                         __napi_poll(napi, &repoll);
6755                         netpoll_poll_unlock(have);
6756
6757                         sd->in_napi_threaded_poll = false;
6758                         barrier();
6759
6760                         if (sd_has_rps_ipi_waiting(sd)) {
6761                                 local_irq_disable();
6762                                 net_rps_action_and_irq_enable(sd);
6763                         }
6764                         skb_defer_free_flush(sd);
6765                         local_bh_enable();
6766
6767                         if (!repoll)
6768                                 break;
6769
6770                         cond_resched();
6771                 }
6772         }
6773         return 0;
6774 }
6775
6776 static __latent_entropy void net_rx_action(struct softirq_action *h)
6777 {
6778         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6779         unsigned long time_limit = jiffies +
6780                 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6781         int budget = READ_ONCE(net_hotdata.netdev_budget);
6782         LIST_HEAD(list);
6783         LIST_HEAD(repoll);
6784
6785 start:
6786         sd->in_net_rx_action = true;
6787         local_irq_disable();
6788         list_splice_init(&sd->poll_list, &list);
6789         local_irq_enable();
6790
6791         for (;;) {
6792                 struct napi_struct *n;
6793
6794                 skb_defer_free_flush(sd);
6795
6796                 if (list_empty(&list)) {
6797                         if (list_empty(&repoll)) {
6798                                 sd->in_net_rx_action = false;
6799                                 barrier();
6800                                 /* We need to check if ____napi_schedule()
6801                                  * had refilled poll_list while
6802                                  * sd->in_net_rx_action was true.
6803                                  */
6804                                 if (!list_empty(&sd->poll_list))
6805                                         goto start;
6806                                 if (!sd_has_rps_ipi_waiting(sd))
6807                                         goto end;
6808                         }
6809                         break;
6810                 }
6811
6812                 n = list_first_entry(&list, struct napi_struct, poll_list);
6813                 budget -= napi_poll(n, &repoll);
6814
6815                 /* If softirq window is exhausted then punt.
6816                  * Allow this to run for 2 jiffies since which will allow
6817                  * an average latency of 1.5/HZ.
6818                  */
6819                 if (unlikely(budget <= 0 ||
6820                              time_after_eq(jiffies, time_limit))) {
6821                         sd->time_squeeze++;
6822                         break;
6823                 }
6824         }
6825
6826         local_irq_disable();
6827
6828         list_splice_tail_init(&sd->poll_list, &list);
6829         list_splice_tail(&repoll, &list);
6830         list_splice(&list, &sd->poll_list);
6831         if (!list_empty(&sd->poll_list))
6832                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6833         else
6834                 sd->in_net_rx_action = false;
6835
6836         net_rps_action_and_irq_enable(sd);
6837 end:;
6838 }
6839
6840 struct netdev_adjacent {
6841         struct net_device *dev;
6842         netdevice_tracker dev_tracker;
6843
6844         /* upper master flag, there can only be one master device per list */
6845         bool master;
6846
6847         /* lookup ignore flag */
6848         bool ignore;
6849
6850         /* counter for the number of times this device was added to us */
6851         u16 ref_nr;
6852
6853         /* private field for the users */
6854         void *private;
6855
6856         struct list_head list;
6857         struct rcu_head rcu;
6858 };
6859
6860 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6861                                                  struct list_head *adj_list)
6862 {
6863         struct netdev_adjacent *adj;
6864
6865         list_for_each_entry(adj, adj_list, list) {
6866                 if (adj->dev == adj_dev)
6867                         return adj;
6868         }
6869         return NULL;
6870 }
6871
6872 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6873                                     struct netdev_nested_priv *priv)
6874 {
6875         struct net_device *dev = (struct net_device *)priv->data;
6876
6877         return upper_dev == dev;
6878 }
6879
6880 /**
6881  * netdev_has_upper_dev - Check if device is linked to an upper device
6882  * @dev: device
6883  * @upper_dev: upper device to check
6884  *
6885  * Find out if a device is linked to specified upper device and return true
6886  * in case it is. Note that this checks only immediate upper device,
6887  * not through a complete stack of devices. The caller must hold the RTNL lock.
6888  */
6889 bool netdev_has_upper_dev(struct net_device *dev,
6890                           struct net_device *upper_dev)
6891 {
6892         struct netdev_nested_priv priv = {
6893                 .data = (void *)upper_dev,
6894         };
6895
6896         ASSERT_RTNL();
6897
6898         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6899                                              &priv);
6900 }
6901 EXPORT_SYMBOL(netdev_has_upper_dev);
6902
6903 /**
6904  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6905  * @dev: device
6906  * @upper_dev: upper device to check
6907  *
6908  * Find out if a device is linked to specified upper device and return true
6909  * in case it is. Note that this checks the entire upper device chain.
6910  * The caller must hold rcu lock.
6911  */
6912
6913 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6914                                   struct net_device *upper_dev)
6915 {
6916         struct netdev_nested_priv priv = {
6917                 .data = (void *)upper_dev,
6918         };
6919
6920         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6921                                                &priv);
6922 }
6923 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6924
6925 /**
6926  * netdev_has_any_upper_dev - Check if device is linked to some device
6927  * @dev: device
6928  *
6929  * Find out if a device is linked to an upper device and return true in case
6930  * it is. The caller must hold the RTNL lock.
6931  */
6932 bool netdev_has_any_upper_dev(struct net_device *dev)
6933 {
6934         ASSERT_RTNL();
6935
6936         return !list_empty(&dev->adj_list.upper);
6937 }
6938 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6939
6940 /**
6941  * netdev_master_upper_dev_get - Get master upper device
6942  * @dev: device
6943  *
6944  * Find a master upper device and return pointer to it or NULL in case
6945  * it's not there. The caller must hold the RTNL lock.
6946  */
6947 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6948 {
6949         struct netdev_adjacent *upper;
6950
6951         ASSERT_RTNL();
6952
6953         if (list_empty(&dev->adj_list.upper))
6954                 return NULL;
6955
6956         upper = list_first_entry(&dev->adj_list.upper,
6957                                  struct netdev_adjacent, list);
6958         if (likely(upper->master))
6959                 return upper->dev;
6960         return NULL;
6961 }
6962 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6963
6964 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6965 {
6966         struct netdev_adjacent *upper;
6967
6968         ASSERT_RTNL();
6969
6970         if (list_empty(&dev->adj_list.upper))
6971                 return NULL;
6972
6973         upper = list_first_entry(&dev->adj_list.upper,
6974                                  struct netdev_adjacent, list);
6975         if (likely(upper->master) && !upper->ignore)
6976                 return upper->dev;
6977         return NULL;
6978 }
6979
6980 /**
6981  * netdev_has_any_lower_dev - Check if device is linked to some device
6982  * @dev: device
6983  *
6984  * Find out if a device is linked to a lower device and return true in case
6985  * it is. The caller must hold the RTNL lock.
6986  */
6987 static bool netdev_has_any_lower_dev(struct net_device *dev)
6988 {
6989         ASSERT_RTNL();
6990
6991         return !list_empty(&dev->adj_list.lower);
6992 }
6993
6994 void *netdev_adjacent_get_private(struct list_head *adj_list)
6995 {
6996         struct netdev_adjacent *adj;
6997
6998         adj = list_entry(adj_list, struct netdev_adjacent, list);
6999
7000         return adj->private;
7001 }
7002 EXPORT_SYMBOL(netdev_adjacent_get_private);
7003
7004 /**
7005  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7006  * @dev: device
7007  * @iter: list_head ** of the current position
7008  *
7009  * Gets the next device from the dev's upper list, starting from iter
7010  * position. The caller must hold RCU read lock.
7011  */
7012 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7013                                                  struct list_head **iter)
7014 {
7015         struct netdev_adjacent *upper;
7016
7017         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7018
7019         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7020
7021         if (&upper->list == &dev->adj_list.upper)
7022                 return NULL;
7023
7024         *iter = &upper->list;
7025
7026         return upper->dev;
7027 }
7028 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7029
7030 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7031                                                   struct list_head **iter,
7032                                                   bool *ignore)
7033 {
7034         struct netdev_adjacent *upper;
7035
7036         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7037
7038         if (&upper->list == &dev->adj_list.upper)
7039                 return NULL;
7040
7041         *iter = &upper->list;
7042         *ignore = upper->ignore;
7043
7044         return upper->dev;
7045 }
7046
7047 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7048                                                     struct list_head **iter)
7049 {
7050         struct netdev_adjacent *upper;
7051
7052         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7053
7054         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7055
7056         if (&upper->list == &dev->adj_list.upper)
7057                 return NULL;
7058
7059         *iter = &upper->list;
7060
7061         return upper->dev;
7062 }
7063
7064 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7065                                        int (*fn)(struct net_device *dev,
7066                                          struct netdev_nested_priv *priv),
7067                                        struct netdev_nested_priv *priv)
7068 {
7069         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7070         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7071         int ret, cur = 0;
7072         bool ignore;
7073
7074         now = dev;
7075         iter = &dev->adj_list.upper;
7076
7077         while (1) {
7078                 if (now != dev) {
7079                         ret = fn(now, priv);
7080                         if (ret)
7081                                 return ret;
7082                 }
7083
7084                 next = NULL;
7085                 while (1) {
7086                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7087                         if (!udev)
7088                                 break;
7089                         if (ignore)
7090                                 continue;
7091
7092                         next = udev;
7093                         niter = &udev->adj_list.upper;
7094                         dev_stack[cur] = now;
7095                         iter_stack[cur++] = iter;
7096                         break;
7097                 }
7098
7099                 if (!next) {
7100                         if (!cur)
7101                                 return 0;
7102                         next = dev_stack[--cur];
7103                         niter = iter_stack[cur];
7104                 }
7105
7106                 now = next;
7107                 iter = niter;
7108         }
7109
7110         return 0;
7111 }
7112
7113 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7114                                   int (*fn)(struct net_device *dev,
7115                                             struct netdev_nested_priv *priv),
7116                                   struct netdev_nested_priv *priv)
7117 {
7118         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7119         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7120         int ret, cur = 0;
7121
7122         now = dev;
7123         iter = &dev->adj_list.upper;
7124
7125         while (1) {
7126                 if (now != dev) {
7127                         ret = fn(now, priv);
7128                         if (ret)
7129                                 return ret;
7130                 }
7131
7132                 next = NULL;
7133                 while (1) {
7134                         udev = netdev_next_upper_dev_rcu(now, &iter);
7135                         if (!udev)
7136                                 break;
7137
7138                         next = udev;
7139                         niter = &udev->adj_list.upper;
7140                         dev_stack[cur] = now;
7141                         iter_stack[cur++] = iter;
7142                         break;
7143                 }
7144
7145                 if (!next) {
7146                         if (!cur)
7147                                 return 0;
7148                         next = dev_stack[--cur];
7149                         niter = iter_stack[cur];
7150                 }
7151
7152                 now = next;
7153                 iter = niter;
7154         }
7155
7156         return 0;
7157 }
7158 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7159
7160 static bool __netdev_has_upper_dev(struct net_device *dev,
7161                                    struct net_device *upper_dev)
7162 {
7163         struct netdev_nested_priv priv = {
7164                 .flags = 0,
7165                 .data = (void *)upper_dev,
7166         };
7167
7168         ASSERT_RTNL();
7169
7170         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7171                                            &priv);
7172 }
7173
7174 /**
7175  * netdev_lower_get_next_private - Get the next ->private from the
7176  *                                 lower neighbour list
7177  * @dev: device
7178  * @iter: list_head ** of the current position
7179  *
7180  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7181  * list, starting from iter position. The caller must hold either hold the
7182  * RTNL lock or its own locking that guarantees that the neighbour lower
7183  * list will remain unchanged.
7184  */
7185 void *netdev_lower_get_next_private(struct net_device *dev,
7186                                     struct list_head **iter)
7187 {
7188         struct netdev_adjacent *lower;
7189
7190         lower = list_entry(*iter, struct netdev_adjacent, list);
7191
7192         if (&lower->list == &dev->adj_list.lower)
7193                 return NULL;
7194
7195         *iter = lower->list.next;
7196
7197         return lower->private;
7198 }
7199 EXPORT_SYMBOL(netdev_lower_get_next_private);
7200
7201 /**
7202  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7203  *                                     lower neighbour list, RCU
7204  *                                     variant
7205  * @dev: device
7206  * @iter: list_head ** of the current position
7207  *
7208  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7209  * list, starting from iter position. The caller must hold RCU read lock.
7210  */
7211 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7212                                         struct list_head **iter)
7213 {
7214         struct netdev_adjacent *lower;
7215
7216         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7217
7218         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7219
7220         if (&lower->list == &dev->adj_list.lower)
7221                 return NULL;
7222
7223         *iter = &lower->list;
7224
7225         return lower->private;
7226 }
7227 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7228
7229 /**
7230  * netdev_lower_get_next - Get the next device from the lower neighbour
7231  *                         list
7232  * @dev: device
7233  * @iter: list_head ** of the current position
7234  *
7235  * Gets the next netdev_adjacent from the dev's lower neighbour
7236  * list, starting from iter position. The caller must hold RTNL lock or
7237  * its own locking that guarantees that the neighbour lower
7238  * list will remain unchanged.
7239  */
7240 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7241 {
7242         struct netdev_adjacent *lower;
7243
7244         lower = list_entry(*iter, struct netdev_adjacent, list);
7245
7246         if (&lower->list == &dev->adj_list.lower)
7247                 return NULL;
7248
7249         *iter = lower->list.next;
7250
7251         return lower->dev;
7252 }
7253 EXPORT_SYMBOL(netdev_lower_get_next);
7254
7255 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7256                                                 struct list_head **iter)
7257 {
7258         struct netdev_adjacent *lower;
7259
7260         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7261
7262         if (&lower->list == &dev->adj_list.lower)
7263                 return NULL;
7264
7265         *iter = &lower->list;
7266
7267         return lower->dev;
7268 }
7269
7270 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7271                                                   struct list_head **iter,
7272                                                   bool *ignore)
7273 {
7274         struct netdev_adjacent *lower;
7275
7276         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7277
7278         if (&lower->list == &dev->adj_list.lower)
7279                 return NULL;
7280
7281         *iter = &lower->list;
7282         *ignore = lower->ignore;
7283
7284         return lower->dev;
7285 }
7286
7287 int netdev_walk_all_lower_dev(struct net_device *dev,
7288                               int (*fn)(struct net_device *dev,
7289                                         struct netdev_nested_priv *priv),
7290                               struct netdev_nested_priv *priv)
7291 {
7292         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7293         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7294         int ret, cur = 0;
7295
7296         now = dev;
7297         iter = &dev->adj_list.lower;
7298
7299         while (1) {
7300                 if (now != dev) {
7301                         ret = fn(now, priv);
7302                         if (ret)
7303                                 return ret;
7304                 }
7305
7306                 next = NULL;
7307                 while (1) {
7308                         ldev = netdev_next_lower_dev(now, &iter);
7309                         if (!ldev)
7310                                 break;
7311
7312                         next = ldev;
7313                         niter = &ldev->adj_list.lower;
7314                         dev_stack[cur] = now;
7315                         iter_stack[cur++] = iter;
7316                         break;
7317                 }
7318
7319                 if (!next) {
7320                         if (!cur)
7321                                 return 0;
7322                         next = dev_stack[--cur];
7323                         niter = iter_stack[cur];
7324                 }
7325
7326                 now = next;
7327                 iter = niter;
7328         }
7329
7330         return 0;
7331 }
7332 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7333
7334 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7335                                        int (*fn)(struct net_device *dev,
7336                                          struct netdev_nested_priv *priv),
7337                                        struct netdev_nested_priv *priv)
7338 {
7339         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7340         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7341         int ret, cur = 0;
7342         bool ignore;
7343
7344         now = dev;
7345         iter = &dev->adj_list.lower;
7346
7347         while (1) {
7348                 if (now != dev) {
7349                         ret = fn(now, priv);
7350                         if (ret)
7351                                 return ret;
7352                 }
7353
7354                 next = NULL;
7355                 while (1) {
7356                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7357                         if (!ldev)
7358                                 break;
7359                         if (ignore)
7360                                 continue;
7361
7362                         next = ldev;
7363                         niter = &ldev->adj_list.lower;
7364                         dev_stack[cur] = now;
7365                         iter_stack[cur++] = iter;
7366                         break;
7367                 }
7368
7369                 if (!next) {
7370                         if (!cur)
7371                                 return 0;
7372                         next = dev_stack[--cur];
7373                         niter = iter_stack[cur];
7374                 }
7375
7376                 now = next;
7377                 iter = niter;
7378         }
7379
7380         return 0;
7381 }
7382
7383 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7384                                              struct list_head **iter)
7385 {
7386         struct netdev_adjacent *lower;
7387
7388         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7389         if (&lower->list == &dev->adj_list.lower)
7390                 return NULL;
7391
7392         *iter = &lower->list;
7393
7394         return lower->dev;
7395 }
7396 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7397
7398 static u8 __netdev_upper_depth(struct net_device *dev)
7399 {
7400         struct net_device *udev;
7401         struct list_head *iter;
7402         u8 max_depth = 0;
7403         bool ignore;
7404
7405         for (iter = &dev->adj_list.upper,
7406              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7407              udev;
7408              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7409                 if (ignore)
7410                         continue;
7411                 if (max_depth < udev->upper_level)
7412                         max_depth = udev->upper_level;
7413         }
7414
7415         return max_depth;
7416 }
7417
7418 static u8 __netdev_lower_depth(struct net_device *dev)
7419 {
7420         struct net_device *ldev;
7421         struct list_head *iter;
7422         u8 max_depth = 0;
7423         bool ignore;
7424
7425         for (iter = &dev->adj_list.lower,
7426              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7427              ldev;
7428              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7429                 if (ignore)
7430                         continue;
7431                 if (max_depth < ldev->lower_level)
7432                         max_depth = ldev->lower_level;
7433         }
7434
7435         return max_depth;
7436 }
7437
7438 static int __netdev_update_upper_level(struct net_device *dev,
7439                                        struct netdev_nested_priv *__unused)
7440 {
7441         dev->upper_level = __netdev_upper_depth(dev) + 1;
7442         return 0;
7443 }
7444
7445 #ifdef CONFIG_LOCKDEP
7446 static LIST_HEAD(net_unlink_list);
7447
7448 static void net_unlink_todo(struct net_device *dev)
7449 {
7450         if (list_empty(&dev->unlink_list))
7451                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7452 }
7453 #endif
7454
7455 static int __netdev_update_lower_level(struct net_device *dev,
7456                                        struct netdev_nested_priv *priv)
7457 {
7458         dev->lower_level = __netdev_lower_depth(dev) + 1;
7459
7460 #ifdef CONFIG_LOCKDEP
7461         if (!priv)
7462                 return 0;
7463
7464         if (priv->flags & NESTED_SYNC_IMM)
7465                 dev->nested_level = dev->lower_level - 1;
7466         if (priv->flags & NESTED_SYNC_TODO)
7467                 net_unlink_todo(dev);
7468 #endif
7469         return 0;
7470 }
7471
7472 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7473                                   int (*fn)(struct net_device *dev,
7474                                             struct netdev_nested_priv *priv),
7475                                   struct netdev_nested_priv *priv)
7476 {
7477         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7478         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7479         int ret, cur = 0;
7480
7481         now = dev;
7482         iter = &dev->adj_list.lower;
7483
7484         while (1) {
7485                 if (now != dev) {
7486                         ret = fn(now, priv);
7487                         if (ret)
7488                                 return ret;
7489                 }
7490
7491                 next = NULL;
7492                 while (1) {
7493                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7494                         if (!ldev)
7495                                 break;
7496
7497                         next = ldev;
7498                         niter = &ldev->adj_list.lower;
7499                         dev_stack[cur] = now;
7500                         iter_stack[cur++] = iter;
7501                         break;
7502                 }
7503
7504                 if (!next) {
7505                         if (!cur)
7506                                 return 0;
7507                         next = dev_stack[--cur];
7508                         niter = iter_stack[cur];
7509                 }
7510
7511                 now = next;
7512                 iter = niter;
7513         }
7514
7515         return 0;
7516 }
7517 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7518
7519 /**
7520  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7521  *                                     lower neighbour list, RCU
7522  *                                     variant
7523  * @dev: device
7524  *
7525  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7526  * list. The caller must hold RCU read lock.
7527  */
7528 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7529 {
7530         struct netdev_adjacent *lower;
7531
7532         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7533                         struct netdev_adjacent, list);
7534         if (lower)
7535                 return lower->private;
7536         return NULL;
7537 }
7538 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7539
7540 /**
7541  * netdev_master_upper_dev_get_rcu - Get master upper device
7542  * @dev: device
7543  *
7544  * Find a master upper device and return pointer to it or NULL in case
7545  * it's not there. The caller must hold the RCU read lock.
7546  */
7547 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7548 {
7549         struct netdev_adjacent *upper;
7550
7551         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7552                                        struct netdev_adjacent, list);
7553         if (upper && likely(upper->master))
7554                 return upper->dev;
7555         return NULL;
7556 }
7557 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7558
7559 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7560                               struct net_device *adj_dev,
7561                               struct list_head *dev_list)
7562 {
7563         char linkname[IFNAMSIZ+7];
7564
7565         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7566                 "upper_%s" : "lower_%s", adj_dev->name);
7567         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7568                                  linkname);
7569 }
7570 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7571                                char *name,
7572                                struct list_head *dev_list)
7573 {
7574         char linkname[IFNAMSIZ+7];
7575
7576         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7577                 "upper_%s" : "lower_%s", name);
7578         sysfs_remove_link(&(dev->dev.kobj), linkname);
7579 }
7580
7581 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7582                                                  struct net_device *adj_dev,
7583                                                  struct list_head *dev_list)
7584 {
7585         return (dev_list == &dev->adj_list.upper ||
7586                 dev_list == &dev->adj_list.lower) &&
7587                 net_eq(dev_net(dev), dev_net(adj_dev));
7588 }
7589
7590 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7591                                         struct net_device *adj_dev,
7592                                         struct list_head *dev_list,
7593                                         void *private, bool master)
7594 {
7595         struct netdev_adjacent *adj;
7596         int ret;
7597
7598         adj = __netdev_find_adj(adj_dev, dev_list);
7599
7600         if (adj) {
7601                 adj->ref_nr += 1;
7602                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7603                          dev->name, adj_dev->name, adj->ref_nr);
7604
7605                 return 0;
7606         }
7607
7608         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7609         if (!adj)
7610                 return -ENOMEM;
7611
7612         adj->dev = adj_dev;
7613         adj->master = master;
7614         adj->ref_nr = 1;
7615         adj->private = private;
7616         adj->ignore = false;
7617         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7618
7619         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7620                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7621
7622         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7623                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7624                 if (ret)
7625                         goto free_adj;
7626         }
7627
7628         /* Ensure that master link is always the first item in list. */
7629         if (master) {
7630                 ret = sysfs_create_link(&(dev->dev.kobj),
7631                                         &(adj_dev->dev.kobj), "master");
7632                 if (ret)
7633                         goto remove_symlinks;
7634
7635                 list_add_rcu(&adj->list, dev_list);
7636         } else {
7637                 list_add_tail_rcu(&adj->list, dev_list);
7638         }
7639
7640         return 0;
7641
7642 remove_symlinks:
7643         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7644                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7645 free_adj:
7646         netdev_put(adj_dev, &adj->dev_tracker);
7647         kfree(adj);
7648
7649         return ret;
7650 }
7651
7652 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7653                                          struct net_device *adj_dev,
7654                                          u16 ref_nr,
7655                                          struct list_head *dev_list)
7656 {
7657         struct netdev_adjacent *adj;
7658
7659         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7660                  dev->name, adj_dev->name, ref_nr);
7661
7662         adj = __netdev_find_adj(adj_dev, dev_list);
7663
7664         if (!adj) {
7665                 pr_err("Adjacency does not exist for device %s from %s\n",
7666                        dev->name, adj_dev->name);
7667                 WARN_ON(1);
7668                 return;
7669         }
7670
7671         if (adj->ref_nr > ref_nr) {
7672                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7673                          dev->name, adj_dev->name, ref_nr,
7674                          adj->ref_nr - ref_nr);
7675                 adj->ref_nr -= ref_nr;
7676                 return;
7677         }
7678
7679         if (adj->master)
7680                 sysfs_remove_link(&(dev->dev.kobj), "master");
7681
7682         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7683                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7684
7685         list_del_rcu(&adj->list);
7686         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7687                  adj_dev->name, dev->name, adj_dev->name);
7688         netdev_put(adj_dev, &adj->dev_tracker);
7689         kfree_rcu(adj, rcu);
7690 }
7691
7692 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7693                                             struct net_device *upper_dev,
7694                                             struct list_head *up_list,
7695                                             struct list_head *down_list,
7696                                             void *private, bool master)
7697 {
7698         int ret;
7699
7700         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7701                                            private, master);
7702         if (ret)
7703                 return ret;
7704
7705         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7706                                            private, false);
7707         if (ret) {
7708                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7709                 return ret;
7710         }
7711
7712         return 0;
7713 }
7714
7715 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7716                                                struct net_device *upper_dev,
7717                                                u16 ref_nr,
7718                                                struct list_head *up_list,
7719                                                struct list_head *down_list)
7720 {
7721         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7722         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7723 }
7724
7725 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7726                                                 struct net_device *upper_dev,
7727                                                 void *private, bool master)
7728 {
7729         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7730                                                 &dev->adj_list.upper,
7731                                                 &upper_dev->adj_list.lower,
7732                                                 private, master);
7733 }
7734
7735 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7736                                                    struct net_device *upper_dev)
7737 {
7738         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7739                                            &dev->adj_list.upper,
7740                                            &upper_dev->adj_list.lower);
7741 }
7742
7743 static int __netdev_upper_dev_link(struct net_device *dev,
7744                                    struct net_device *upper_dev, bool master,
7745                                    void *upper_priv, void *upper_info,
7746                                    struct netdev_nested_priv *priv,
7747                                    struct netlink_ext_ack *extack)
7748 {
7749         struct netdev_notifier_changeupper_info changeupper_info = {
7750                 .info = {
7751                         .dev = dev,
7752                         .extack = extack,
7753                 },
7754                 .upper_dev = upper_dev,
7755                 .master = master,
7756                 .linking = true,
7757                 .upper_info = upper_info,
7758         };
7759         struct net_device *master_dev;
7760         int ret = 0;
7761
7762         ASSERT_RTNL();
7763
7764         if (dev == upper_dev)
7765                 return -EBUSY;
7766
7767         /* To prevent loops, check if dev is not upper device to upper_dev. */
7768         if (__netdev_has_upper_dev(upper_dev, dev))
7769                 return -EBUSY;
7770
7771         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7772                 return -EMLINK;
7773
7774         if (!master) {
7775                 if (__netdev_has_upper_dev(dev, upper_dev))
7776                         return -EEXIST;
7777         } else {
7778                 master_dev = __netdev_master_upper_dev_get(dev);
7779                 if (master_dev)
7780                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7781         }
7782
7783         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7784                                             &changeupper_info.info);
7785         ret = notifier_to_errno(ret);
7786         if (ret)
7787                 return ret;
7788
7789         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7790                                                    master);
7791         if (ret)
7792                 return ret;
7793
7794         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7795                                             &changeupper_info.info);
7796         ret = notifier_to_errno(ret);
7797         if (ret)
7798                 goto rollback;
7799
7800         __netdev_update_upper_level(dev, NULL);
7801         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7802
7803         __netdev_update_lower_level(upper_dev, priv);
7804         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7805                                     priv);
7806
7807         return 0;
7808
7809 rollback:
7810         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7811
7812         return ret;
7813 }
7814
7815 /**
7816  * netdev_upper_dev_link - Add a link to the upper device
7817  * @dev: device
7818  * @upper_dev: new upper device
7819  * @extack: netlink extended ack
7820  *
7821  * Adds a link to device which is upper to this one. The caller must hold
7822  * the RTNL lock. On a failure a negative errno code is returned.
7823  * On success the reference counts are adjusted and the function
7824  * returns zero.
7825  */
7826 int netdev_upper_dev_link(struct net_device *dev,
7827                           struct net_device *upper_dev,
7828                           struct netlink_ext_ack *extack)
7829 {
7830         struct netdev_nested_priv priv = {
7831                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7832                 .data = NULL,
7833         };
7834
7835         return __netdev_upper_dev_link(dev, upper_dev, false,
7836                                        NULL, NULL, &priv, extack);
7837 }
7838 EXPORT_SYMBOL(netdev_upper_dev_link);
7839
7840 /**
7841  * netdev_master_upper_dev_link - Add a master link to the upper device
7842  * @dev: device
7843  * @upper_dev: new upper device
7844  * @upper_priv: upper device private
7845  * @upper_info: upper info to be passed down via notifier
7846  * @extack: netlink extended ack
7847  *
7848  * Adds a link to device which is upper to this one. In this case, only
7849  * one master upper device can be linked, although other non-master devices
7850  * might be linked as well. The caller must hold the RTNL lock.
7851  * On a failure a negative errno code is returned. On success the reference
7852  * counts are adjusted and the function returns zero.
7853  */
7854 int netdev_master_upper_dev_link(struct net_device *dev,
7855                                  struct net_device *upper_dev,
7856                                  void *upper_priv, void *upper_info,
7857                                  struct netlink_ext_ack *extack)
7858 {
7859         struct netdev_nested_priv priv = {
7860                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7861                 .data = NULL,
7862         };
7863
7864         return __netdev_upper_dev_link(dev, upper_dev, true,
7865                                        upper_priv, upper_info, &priv, extack);
7866 }
7867 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7868
7869 static void __netdev_upper_dev_unlink(struct net_device *dev,
7870                                       struct net_device *upper_dev,
7871                                       struct netdev_nested_priv *priv)
7872 {
7873         struct netdev_notifier_changeupper_info changeupper_info = {
7874                 .info = {
7875                         .dev = dev,
7876                 },
7877                 .upper_dev = upper_dev,
7878                 .linking = false,
7879         };
7880
7881         ASSERT_RTNL();
7882
7883         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7884
7885         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7886                                       &changeupper_info.info);
7887
7888         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7889
7890         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7891                                       &changeupper_info.info);
7892
7893         __netdev_update_upper_level(dev, NULL);
7894         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7895
7896         __netdev_update_lower_level(upper_dev, priv);
7897         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7898                                     priv);
7899 }
7900
7901 /**
7902  * netdev_upper_dev_unlink - Removes a link to upper device
7903  * @dev: device
7904  * @upper_dev: new upper device
7905  *
7906  * Removes a link to device which is upper to this one. The caller must hold
7907  * the RTNL lock.
7908  */
7909 void netdev_upper_dev_unlink(struct net_device *dev,
7910                              struct net_device *upper_dev)
7911 {
7912         struct netdev_nested_priv priv = {
7913                 .flags = NESTED_SYNC_TODO,
7914                 .data = NULL,
7915         };
7916
7917         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7918 }
7919 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7920
7921 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7922                                       struct net_device *lower_dev,
7923                                       bool val)
7924 {
7925         struct netdev_adjacent *adj;
7926
7927         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7928         if (adj)
7929                 adj->ignore = val;
7930
7931         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7932         if (adj)
7933                 adj->ignore = val;
7934 }
7935
7936 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7937                                         struct net_device *lower_dev)
7938 {
7939         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7940 }
7941
7942 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7943                                        struct net_device *lower_dev)
7944 {
7945         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7946 }
7947
7948 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7949                                    struct net_device *new_dev,
7950                                    struct net_device *dev,
7951                                    struct netlink_ext_ack *extack)
7952 {
7953         struct netdev_nested_priv priv = {
7954                 .flags = 0,
7955                 .data = NULL,
7956         };
7957         int err;
7958
7959         if (!new_dev)
7960                 return 0;
7961
7962         if (old_dev && new_dev != old_dev)
7963                 netdev_adjacent_dev_disable(dev, old_dev);
7964         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7965                                       extack);
7966         if (err) {
7967                 if (old_dev && new_dev != old_dev)
7968                         netdev_adjacent_dev_enable(dev, old_dev);
7969                 return err;
7970         }
7971
7972         return 0;
7973 }
7974 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7975
7976 void netdev_adjacent_change_commit(struct net_device *old_dev,
7977                                    struct net_device *new_dev,
7978                                    struct net_device *dev)
7979 {
7980         struct netdev_nested_priv priv = {
7981                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7982                 .data = NULL,
7983         };
7984
7985         if (!new_dev || !old_dev)
7986                 return;
7987
7988         if (new_dev == old_dev)
7989                 return;
7990
7991         netdev_adjacent_dev_enable(dev, old_dev);
7992         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7993 }
7994 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7995
7996 void netdev_adjacent_change_abort(struct net_device *old_dev,
7997                                   struct net_device *new_dev,
7998                                   struct net_device *dev)
7999 {
8000         struct netdev_nested_priv priv = {
8001                 .flags = 0,
8002                 .data = NULL,
8003         };
8004
8005         if (!new_dev)
8006                 return;
8007
8008         if (old_dev && new_dev != old_dev)
8009                 netdev_adjacent_dev_enable(dev, old_dev);
8010
8011         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8012 }
8013 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8014
8015 /**
8016  * netdev_bonding_info_change - Dispatch event about slave change
8017  * @dev: device
8018  * @bonding_info: info to dispatch
8019  *
8020  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8021  * The caller must hold the RTNL lock.
8022  */
8023 void netdev_bonding_info_change(struct net_device *dev,
8024                                 struct netdev_bonding_info *bonding_info)
8025 {
8026         struct netdev_notifier_bonding_info info = {
8027                 .info.dev = dev,
8028         };
8029
8030         memcpy(&info.bonding_info, bonding_info,
8031                sizeof(struct netdev_bonding_info));
8032         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8033                                       &info.info);
8034 }
8035 EXPORT_SYMBOL(netdev_bonding_info_change);
8036
8037 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8038                                            struct netlink_ext_ack *extack)
8039 {
8040         struct netdev_notifier_offload_xstats_info info = {
8041                 .info.dev = dev,
8042                 .info.extack = extack,
8043                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8044         };
8045         int err;
8046         int rc;
8047
8048         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8049                                          GFP_KERNEL);
8050         if (!dev->offload_xstats_l3)
8051                 return -ENOMEM;
8052
8053         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8054                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8055                                                   &info.info);
8056         err = notifier_to_errno(rc);
8057         if (err)
8058                 goto free_stats;
8059
8060         return 0;
8061
8062 free_stats:
8063         kfree(dev->offload_xstats_l3);
8064         dev->offload_xstats_l3 = NULL;
8065         return err;
8066 }
8067
8068 int netdev_offload_xstats_enable(struct net_device *dev,
8069                                  enum netdev_offload_xstats_type type,
8070                                  struct netlink_ext_ack *extack)
8071 {
8072         ASSERT_RTNL();
8073
8074         if (netdev_offload_xstats_enabled(dev, type))
8075                 return -EALREADY;
8076
8077         switch (type) {
8078         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8079                 return netdev_offload_xstats_enable_l3(dev, extack);
8080         }
8081
8082         WARN_ON(1);
8083         return -EINVAL;
8084 }
8085 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8086
8087 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8088 {
8089         struct netdev_notifier_offload_xstats_info info = {
8090                 .info.dev = dev,
8091                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8092         };
8093
8094         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8095                                       &info.info);
8096         kfree(dev->offload_xstats_l3);
8097         dev->offload_xstats_l3 = NULL;
8098 }
8099
8100 int netdev_offload_xstats_disable(struct net_device *dev,
8101                                   enum netdev_offload_xstats_type type)
8102 {
8103         ASSERT_RTNL();
8104
8105         if (!netdev_offload_xstats_enabled(dev, type))
8106                 return -EALREADY;
8107
8108         switch (type) {
8109         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8110                 netdev_offload_xstats_disable_l3(dev);
8111                 return 0;
8112         }
8113
8114         WARN_ON(1);
8115         return -EINVAL;
8116 }
8117 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8118
8119 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8120 {
8121         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8122 }
8123
8124 static struct rtnl_hw_stats64 *
8125 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8126                               enum netdev_offload_xstats_type type)
8127 {
8128         switch (type) {
8129         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8130                 return dev->offload_xstats_l3;
8131         }
8132
8133         WARN_ON(1);
8134         return NULL;
8135 }
8136
8137 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8138                                    enum netdev_offload_xstats_type type)
8139 {
8140         ASSERT_RTNL();
8141
8142         return netdev_offload_xstats_get_ptr(dev, type);
8143 }
8144 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8145
8146 struct netdev_notifier_offload_xstats_ru {
8147         bool used;
8148 };
8149
8150 struct netdev_notifier_offload_xstats_rd {
8151         struct rtnl_hw_stats64 stats;
8152         bool used;
8153 };
8154
8155 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8156                                   const struct rtnl_hw_stats64 *src)
8157 {
8158         dest->rx_packets          += src->rx_packets;
8159         dest->tx_packets          += src->tx_packets;
8160         dest->rx_bytes            += src->rx_bytes;
8161         dest->tx_bytes            += src->tx_bytes;
8162         dest->rx_errors           += src->rx_errors;
8163         dest->tx_errors           += src->tx_errors;
8164         dest->rx_dropped          += src->rx_dropped;
8165         dest->tx_dropped          += src->tx_dropped;
8166         dest->multicast           += src->multicast;
8167 }
8168
8169 static int netdev_offload_xstats_get_used(struct net_device *dev,
8170                                           enum netdev_offload_xstats_type type,
8171                                           bool *p_used,
8172                                           struct netlink_ext_ack *extack)
8173 {
8174         struct netdev_notifier_offload_xstats_ru report_used = {};
8175         struct netdev_notifier_offload_xstats_info info = {
8176                 .info.dev = dev,
8177                 .info.extack = extack,
8178                 .type = type,
8179                 .report_used = &report_used,
8180         };
8181         int rc;
8182
8183         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8184         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8185                                            &info.info);
8186         *p_used = report_used.used;
8187         return notifier_to_errno(rc);
8188 }
8189
8190 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8191                                            enum netdev_offload_xstats_type type,
8192                                            struct rtnl_hw_stats64 *p_stats,
8193                                            bool *p_used,
8194                                            struct netlink_ext_ack *extack)
8195 {
8196         struct netdev_notifier_offload_xstats_rd report_delta = {};
8197         struct netdev_notifier_offload_xstats_info info = {
8198                 .info.dev = dev,
8199                 .info.extack = extack,
8200                 .type = type,
8201                 .report_delta = &report_delta,
8202         };
8203         struct rtnl_hw_stats64 *stats;
8204         int rc;
8205
8206         stats = netdev_offload_xstats_get_ptr(dev, type);
8207         if (WARN_ON(!stats))
8208                 return -EINVAL;
8209
8210         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8211                                            &info.info);
8212
8213         /* Cache whatever we got, even if there was an error, otherwise the
8214          * successful stats retrievals would get lost.
8215          */
8216         netdev_hw_stats64_add(stats, &report_delta.stats);
8217
8218         if (p_stats)
8219                 *p_stats = *stats;
8220         *p_used = report_delta.used;
8221
8222         return notifier_to_errno(rc);
8223 }
8224
8225 int netdev_offload_xstats_get(struct net_device *dev,
8226                               enum netdev_offload_xstats_type type,
8227                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8228                               struct netlink_ext_ack *extack)
8229 {
8230         ASSERT_RTNL();
8231
8232         if (p_stats)
8233                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8234                                                        p_used, extack);
8235         else
8236                 return netdev_offload_xstats_get_used(dev, type, p_used,
8237                                                       extack);
8238 }
8239 EXPORT_SYMBOL(netdev_offload_xstats_get);
8240
8241 void
8242 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8243                                    const struct rtnl_hw_stats64 *stats)
8244 {
8245         report_delta->used = true;
8246         netdev_hw_stats64_add(&report_delta->stats, stats);
8247 }
8248 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8249
8250 void
8251 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8252 {
8253         report_used->used = true;
8254 }
8255 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8256
8257 void netdev_offload_xstats_push_delta(struct net_device *dev,
8258                                       enum netdev_offload_xstats_type type,
8259                                       const struct rtnl_hw_stats64 *p_stats)
8260 {
8261         struct rtnl_hw_stats64 *stats;
8262
8263         ASSERT_RTNL();
8264
8265         stats = netdev_offload_xstats_get_ptr(dev, type);
8266         if (WARN_ON(!stats))
8267                 return;
8268
8269         netdev_hw_stats64_add(stats, p_stats);
8270 }
8271 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8272
8273 /**
8274  * netdev_get_xmit_slave - Get the xmit slave of master device
8275  * @dev: device
8276  * @skb: The packet
8277  * @all_slaves: assume all the slaves are active
8278  *
8279  * The reference counters are not incremented so the caller must be
8280  * careful with locks. The caller must hold RCU lock.
8281  * %NULL is returned if no slave is found.
8282  */
8283
8284 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8285                                          struct sk_buff *skb,
8286                                          bool all_slaves)
8287 {
8288         const struct net_device_ops *ops = dev->netdev_ops;
8289
8290         if (!ops->ndo_get_xmit_slave)
8291                 return NULL;
8292         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8293 }
8294 EXPORT_SYMBOL(netdev_get_xmit_slave);
8295
8296 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8297                                                   struct sock *sk)
8298 {
8299         const struct net_device_ops *ops = dev->netdev_ops;
8300
8301         if (!ops->ndo_sk_get_lower_dev)
8302                 return NULL;
8303         return ops->ndo_sk_get_lower_dev(dev, sk);
8304 }
8305
8306 /**
8307  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8308  * @dev: device
8309  * @sk: the socket
8310  *
8311  * %NULL is returned if no lower device is found.
8312  */
8313
8314 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8315                                             struct sock *sk)
8316 {
8317         struct net_device *lower;
8318
8319         lower = netdev_sk_get_lower_dev(dev, sk);
8320         while (lower) {
8321                 dev = lower;
8322                 lower = netdev_sk_get_lower_dev(dev, sk);
8323         }
8324
8325         return dev;
8326 }
8327 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8328
8329 static void netdev_adjacent_add_links(struct net_device *dev)
8330 {
8331         struct netdev_adjacent *iter;
8332
8333         struct net *net = dev_net(dev);
8334
8335         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8336                 if (!net_eq(net, dev_net(iter->dev)))
8337                         continue;
8338                 netdev_adjacent_sysfs_add(iter->dev, dev,
8339                                           &iter->dev->adj_list.lower);
8340                 netdev_adjacent_sysfs_add(dev, iter->dev,
8341                                           &dev->adj_list.upper);
8342         }
8343
8344         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8345                 if (!net_eq(net, dev_net(iter->dev)))
8346                         continue;
8347                 netdev_adjacent_sysfs_add(iter->dev, dev,
8348                                           &iter->dev->adj_list.upper);
8349                 netdev_adjacent_sysfs_add(dev, iter->dev,
8350                                           &dev->adj_list.lower);
8351         }
8352 }
8353
8354 static void netdev_adjacent_del_links(struct net_device *dev)
8355 {
8356         struct netdev_adjacent *iter;
8357
8358         struct net *net = dev_net(dev);
8359
8360         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8361                 if (!net_eq(net, dev_net(iter->dev)))
8362                         continue;
8363                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8364                                           &iter->dev->adj_list.lower);
8365                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8366                                           &dev->adj_list.upper);
8367         }
8368
8369         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8370                 if (!net_eq(net, dev_net(iter->dev)))
8371                         continue;
8372                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8373                                           &iter->dev->adj_list.upper);
8374                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8375                                           &dev->adj_list.lower);
8376         }
8377 }
8378
8379 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8380 {
8381         struct netdev_adjacent *iter;
8382
8383         struct net *net = dev_net(dev);
8384
8385         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8386                 if (!net_eq(net, dev_net(iter->dev)))
8387                         continue;
8388                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8389                                           &iter->dev->adj_list.lower);
8390                 netdev_adjacent_sysfs_add(iter->dev, dev,
8391                                           &iter->dev->adj_list.lower);
8392         }
8393
8394         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8395                 if (!net_eq(net, dev_net(iter->dev)))
8396                         continue;
8397                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8398                                           &iter->dev->adj_list.upper);
8399                 netdev_adjacent_sysfs_add(iter->dev, dev,
8400                                           &iter->dev->adj_list.upper);
8401         }
8402 }
8403
8404 void *netdev_lower_dev_get_private(struct net_device *dev,
8405                                    struct net_device *lower_dev)
8406 {
8407         struct netdev_adjacent *lower;
8408
8409         if (!lower_dev)
8410                 return NULL;
8411         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8412         if (!lower)
8413                 return NULL;
8414
8415         return lower->private;
8416 }
8417 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8418
8419
8420 /**
8421  * netdev_lower_state_changed - Dispatch event about lower device state change
8422  * @lower_dev: device
8423  * @lower_state_info: state to dispatch
8424  *
8425  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8426  * The caller must hold the RTNL lock.
8427  */
8428 void netdev_lower_state_changed(struct net_device *lower_dev,
8429                                 void *lower_state_info)
8430 {
8431         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8432                 .info.dev = lower_dev,
8433         };
8434
8435         ASSERT_RTNL();
8436         changelowerstate_info.lower_state_info = lower_state_info;
8437         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8438                                       &changelowerstate_info.info);
8439 }
8440 EXPORT_SYMBOL(netdev_lower_state_changed);
8441
8442 static void dev_change_rx_flags(struct net_device *dev, int flags)
8443 {
8444         const struct net_device_ops *ops = dev->netdev_ops;
8445
8446         if (ops->ndo_change_rx_flags)
8447                 ops->ndo_change_rx_flags(dev, flags);
8448 }
8449
8450 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8451 {
8452         unsigned int old_flags = dev->flags;
8453         kuid_t uid;
8454         kgid_t gid;
8455
8456         ASSERT_RTNL();
8457
8458         dev->flags |= IFF_PROMISC;
8459         dev->promiscuity += inc;
8460         if (dev->promiscuity == 0) {
8461                 /*
8462                  * Avoid overflow.
8463                  * If inc causes overflow, untouch promisc and return error.
8464                  */
8465                 if (inc < 0)
8466                         dev->flags &= ~IFF_PROMISC;
8467                 else {
8468                         dev->promiscuity -= inc;
8469                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8470                         return -EOVERFLOW;
8471                 }
8472         }
8473         if (dev->flags != old_flags) {
8474                 netdev_info(dev, "%s promiscuous mode\n",
8475                             dev->flags & IFF_PROMISC ? "entered" : "left");
8476                 if (audit_enabled) {
8477                         current_uid_gid(&uid, &gid);
8478                         audit_log(audit_context(), GFP_ATOMIC,
8479                                   AUDIT_ANOM_PROMISCUOUS,
8480                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8481                                   dev->name, (dev->flags & IFF_PROMISC),
8482                                   (old_flags & IFF_PROMISC),
8483                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8484                                   from_kuid(&init_user_ns, uid),
8485                                   from_kgid(&init_user_ns, gid),
8486                                   audit_get_sessionid(current));
8487                 }
8488
8489                 dev_change_rx_flags(dev, IFF_PROMISC);
8490         }
8491         if (notify)
8492                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8493         return 0;
8494 }
8495
8496 /**
8497  *      dev_set_promiscuity     - update promiscuity count on a device
8498  *      @dev: device
8499  *      @inc: modifier
8500  *
8501  *      Add or remove promiscuity from a device. While the count in the device
8502  *      remains above zero the interface remains promiscuous. Once it hits zero
8503  *      the device reverts back to normal filtering operation. A negative inc
8504  *      value is used to drop promiscuity on the device.
8505  *      Return 0 if successful or a negative errno code on error.
8506  */
8507 int dev_set_promiscuity(struct net_device *dev, int inc)
8508 {
8509         unsigned int old_flags = dev->flags;
8510         int err;
8511
8512         err = __dev_set_promiscuity(dev, inc, true);
8513         if (err < 0)
8514                 return err;
8515         if (dev->flags != old_flags)
8516                 dev_set_rx_mode(dev);
8517         return err;
8518 }
8519 EXPORT_SYMBOL(dev_set_promiscuity);
8520
8521 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8522 {
8523         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8524
8525         ASSERT_RTNL();
8526
8527         dev->flags |= IFF_ALLMULTI;
8528         dev->allmulti += inc;
8529         if (dev->allmulti == 0) {
8530                 /*
8531                  * Avoid overflow.
8532                  * If inc causes overflow, untouch allmulti and return error.
8533                  */
8534                 if (inc < 0)
8535                         dev->flags &= ~IFF_ALLMULTI;
8536                 else {
8537                         dev->allmulti -= inc;
8538                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8539                         return -EOVERFLOW;
8540                 }
8541         }
8542         if (dev->flags ^ old_flags) {
8543                 netdev_info(dev, "%s allmulticast mode\n",
8544                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8545                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8546                 dev_set_rx_mode(dev);
8547                 if (notify)
8548                         __dev_notify_flags(dev, old_flags,
8549                                            dev->gflags ^ old_gflags, 0, NULL);
8550         }
8551         return 0;
8552 }
8553
8554 /**
8555  *      dev_set_allmulti        - update allmulti count on a device
8556  *      @dev: device
8557  *      @inc: modifier
8558  *
8559  *      Add or remove reception of all multicast frames to a device. While the
8560  *      count in the device remains above zero the interface remains listening
8561  *      to all interfaces. Once it hits zero the device reverts back to normal
8562  *      filtering operation. A negative @inc value is used to drop the counter
8563  *      when releasing a resource needing all multicasts.
8564  *      Return 0 if successful or a negative errno code on error.
8565  */
8566
8567 int dev_set_allmulti(struct net_device *dev, int inc)
8568 {
8569         return __dev_set_allmulti(dev, inc, true);
8570 }
8571 EXPORT_SYMBOL(dev_set_allmulti);
8572
8573 /*
8574  *      Upload unicast and multicast address lists to device and
8575  *      configure RX filtering. When the device doesn't support unicast
8576  *      filtering it is put in promiscuous mode while unicast addresses
8577  *      are present.
8578  */
8579 void __dev_set_rx_mode(struct net_device *dev)
8580 {
8581         const struct net_device_ops *ops = dev->netdev_ops;
8582
8583         /* dev_open will call this function so the list will stay sane. */
8584         if (!(dev->flags&IFF_UP))
8585                 return;
8586
8587         if (!netif_device_present(dev))
8588                 return;
8589
8590         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8591                 /* Unicast addresses changes may only happen under the rtnl,
8592                  * therefore calling __dev_set_promiscuity here is safe.
8593                  */
8594                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8595                         __dev_set_promiscuity(dev, 1, false);
8596                         dev->uc_promisc = true;
8597                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8598                         __dev_set_promiscuity(dev, -1, false);
8599                         dev->uc_promisc = false;
8600                 }
8601         }
8602
8603         if (ops->ndo_set_rx_mode)
8604                 ops->ndo_set_rx_mode(dev);
8605 }
8606
8607 void dev_set_rx_mode(struct net_device *dev)
8608 {
8609         netif_addr_lock_bh(dev);
8610         __dev_set_rx_mode(dev);
8611         netif_addr_unlock_bh(dev);
8612 }
8613
8614 /**
8615  *      dev_get_flags - get flags reported to userspace
8616  *      @dev: device
8617  *
8618  *      Get the combination of flag bits exported through APIs to userspace.
8619  */
8620 unsigned int dev_get_flags(const struct net_device *dev)
8621 {
8622         unsigned int flags;
8623
8624         flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8625                                 IFF_ALLMULTI |
8626                                 IFF_RUNNING |
8627                                 IFF_LOWER_UP |
8628                                 IFF_DORMANT)) |
8629                 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8630                                 IFF_ALLMULTI));
8631
8632         if (netif_running(dev)) {
8633                 if (netif_oper_up(dev))
8634                         flags |= IFF_RUNNING;
8635                 if (netif_carrier_ok(dev))
8636                         flags |= IFF_LOWER_UP;
8637                 if (netif_dormant(dev))
8638                         flags |= IFF_DORMANT;
8639         }
8640
8641         return flags;
8642 }
8643 EXPORT_SYMBOL(dev_get_flags);
8644
8645 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8646                        struct netlink_ext_ack *extack)
8647 {
8648         unsigned int old_flags = dev->flags;
8649         int ret;
8650
8651         ASSERT_RTNL();
8652
8653         /*
8654          *      Set the flags on our device.
8655          */
8656
8657         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8658                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8659                                IFF_AUTOMEDIA)) |
8660                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8661                                     IFF_ALLMULTI));
8662
8663         /*
8664          *      Load in the correct multicast list now the flags have changed.
8665          */
8666
8667         if ((old_flags ^ flags) & IFF_MULTICAST)
8668                 dev_change_rx_flags(dev, IFF_MULTICAST);
8669
8670         dev_set_rx_mode(dev);
8671
8672         /*
8673          *      Have we downed the interface. We handle IFF_UP ourselves
8674          *      according to user attempts to set it, rather than blindly
8675          *      setting it.
8676          */
8677
8678         ret = 0;
8679         if ((old_flags ^ flags) & IFF_UP) {
8680                 if (old_flags & IFF_UP)
8681                         __dev_close(dev);
8682                 else
8683                         ret = __dev_open(dev, extack);
8684         }
8685
8686         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8687                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8688                 unsigned int old_flags = dev->flags;
8689
8690                 dev->gflags ^= IFF_PROMISC;
8691
8692                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8693                         if (dev->flags != old_flags)
8694                                 dev_set_rx_mode(dev);
8695         }
8696
8697         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8698          * is important. Some (broken) drivers set IFF_PROMISC, when
8699          * IFF_ALLMULTI is requested not asking us and not reporting.
8700          */
8701         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8702                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8703
8704                 dev->gflags ^= IFF_ALLMULTI;
8705                 __dev_set_allmulti(dev, inc, false);
8706         }
8707
8708         return ret;
8709 }
8710
8711 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8712                         unsigned int gchanges, u32 portid,
8713                         const struct nlmsghdr *nlh)
8714 {
8715         unsigned int changes = dev->flags ^ old_flags;
8716
8717         if (gchanges)
8718                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8719
8720         if (changes & IFF_UP) {
8721                 if (dev->flags & IFF_UP)
8722                         call_netdevice_notifiers(NETDEV_UP, dev);
8723                 else
8724                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8725         }
8726
8727         if (dev->flags & IFF_UP &&
8728             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8729                 struct netdev_notifier_change_info change_info = {
8730                         .info = {
8731                                 .dev = dev,
8732                         },
8733                         .flags_changed = changes,
8734                 };
8735
8736                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8737         }
8738 }
8739
8740 /**
8741  *      dev_change_flags - change device settings
8742  *      @dev: device
8743  *      @flags: device state flags
8744  *      @extack: netlink extended ack
8745  *
8746  *      Change settings on device based state flags. The flags are
8747  *      in the userspace exported format.
8748  */
8749 int dev_change_flags(struct net_device *dev, unsigned int flags,
8750                      struct netlink_ext_ack *extack)
8751 {
8752         int ret;
8753         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8754
8755         ret = __dev_change_flags(dev, flags, extack);
8756         if (ret < 0)
8757                 return ret;
8758
8759         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8760         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8761         return ret;
8762 }
8763 EXPORT_SYMBOL(dev_change_flags);
8764
8765 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8766 {
8767         const struct net_device_ops *ops = dev->netdev_ops;
8768
8769         if (ops->ndo_change_mtu)
8770                 return ops->ndo_change_mtu(dev, new_mtu);
8771
8772         /* Pairs with all the lockless reads of dev->mtu in the stack */
8773         WRITE_ONCE(dev->mtu, new_mtu);
8774         return 0;
8775 }
8776 EXPORT_SYMBOL(__dev_set_mtu);
8777
8778 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8779                      struct netlink_ext_ack *extack)
8780 {
8781         /* MTU must be positive, and in range */
8782         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8783                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8784                 return -EINVAL;
8785         }
8786
8787         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8788                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8789                 return -EINVAL;
8790         }
8791         return 0;
8792 }
8793
8794 /**
8795  *      dev_set_mtu_ext - Change maximum transfer unit
8796  *      @dev: device
8797  *      @new_mtu: new transfer unit
8798  *      @extack: netlink extended ack
8799  *
8800  *      Change the maximum transfer size of the network device.
8801  */
8802 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8803                     struct netlink_ext_ack *extack)
8804 {
8805         int err, orig_mtu;
8806
8807         if (new_mtu == dev->mtu)
8808                 return 0;
8809
8810         err = dev_validate_mtu(dev, new_mtu, extack);
8811         if (err)
8812                 return err;
8813
8814         if (!netif_device_present(dev))
8815                 return -ENODEV;
8816
8817         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8818         err = notifier_to_errno(err);
8819         if (err)
8820                 return err;
8821
8822         orig_mtu = dev->mtu;
8823         err = __dev_set_mtu(dev, new_mtu);
8824
8825         if (!err) {
8826                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8827                                                    orig_mtu);
8828                 err = notifier_to_errno(err);
8829                 if (err) {
8830                         /* setting mtu back and notifying everyone again,
8831                          * so that they have a chance to revert changes.
8832                          */
8833                         __dev_set_mtu(dev, orig_mtu);
8834                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8835                                                      new_mtu);
8836                 }
8837         }
8838         return err;
8839 }
8840
8841 int dev_set_mtu(struct net_device *dev, int new_mtu)
8842 {
8843         struct netlink_ext_ack extack;
8844         int err;
8845
8846         memset(&extack, 0, sizeof(extack));
8847         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8848         if (err && extack._msg)
8849                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8850         return err;
8851 }
8852 EXPORT_SYMBOL(dev_set_mtu);
8853
8854 /**
8855  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8856  *      @dev: device
8857  *      @new_len: new tx queue length
8858  */
8859 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8860 {
8861         unsigned int orig_len = dev->tx_queue_len;
8862         int res;
8863
8864         if (new_len != (unsigned int)new_len)
8865                 return -ERANGE;
8866
8867         if (new_len != orig_len) {
8868                 dev->tx_queue_len = new_len;
8869                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8870                 res = notifier_to_errno(res);
8871                 if (res)
8872                         goto err_rollback;
8873                 res = dev_qdisc_change_tx_queue_len(dev);
8874                 if (res)
8875                         goto err_rollback;
8876         }
8877
8878         return 0;
8879
8880 err_rollback:
8881         netdev_err(dev, "refused to change device tx_queue_len\n");
8882         dev->tx_queue_len = orig_len;
8883         return res;
8884 }
8885
8886 /**
8887  *      dev_set_group - Change group this device belongs to
8888  *      @dev: device
8889  *      @new_group: group this device should belong to
8890  */
8891 void dev_set_group(struct net_device *dev, int new_group)
8892 {
8893         dev->group = new_group;
8894 }
8895
8896 /**
8897  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8898  *      @dev: device
8899  *      @addr: new address
8900  *      @extack: netlink extended ack
8901  */
8902 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8903                               struct netlink_ext_ack *extack)
8904 {
8905         struct netdev_notifier_pre_changeaddr_info info = {
8906                 .info.dev = dev,
8907                 .info.extack = extack,
8908                 .dev_addr = addr,
8909         };
8910         int rc;
8911
8912         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8913         return notifier_to_errno(rc);
8914 }
8915 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8916
8917 /**
8918  *      dev_set_mac_address - Change Media Access Control Address
8919  *      @dev: device
8920  *      @sa: new address
8921  *      @extack: netlink extended ack
8922  *
8923  *      Change the hardware (MAC) address of the device
8924  */
8925 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8926                         struct netlink_ext_ack *extack)
8927 {
8928         const struct net_device_ops *ops = dev->netdev_ops;
8929         int err;
8930
8931         if (!ops->ndo_set_mac_address)
8932                 return -EOPNOTSUPP;
8933         if (sa->sa_family != dev->type)
8934                 return -EINVAL;
8935         if (!netif_device_present(dev))
8936                 return -ENODEV;
8937         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8938         if (err)
8939                 return err;
8940         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8941                 err = ops->ndo_set_mac_address(dev, sa);
8942                 if (err)
8943                         return err;
8944         }
8945         dev->addr_assign_type = NET_ADDR_SET;
8946         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8947         add_device_randomness(dev->dev_addr, dev->addr_len);
8948         return 0;
8949 }
8950 EXPORT_SYMBOL(dev_set_mac_address);
8951
8952 DECLARE_RWSEM(dev_addr_sem);
8953
8954 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8955                              struct netlink_ext_ack *extack)
8956 {
8957         int ret;
8958
8959         down_write(&dev_addr_sem);
8960         ret = dev_set_mac_address(dev, sa, extack);
8961         up_write(&dev_addr_sem);
8962         return ret;
8963 }
8964 EXPORT_SYMBOL(dev_set_mac_address_user);
8965
8966 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8967 {
8968         size_t size = sizeof(sa->sa_data_min);
8969         struct net_device *dev;
8970         int ret = 0;
8971
8972         down_read(&dev_addr_sem);
8973         rcu_read_lock();
8974
8975         dev = dev_get_by_name_rcu(net, dev_name);
8976         if (!dev) {
8977                 ret = -ENODEV;
8978                 goto unlock;
8979         }
8980         if (!dev->addr_len)
8981                 memset(sa->sa_data, 0, size);
8982         else
8983                 memcpy(sa->sa_data, dev->dev_addr,
8984                        min_t(size_t, size, dev->addr_len));
8985         sa->sa_family = dev->type;
8986
8987 unlock:
8988         rcu_read_unlock();
8989         up_read(&dev_addr_sem);
8990         return ret;
8991 }
8992 EXPORT_SYMBOL(dev_get_mac_address);
8993
8994 /**
8995  *      dev_change_carrier - Change device carrier
8996  *      @dev: device
8997  *      @new_carrier: new value
8998  *
8999  *      Change device carrier
9000  */
9001 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9002 {
9003         const struct net_device_ops *ops = dev->netdev_ops;
9004
9005         if (!ops->ndo_change_carrier)
9006                 return -EOPNOTSUPP;
9007         if (!netif_device_present(dev))
9008                 return -ENODEV;
9009         return ops->ndo_change_carrier(dev, new_carrier);
9010 }
9011
9012 /**
9013  *      dev_get_phys_port_id - Get device physical port ID
9014  *      @dev: device
9015  *      @ppid: port ID
9016  *
9017  *      Get device physical port ID
9018  */
9019 int dev_get_phys_port_id(struct net_device *dev,
9020                          struct netdev_phys_item_id *ppid)
9021 {
9022         const struct net_device_ops *ops = dev->netdev_ops;
9023
9024         if (!ops->ndo_get_phys_port_id)
9025                 return -EOPNOTSUPP;
9026         return ops->ndo_get_phys_port_id(dev, ppid);
9027 }
9028
9029 /**
9030  *      dev_get_phys_port_name - Get device physical port name
9031  *      @dev: device
9032  *      @name: port name
9033  *      @len: limit of bytes to copy to name
9034  *
9035  *      Get device physical port name
9036  */
9037 int dev_get_phys_port_name(struct net_device *dev,
9038                            char *name, size_t len)
9039 {
9040         const struct net_device_ops *ops = dev->netdev_ops;
9041         int err;
9042
9043         if (ops->ndo_get_phys_port_name) {
9044                 err = ops->ndo_get_phys_port_name(dev, name, len);
9045                 if (err != -EOPNOTSUPP)
9046                         return err;
9047         }
9048         return devlink_compat_phys_port_name_get(dev, name, len);
9049 }
9050
9051 /**
9052  *      dev_get_port_parent_id - Get the device's port parent identifier
9053  *      @dev: network device
9054  *      @ppid: pointer to a storage for the port's parent identifier
9055  *      @recurse: allow/disallow recursion to lower devices
9056  *
9057  *      Get the devices's port parent identifier
9058  */
9059 int dev_get_port_parent_id(struct net_device *dev,
9060                            struct netdev_phys_item_id *ppid,
9061                            bool recurse)
9062 {
9063         const struct net_device_ops *ops = dev->netdev_ops;
9064         struct netdev_phys_item_id first = { };
9065         struct net_device *lower_dev;
9066         struct list_head *iter;
9067         int err;
9068
9069         if (ops->ndo_get_port_parent_id) {
9070                 err = ops->ndo_get_port_parent_id(dev, ppid);
9071                 if (err != -EOPNOTSUPP)
9072                         return err;
9073         }
9074
9075         err = devlink_compat_switch_id_get(dev, ppid);
9076         if (!recurse || err != -EOPNOTSUPP)
9077                 return err;
9078
9079         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9080                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9081                 if (err)
9082                         break;
9083                 if (!first.id_len)
9084                         first = *ppid;
9085                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9086                         return -EOPNOTSUPP;
9087         }
9088
9089         return err;
9090 }
9091 EXPORT_SYMBOL(dev_get_port_parent_id);
9092
9093 /**
9094  *      netdev_port_same_parent_id - Indicate if two network devices have
9095  *      the same port parent identifier
9096  *      @a: first network device
9097  *      @b: second network device
9098  */
9099 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9100 {
9101         struct netdev_phys_item_id a_id = { };
9102         struct netdev_phys_item_id b_id = { };
9103
9104         if (dev_get_port_parent_id(a, &a_id, true) ||
9105             dev_get_port_parent_id(b, &b_id, true))
9106                 return false;
9107
9108         return netdev_phys_item_id_same(&a_id, &b_id);
9109 }
9110 EXPORT_SYMBOL(netdev_port_same_parent_id);
9111
9112 /**
9113  *      dev_change_proto_down - set carrier according to proto_down.
9114  *
9115  *      @dev: device
9116  *      @proto_down: new value
9117  */
9118 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9119 {
9120         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9121                 return -EOPNOTSUPP;
9122         if (!netif_device_present(dev))
9123                 return -ENODEV;
9124         if (proto_down)
9125                 netif_carrier_off(dev);
9126         else
9127                 netif_carrier_on(dev);
9128         dev->proto_down = proto_down;
9129         return 0;
9130 }
9131
9132 /**
9133  *      dev_change_proto_down_reason - proto down reason
9134  *
9135  *      @dev: device
9136  *      @mask: proto down mask
9137  *      @value: proto down value
9138  */
9139 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9140                                   u32 value)
9141 {
9142         int b;
9143
9144         if (!mask) {
9145                 dev->proto_down_reason = value;
9146         } else {
9147                 for_each_set_bit(b, &mask, 32) {
9148                         if (value & (1 << b))
9149                                 dev->proto_down_reason |= BIT(b);
9150                         else
9151                                 dev->proto_down_reason &= ~BIT(b);
9152                 }
9153         }
9154 }
9155
9156 struct bpf_xdp_link {
9157         struct bpf_link link;
9158         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9159         int flags;
9160 };
9161
9162 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9163 {
9164         if (flags & XDP_FLAGS_HW_MODE)
9165                 return XDP_MODE_HW;
9166         if (flags & XDP_FLAGS_DRV_MODE)
9167                 return XDP_MODE_DRV;
9168         if (flags & XDP_FLAGS_SKB_MODE)
9169                 return XDP_MODE_SKB;
9170         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9171 }
9172
9173 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9174 {
9175         switch (mode) {
9176         case XDP_MODE_SKB:
9177                 return generic_xdp_install;
9178         case XDP_MODE_DRV:
9179         case XDP_MODE_HW:
9180                 return dev->netdev_ops->ndo_bpf;
9181         default:
9182                 return NULL;
9183         }
9184 }
9185
9186 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9187                                          enum bpf_xdp_mode mode)
9188 {
9189         return dev->xdp_state[mode].link;
9190 }
9191
9192 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9193                                      enum bpf_xdp_mode mode)
9194 {
9195         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9196
9197         if (link)
9198                 return link->link.prog;
9199         return dev->xdp_state[mode].prog;
9200 }
9201
9202 u8 dev_xdp_prog_count(struct net_device *dev)
9203 {
9204         u8 count = 0;
9205         int i;
9206
9207         for (i = 0; i < __MAX_XDP_MODE; i++)
9208                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9209                         count++;
9210         return count;
9211 }
9212 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9213
9214 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9215 {
9216         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9217
9218         return prog ? prog->aux->id : 0;
9219 }
9220
9221 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9222                              struct bpf_xdp_link *link)
9223 {
9224         dev->xdp_state[mode].link = link;
9225         dev->xdp_state[mode].prog = NULL;
9226 }
9227
9228 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9229                              struct bpf_prog *prog)
9230 {
9231         dev->xdp_state[mode].link = NULL;
9232         dev->xdp_state[mode].prog = prog;
9233 }
9234
9235 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9236                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9237                            u32 flags, struct bpf_prog *prog)
9238 {
9239         struct netdev_bpf xdp;
9240         int err;
9241
9242         memset(&xdp, 0, sizeof(xdp));
9243         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9244         xdp.extack = extack;
9245         xdp.flags = flags;
9246         xdp.prog = prog;
9247
9248         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9249          * "moved" into driver), so they don't increment it on their own, but
9250          * they do decrement refcnt when program is detached or replaced.
9251          * Given net_device also owns link/prog, we need to bump refcnt here
9252          * to prevent drivers from underflowing it.
9253          */
9254         if (prog)
9255                 bpf_prog_inc(prog);
9256         err = bpf_op(dev, &xdp);
9257         if (err) {
9258                 if (prog)
9259                         bpf_prog_put(prog);
9260                 return err;
9261         }
9262
9263         if (mode != XDP_MODE_HW)
9264                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9265
9266         return 0;
9267 }
9268
9269 static void dev_xdp_uninstall(struct net_device *dev)
9270 {
9271         struct bpf_xdp_link *link;
9272         struct bpf_prog *prog;
9273         enum bpf_xdp_mode mode;
9274         bpf_op_t bpf_op;
9275
9276         ASSERT_RTNL();
9277
9278         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9279                 prog = dev_xdp_prog(dev, mode);
9280                 if (!prog)
9281                         continue;
9282
9283                 bpf_op = dev_xdp_bpf_op(dev, mode);
9284                 if (!bpf_op)
9285                         continue;
9286
9287                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9288
9289                 /* auto-detach link from net device */
9290                 link = dev_xdp_link(dev, mode);
9291                 if (link)
9292                         link->dev = NULL;
9293                 else
9294                         bpf_prog_put(prog);
9295
9296                 dev_xdp_set_link(dev, mode, NULL);
9297         }
9298 }
9299
9300 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9301                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9302                           struct bpf_prog *old_prog, u32 flags)
9303 {
9304         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9305         struct bpf_prog *cur_prog;
9306         struct net_device *upper;
9307         struct list_head *iter;
9308         enum bpf_xdp_mode mode;
9309         bpf_op_t bpf_op;
9310         int err;
9311
9312         ASSERT_RTNL();
9313
9314         /* either link or prog attachment, never both */
9315         if (link && (new_prog || old_prog))
9316                 return -EINVAL;
9317         /* link supports only XDP mode flags */
9318         if (link && (flags & ~XDP_FLAGS_MODES)) {
9319                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9320                 return -EINVAL;
9321         }
9322         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9323         if (num_modes > 1) {
9324                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9325                 return -EINVAL;
9326         }
9327         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9328         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9329                 NL_SET_ERR_MSG(extack,
9330                                "More than one program loaded, unset mode is ambiguous");
9331                 return -EINVAL;
9332         }
9333         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9334         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9335                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9336                 return -EINVAL;
9337         }
9338
9339         mode = dev_xdp_mode(dev, flags);
9340         /* can't replace attached link */
9341         if (dev_xdp_link(dev, mode)) {
9342                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9343                 return -EBUSY;
9344         }
9345
9346         /* don't allow if an upper device already has a program */
9347         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9348                 if (dev_xdp_prog_count(upper) > 0) {
9349                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9350                         return -EEXIST;
9351                 }
9352         }
9353
9354         cur_prog = dev_xdp_prog(dev, mode);
9355         /* can't replace attached prog with link */
9356         if (link && cur_prog) {
9357                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9358                 return -EBUSY;
9359         }
9360         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9361                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9362                 return -EEXIST;
9363         }
9364
9365         /* put effective new program into new_prog */
9366         if (link)
9367                 new_prog = link->link.prog;
9368
9369         if (new_prog) {
9370                 bool offload = mode == XDP_MODE_HW;
9371                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9372                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9373
9374                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9375                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9376                         return -EBUSY;
9377                 }
9378                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9379                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9380                         return -EEXIST;
9381                 }
9382                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9383                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9384                         return -EINVAL;
9385                 }
9386                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9387                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9388                         return -EINVAL;
9389                 }
9390                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9391                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9392                         return -EINVAL;
9393                 }
9394                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9395                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9396                         return -EINVAL;
9397                 }
9398         }
9399
9400         /* don't call drivers if the effective program didn't change */
9401         if (new_prog != cur_prog) {
9402                 bpf_op = dev_xdp_bpf_op(dev, mode);
9403                 if (!bpf_op) {
9404                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9405                         return -EOPNOTSUPP;
9406                 }
9407
9408                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9409                 if (err)
9410                         return err;
9411         }
9412
9413         if (link)
9414                 dev_xdp_set_link(dev, mode, link);
9415         else
9416                 dev_xdp_set_prog(dev, mode, new_prog);
9417         if (cur_prog)
9418                 bpf_prog_put(cur_prog);
9419
9420         return 0;
9421 }
9422
9423 static int dev_xdp_attach_link(struct net_device *dev,
9424                                struct netlink_ext_ack *extack,
9425                                struct bpf_xdp_link *link)
9426 {
9427         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9428 }
9429
9430 static int dev_xdp_detach_link(struct net_device *dev,
9431                                struct netlink_ext_ack *extack,
9432                                struct bpf_xdp_link *link)
9433 {
9434         enum bpf_xdp_mode mode;
9435         bpf_op_t bpf_op;
9436
9437         ASSERT_RTNL();
9438
9439         mode = dev_xdp_mode(dev, link->flags);
9440         if (dev_xdp_link(dev, mode) != link)
9441                 return -EINVAL;
9442
9443         bpf_op = dev_xdp_bpf_op(dev, mode);
9444         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9445         dev_xdp_set_link(dev, mode, NULL);
9446         return 0;
9447 }
9448
9449 static void bpf_xdp_link_release(struct bpf_link *link)
9450 {
9451         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9452
9453         rtnl_lock();
9454
9455         /* if racing with net_device's tear down, xdp_link->dev might be
9456          * already NULL, in which case link was already auto-detached
9457          */
9458         if (xdp_link->dev) {
9459                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9460                 xdp_link->dev = NULL;
9461         }
9462
9463         rtnl_unlock();
9464 }
9465
9466 static int bpf_xdp_link_detach(struct bpf_link *link)
9467 {
9468         bpf_xdp_link_release(link);
9469         return 0;
9470 }
9471
9472 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9473 {
9474         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9475
9476         kfree(xdp_link);
9477 }
9478
9479 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9480                                      struct seq_file *seq)
9481 {
9482         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9483         u32 ifindex = 0;
9484
9485         rtnl_lock();
9486         if (xdp_link->dev)
9487                 ifindex = xdp_link->dev->ifindex;
9488         rtnl_unlock();
9489
9490         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9491 }
9492
9493 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9494                                        struct bpf_link_info *info)
9495 {
9496         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9497         u32 ifindex = 0;
9498
9499         rtnl_lock();
9500         if (xdp_link->dev)
9501                 ifindex = xdp_link->dev->ifindex;
9502         rtnl_unlock();
9503
9504         info->xdp.ifindex = ifindex;
9505         return 0;
9506 }
9507
9508 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9509                                struct bpf_prog *old_prog)
9510 {
9511         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9512         enum bpf_xdp_mode mode;
9513         bpf_op_t bpf_op;
9514         int err = 0;
9515
9516         rtnl_lock();
9517
9518         /* link might have been auto-released already, so fail */
9519         if (!xdp_link->dev) {
9520                 err = -ENOLINK;
9521                 goto out_unlock;
9522         }
9523
9524         if (old_prog && link->prog != old_prog) {
9525                 err = -EPERM;
9526                 goto out_unlock;
9527         }
9528         old_prog = link->prog;
9529         if (old_prog->type != new_prog->type ||
9530             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9531                 err = -EINVAL;
9532                 goto out_unlock;
9533         }
9534
9535         if (old_prog == new_prog) {
9536                 /* no-op, don't disturb drivers */
9537                 bpf_prog_put(new_prog);
9538                 goto out_unlock;
9539         }
9540
9541         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9542         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9543         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9544                               xdp_link->flags, new_prog);
9545         if (err)
9546                 goto out_unlock;
9547
9548         old_prog = xchg(&link->prog, new_prog);
9549         bpf_prog_put(old_prog);
9550
9551 out_unlock:
9552         rtnl_unlock();
9553         return err;
9554 }
9555
9556 static const struct bpf_link_ops bpf_xdp_link_lops = {
9557         .release = bpf_xdp_link_release,
9558         .dealloc = bpf_xdp_link_dealloc,
9559         .detach = bpf_xdp_link_detach,
9560         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9561         .fill_link_info = bpf_xdp_link_fill_link_info,
9562         .update_prog = bpf_xdp_link_update,
9563 };
9564
9565 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9566 {
9567         struct net *net = current->nsproxy->net_ns;
9568         struct bpf_link_primer link_primer;
9569         struct netlink_ext_ack extack = {};
9570         struct bpf_xdp_link *link;
9571         struct net_device *dev;
9572         int err, fd;
9573
9574         rtnl_lock();
9575         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9576         if (!dev) {
9577                 rtnl_unlock();
9578                 return -EINVAL;
9579         }
9580
9581         link = kzalloc(sizeof(*link), GFP_USER);
9582         if (!link) {
9583                 err = -ENOMEM;
9584                 goto unlock;
9585         }
9586
9587         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9588         link->dev = dev;
9589         link->flags = attr->link_create.flags;
9590
9591         err = bpf_link_prime(&link->link, &link_primer);
9592         if (err) {
9593                 kfree(link);
9594                 goto unlock;
9595         }
9596
9597         err = dev_xdp_attach_link(dev, &extack, link);
9598         rtnl_unlock();
9599
9600         if (err) {
9601                 link->dev = NULL;
9602                 bpf_link_cleanup(&link_primer);
9603                 trace_bpf_xdp_link_attach_failed(extack._msg);
9604                 goto out_put_dev;
9605         }
9606
9607         fd = bpf_link_settle(&link_primer);
9608         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9609         dev_put(dev);
9610         return fd;
9611
9612 unlock:
9613         rtnl_unlock();
9614
9615 out_put_dev:
9616         dev_put(dev);
9617         return err;
9618 }
9619
9620 /**
9621  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9622  *      @dev: device
9623  *      @extack: netlink extended ack
9624  *      @fd: new program fd or negative value to clear
9625  *      @expected_fd: old program fd that userspace expects to replace or clear
9626  *      @flags: xdp-related flags
9627  *
9628  *      Set or clear a bpf program for a device
9629  */
9630 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9631                       int fd, int expected_fd, u32 flags)
9632 {
9633         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9634         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9635         int err;
9636
9637         ASSERT_RTNL();
9638
9639         if (fd >= 0) {
9640                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9641                                                  mode != XDP_MODE_SKB);
9642                 if (IS_ERR(new_prog))
9643                         return PTR_ERR(new_prog);
9644         }
9645
9646         if (expected_fd >= 0) {
9647                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9648                                                  mode != XDP_MODE_SKB);
9649                 if (IS_ERR(old_prog)) {
9650                         err = PTR_ERR(old_prog);
9651                         old_prog = NULL;
9652                         goto err_out;
9653                 }
9654         }
9655
9656         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9657
9658 err_out:
9659         if (err && new_prog)
9660                 bpf_prog_put(new_prog);
9661         if (old_prog)
9662                 bpf_prog_put(old_prog);
9663         return err;
9664 }
9665
9666 /**
9667  * dev_index_reserve() - allocate an ifindex in a namespace
9668  * @net: the applicable net namespace
9669  * @ifindex: requested ifindex, pass %0 to get one allocated
9670  *
9671  * Allocate a ifindex for a new device. Caller must either use the ifindex
9672  * to store the device (via list_netdevice()) or call dev_index_release()
9673  * to give the index up.
9674  *
9675  * Return: a suitable unique value for a new device interface number or -errno.
9676  */
9677 static int dev_index_reserve(struct net *net, u32 ifindex)
9678 {
9679         int err;
9680
9681         if (ifindex > INT_MAX) {
9682                 DEBUG_NET_WARN_ON_ONCE(1);
9683                 return -EINVAL;
9684         }
9685
9686         if (!ifindex)
9687                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9688                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9689         else
9690                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9691         if (err < 0)
9692                 return err;
9693
9694         return ifindex;
9695 }
9696
9697 static void dev_index_release(struct net *net, int ifindex)
9698 {
9699         /* Expect only unused indexes, unlist_netdevice() removes the used */
9700         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9701 }
9702
9703 /* Delayed registration/unregisteration */
9704 LIST_HEAD(net_todo_list);
9705 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9706 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9707
9708 static void net_set_todo(struct net_device *dev)
9709 {
9710         list_add_tail(&dev->todo_list, &net_todo_list);
9711 }
9712
9713 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9714         struct net_device *upper, netdev_features_t features)
9715 {
9716         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9717         netdev_features_t feature;
9718         int feature_bit;
9719
9720         for_each_netdev_feature(upper_disables, feature_bit) {
9721                 feature = __NETIF_F_BIT(feature_bit);
9722                 if (!(upper->wanted_features & feature)
9723                     && (features & feature)) {
9724                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9725                                    &feature, upper->name);
9726                         features &= ~feature;
9727                 }
9728         }
9729
9730         return features;
9731 }
9732
9733 static void netdev_sync_lower_features(struct net_device *upper,
9734         struct net_device *lower, netdev_features_t features)
9735 {
9736         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9737         netdev_features_t feature;
9738         int feature_bit;
9739
9740         for_each_netdev_feature(upper_disables, feature_bit) {
9741                 feature = __NETIF_F_BIT(feature_bit);
9742                 if (!(features & feature) && (lower->features & feature)) {
9743                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9744                                    &feature, lower->name);
9745                         lower->wanted_features &= ~feature;
9746                         __netdev_update_features(lower);
9747
9748                         if (unlikely(lower->features & feature))
9749                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9750                                             &feature, lower->name);
9751                         else
9752                                 netdev_features_change(lower);
9753                 }
9754         }
9755 }
9756
9757 static netdev_features_t netdev_fix_features(struct net_device *dev,
9758         netdev_features_t features)
9759 {
9760         /* Fix illegal checksum combinations */
9761         if ((features & NETIF_F_HW_CSUM) &&
9762             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9763                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9764                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9765         }
9766
9767         /* TSO requires that SG is present as well. */
9768         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9769                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9770                 features &= ~NETIF_F_ALL_TSO;
9771         }
9772
9773         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9774                                         !(features & NETIF_F_IP_CSUM)) {
9775                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9776                 features &= ~NETIF_F_TSO;
9777                 features &= ~NETIF_F_TSO_ECN;
9778         }
9779
9780         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9781                                          !(features & NETIF_F_IPV6_CSUM)) {
9782                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9783                 features &= ~NETIF_F_TSO6;
9784         }
9785
9786         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9787         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9788                 features &= ~NETIF_F_TSO_MANGLEID;
9789
9790         /* TSO ECN requires that TSO is present as well. */
9791         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9792                 features &= ~NETIF_F_TSO_ECN;
9793
9794         /* Software GSO depends on SG. */
9795         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9796                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9797                 features &= ~NETIF_F_GSO;
9798         }
9799
9800         /* GSO partial features require GSO partial be set */
9801         if ((features & dev->gso_partial_features) &&
9802             !(features & NETIF_F_GSO_PARTIAL)) {
9803                 netdev_dbg(dev,
9804                            "Dropping partially supported GSO features since no GSO partial.\n");
9805                 features &= ~dev->gso_partial_features;
9806         }
9807
9808         if (!(features & NETIF_F_RXCSUM)) {
9809                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9810                  * successfully merged by hardware must also have the
9811                  * checksum verified by hardware.  If the user does not
9812                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9813                  */
9814                 if (features & NETIF_F_GRO_HW) {
9815                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9816                         features &= ~NETIF_F_GRO_HW;
9817                 }
9818         }
9819
9820         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9821         if (features & NETIF_F_RXFCS) {
9822                 if (features & NETIF_F_LRO) {
9823                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9824                         features &= ~NETIF_F_LRO;
9825                 }
9826
9827                 if (features & NETIF_F_GRO_HW) {
9828                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9829                         features &= ~NETIF_F_GRO_HW;
9830                 }
9831         }
9832
9833         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9834                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9835                 features &= ~NETIF_F_LRO;
9836         }
9837
9838         if (features & NETIF_F_HW_TLS_TX) {
9839                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9840                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9841                 bool hw_csum = features & NETIF_F_HW_CSUM;
9842
9843                 if (!ip_csum && !hw_csum) {
9844                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9845                         features &= ~NETIF_F_HW_TLS_TX;
9846                 }
9847         }
9848
9849         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9850                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9851                 features &= ~NETIF_F_HW_TLS_RX;
9852         }
9853
9854         return features;
9855 }
9856
9857 int __netdev_update_features(struct net_device *dev)
9858 {
9859         struct net_device *upper, *lower;
9860         netdev_features_t features;
9861         struct list_head *iter;
9862         int err = -1;
9863
9864         ASSERT_RTNL();
9865
9866         features = netdev_get_wanted_features(dev);
9867
9868         if (dev->netdev_ops->ndo_fix_features)
9869                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9870
9871         /* driver might be less strict about feature dependencies */
9872         features = netdev_fix_features(dev, features);
9873
9874         /* some features can't be enabled if they're off on an upper device */
9875         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9876                 features = netdev_sync_upper_features(dev, upper, features);
9877
9878         if (dev->features == features)
9879                 goto sync_lower;
9880
9881         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9882                 &dev->features, &features);
9883
9884         if (dev->netdev_ops->ndo_set_features)
9885                 err = dev->netdev_ops->ndo_set_features(dev, features);
9886         else
9887                 err = 0;
9888
9889         if (unlikely(err < 0)) {
9890                 netdev_err(dev,
9891                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9892                         err, &features, &dev->features);
9893                 /* return non-0 since some features might have changed and
9894                  * it's better to fire a spurious notification than miss it
9895                  */
9896                 return -1;
9897         }
9898
9899 sync_lower:
9900         /* some features must be disabled on lower devices when disabled
9901          * on an upper device (think: bonding master or bridge)
9902          */
9903         netdev_for_each_lower_dev(dev, lower, iter)
9904                 netdev_sync_lower_features(dev, lower, features);
9905
9906         if (!err) {
9907                 netdev_features_t diff = features ^ dev->features;
9908
9909                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9910                         /* udp_tunnel_{get,drop}_rx_info both need
9911                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9912                          * device, or they won't do anything.
9913                          * Thus we need to update dev->features
9914                          * *before* calling udp_tunnel_get_rx_info,
9915                          * but *after* calling udp_tunnel_drop_rx_info.
9916                          */
9917                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9918                                 dev->features = features;
9919                                 udp_tunnel_get_rx_info(dev);
9920                         } else {
9921                                 udp_tunnel_drop_rx_info(dev);
9922                         }
9923                 }
9924
9925                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9926                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9927                                 dev->features = features;
9928                                 err |= vlan_get_rx_ctag_filter_info(dev);
9929                         } else {
9930                                 vlan_drop_rx_ctag_filter_info(dev);
9931                         }
9932                 }
9933
9934                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9935                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9936                                 dev->features = features;
9937                                 err |= vlan_get_rx_stag_filter_info(dev);
9938                         } else {
9939                                 vlan_drop_rx_stag_filter_info(dev);
9940                         }
9941                 }
9942
9943                 dev->features = features;
9944         }
9945
9946         return err < 0 ? 0 : 1;
9947 }
9948
9949 /**
9950  *      netdev_update_features - recalculate device features
9951  *      @dev: the device to check
9952  *
9953  *      Recalculate dev->features set and send notifications if it
9954  *      has changed. Should be called after driver or hardware dependent
9955  *      conditions might have changed that influence the features.
9956  */
9957 void netdev_update_features(struct net_device *dev)
9958 {
9959         if (__netdev_update_features(dev))
9960                 netdev_features_change(dev);
9961 }
9962 EXPORT_SYMBOL(netdev_update_features);
9963
9964 /**
9965  *      netdev_change_features - recalculate device features
9966  *      @dev: the device to check
9967  *
9968  *      Recalculate dev->features set and send notifications even
9969  *      if they have not changed. Should be called instead of
9970  *      netdev_update_features() if also dev->vlan_features might
9971  *      have changed to allow the changes to be propagated to stacked
9972  *      VLAN devices.
9973  */
9974 void netdev_change_features(struct net_device *dev)
9975 {
9976         __netdev_update_features(dev);
9977         netdev_features_change(dev);
9978 }
9979 EXPORT_SYMBOL(netdev_change_features);
9980
9981 /**
9982  *      netif_stacked_transfer_operstate -      transfer operstate
9983  *      @rootdev: the root or lower level device to transfer state from
9984  *      @dev: the device to transfer operstate to
9985  *
9986  *      Transfer operational state from root to device. This is normally
9987  *      called when a stacking relationship exists between the root
9988  *      device and the device(a leaf device).
9989  */
9990 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9991                                         struct net_device *dev)
9992 {
9993         if (rootdev->operstate == IF_OPER_DORMANT)
9994                 netif_dormant_on(dev);
9995         else
9996                 netif_dormant_off(dev);
9997
9998         if (rootdev->operstate == IF_OPER_TESTING)
9999                 netif_testing_on(dev);
10000         else
10001                 netif_testing_off(dev);
10002
10003         if (netif_carrier_ok(rootdev))
10004                 netif_carrier_on(dev);
10005         else
10006                 netif_carrier_off(dev);
10007 }
10008 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10009
10010 static int netif_alloc_rx_queues(struct net_device *dev)
10011 {
10012         unsigned int i, count = dev->num_rx_queues;
10013         struct netdev_rx_queue *rx;
10014         size_t sz = count * sizeof(*rx);
10015         int err = 0;
10016
10017         BUG_ON(count < 1);
10018
10019         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10020         if (!rx)
10021                 return -ENOMEM;
10022
10023         dev->_rx = rx;
10024
10025         for (i = 0; i < count; i++) {
10026                 rx[i].dev = dev;
10027
10028                 /* XDP RX-queue setup */
10029                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10030                 if (err < 0)
10031                         goto err_rxq_info;
10032         }
10033         return 0;
10034
10035 err_rxq_info:
10036         /* Rollback successful reg's and free other resources */
10037         while (i--)
10038                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10039         kvfree(dev->_rx);
10040         dev->_rx = NULL;
10041         return err;
10042 }
10043
10044 static void netif_free_rx_queues(struct net_device *dev)
10045 {
10046         unsigned int i, count = dev->num_rx_queues;
10047
10048         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10049         if (!dev->_rx)
10050                 return;
10051
10052         for (i = 0; i < count; i++)
10053                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10054
10055         kvfree(dev->_rx);
10056 }
10057
10058 static void netdev_init_one_queue(struct net_device *dev,
10059                                   struct netdev_queue *queue, void *_unused)
10060 {
10061         /* Initialize queue lock */
10062         spin_lock_init(&queue->_xmit_lock);
10063         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10064         queue->xmit_lock_owner = -1;
10065         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10066         queue->dev = dev;
10067 #ifdef CONFIG_BQL
10068         dql_init(&queue->dql, HZ);
10069 #endif
10070 }
10071
10072 static void netif_free_tx_queues(struct net_device *dev)
10073 {
10074         kvfree(dev->_tx);
10075 }
10076
10077 static int netif_alloc_netdev_queues(struct net_device *dev)
10078 {
10079         unsigned int count = dev->num_tx_queues;
10080         struct netdev_queue *tx;
10081         size_t sz = count * sizeof(*tx);
10082
10083         if (count < 1 || count > 0xffff)
10084                 return -EINVAL;
10085
10086         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10087         if (!tx)
10088                 return -ENOMEM;
10089
10090         dev->_tx = tx;
10091
10092         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10093         spin_lock_init(&dev->tx_global_lock);
10094
10095         return 0;
10096 }
10097
10098 void netif_tx_stop_all_queues(struct net_device *dev)
10099 {
10100         unsigned int i;
10101
10102         for (i = 0; i < dev->num_tx_queues; i++) {
10103                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10104
10105                 netif_tx_stop_queue(txq);
10106         }
10107 }
10108 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10109
10110 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10111 {
10112         void __percpu *v;
10113
10114         /* Drivers implementing ndo_get_peer_dev must support tstat
10115          * accounting, so that skb_do_redirect() can bump the dev's
10116          * RX stats upon network namespace switch.
10117          */
10118         if (dev->netdev_ops->ndo_get_peer_dev &&
10119             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10120                 return -EOPNOTSUPP;
10121
10122         switch (dev->pcpu_stat_type) {
10123         case NETDEV_PCPU_STAT_NONE:
10124                 return 0;
10125         case NETDEV_PCPU_STAT_LSTATS:
10126                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10127                 break;
10128         case NETDEV_PCPU_STAT_TSTATS:
10129                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10130                 break;
10131         case NETDEV_PCPU_STAT_DSTATS:
10132                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10133                 break;
10134         default:
10135                 return -EINVAL;
10136         }
10137
10138         return v ? 0 : -ENOMEM;
10139 }
10140
10141 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10142 {
10143         switch (dev->pcpu_stat_type) {
10144         case NETDEV_PCPU_STAT_NONE:
10145                 return;
10146         case NETDEV_PCPU_STAT_LSTATS:
10147                 free_percpu(dev->lstats);
10148                 break;
10149         case NETDEV_PCPU_STAT_TSTATS:
10150                 free_percpu(dev->tstats);
10151                 break;
10152         case NETDEV_PCPU_STAT_DSTATS:
10153                 free_percpu(dev->dstats);
10154                 break;
10155         }
10156 }
10157
10158 /**
10159  * register_netdevice() - register a network device
10160  * @dev: device to register
10161  *
10162  * Take a prepared network device structure and make it externally accessible.
10163  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10164  * Callers must hold the rtnl lock - you may want register_netdev()
10165  * instead of this.
10166  */
10167 int register_netdevice(struct net_device *dev)
10168 {
10169         int ret;
10170         struct net *net = dev_net(dev);
10171
10172         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10173                      NETDEV_FEATURE_COUNT);
10174         BUG_ON(dev_boot_phase);
10175         ASSERT_RTNL();
10176
10177         might_sleep();
10178
10179         /* When net_device's are persistent, this will be fatal. */
10180         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10181         BUG_ON(!net);
10182
10183         ret = ethtool_check_ops(dev->ethtool_ops);
10184         if (ret)
10185                 return ret;
10186
10187         spin_lock_init(&dev->addr_list_lock);
10188         netdev_set_addr_lockdep_class(dev);
10189
10190         ret = dev_get_valid_name(net, dev, dev->name);
10191         if (ret < 0)
10192                 goto out;
10193
10194         ret = -ENOMEM;
10195         dev->name_node = netdev_name_node_head_alloc(dev);
10196         if (!dev->name_node)
10197                 goto out;
10198
10199         /* Init, if this function is available */
10200         if (dev->netdev_ops->ndo_init) {
10201                 ret = dev->netdev_ops->ndo_init(dev);
10202                 if (ret) {
10203                         if (ret > 0)
10204                                 ret = -EIO;
10205                         goto err_free_name;
10206                 }
10207         }
10208
10209         if (((dev->hw_features | dev->features) &
10210              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10211             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10212              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10213                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10214                 ret = -EINVAL;
10215                 goto err_uninit;
10216         }
10217
10218         ret = netdev_do_alloc_pcpu_stats(dev);
10219         if (ret)
10220                 goto err_uninit;
10221
10222         ret = dev_index_reserve(net, dev->ifindex);
10223         if (ret < 0)
10224                 goto err_free_pcpu;
10225         dev->ifindex = ret;
10226
10227         /* Transfer changeable features to wanted_features and enable
10228          * software offloads (GSO and GRO).
10229          */
10230         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10231         dev->features |= NETIF_F_SOFT_FEATURES;
10232
10233         if (dev->udp_tunnel_nic_info) {
10234                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10235                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10236         }
10237
10238         dev->wanted_features = dev->features & dev->hw_features;
10239
10240         if (!(dev->flags & IFF_LOOPBACK))
10241                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10242
10243         /* If IPv4 TCP segmentation offload is supported we should also
10244          * allow the device to enable segmenting the frame with the option
10245          * of ignoring a static IP ID value.  This doesn't enable the
10246          * feature itself but allows the user to enable it later.
10247          */
10248         if (dev->hw_features & NETIF_F_TSO)
10249                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10250         if (dev->vlan_features & NETIF_F_TSO)
10251                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10252         if (dev->mpls_features & NETIF_F_TSO)
10253                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10254         if (dev->hw_enc_features & NETIF_F_TSO)
10255                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10256
10257         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10258          */
10259         dev->vlan_features |= NETIF_F_HIGHDMA;
10260
10261         /* Make NETIF_F_SG inheritable to tunnel devices.
10262          */
10263         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10264
10265         /* Make NETIF_F_SG inheritable to MPLS.
10266          */
10267         dev->mpls_features |= NETIF_F_SG;
10268
10269         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10270         ret = notifier_to_errno(ret);
10271         if (ret)
10272                 goto err_ifindex_release;
10273
10274         ret = netdev_register_kobject(dev);
10275
10276         WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10277
10278         if (ret)
10279                 goto err_uninit_notify;
10280
10281         __netdev_update_features(dev);
10282
10283         /*
10284          *      Default initial state at registry is that the
10285          *      device is present.
10286          */
10287
10288         set_bit(__LINK_STATE_PRESENT, &dev->state);
10289
10290         linkwatch_init_dev(dev);
10291
10292         dev_init_scheduler(dev);
10293
10294         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10295         list_netdevice(dev);
10296
10297         add_device_randomness(dev->dev_addr, dev->addr_len);
10298
10299         /* If the device has permanent device address, driver should
10300          * set dev_addr and also addr_assign_type should be set to
10301          * NET_ADDR_PERM (default value).
10302          */
10303         if (dev->addr_assign_type == NET_ADDR_PERM)
10304                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10305
10306         /* Notify protocols, that a new device appeared. */
10307         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10308         ret = notifier_to_errno(ret);
10309         if (ret) {
10310                 /* Expect explicit free_netdev() on failure */
10311                 dev->needs_free_netdev = false;
10312                 unregister_netdevice_queue(dev, NULL);
10313                 goto out;
10314         }
10315         /*
10316          *      Prevent userspace races by waiting until the network
10317          *      device is fully setup before sending notifications.
10318          */
10319         if (!dev->rtnl_link_ops ||
10320             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10321                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10322
10323 out:
10324         return ret;
10325
10326 err_uninit_notify:
10327         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10328 err_ifindex_release:
10329         dev_index_release(net, dev->ifindex);
10330 err_free_pcpu:
10331         netdev_do_free_pcpu_stats(dev);
10332 err_uninit:
10333         if (dev->netdev_ops->ndo_uninit)
10334                 dev->netdev_ops->ndo_uninit(dev);
10335         if (dev->priv_destructor)
10336                 dev->priv_destructor(dev);
10337 err_free_name:
10338         netdev_name_node_free(dev->name_node);
10339         goto out;
10340 }
10341 EXPORT_SYMBOL(register_netdevice);
10342
10343 /**
10344  *      init_dummy_netdev       - init a dummy network device for NAPI
10345  *      @dev: device to init
10346  *
10347  *      This takes a network device structure and initialize the minimum
10348  *      amount of fields so it can be used to schedule NAPI polls without
10349  *      registering a full blown interface. This is to be used by drivers
10350  *      that need to tie several hardware interfaces to a single NAPI
10351  *      poll scheduler due to HW limitations.
10352  */
10353 void init_dummy_netdev(struct net_device *dev)
10354 {
10355         /* Clear everything. Note we don't initialize spinlocks
10356          * are they aren't supposed to be taken by any of the
10357          * NAPI code and this dummy netdev is supposed to be
10358          * only ever used for NAPI polls
10359          */
10360         memset(dev, 0, sizeof(struct net_device));
10361
10362         /* make sure we BUG if trying to hit standard
10363          * register/unregister code path
10364          */
10365         dev->reg_state = NETREG_DUMMY;
10366
10367         /* NAPI wants this */
10368         INIT_LIST_HEAD(&dev->napi_list);
10369
10370         /* a dummy interface is started by default */
10371         set_bit(__LINK_STATE_PRESENT, &dev->state);
10372         set_bit(__LINK_STATE_START, &dev->state);
10373
10374         /* napi_busy_loop stats accounting wants this */
10375         dev_net_set(dev, &init_net);
10376
10377         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10378          * because users of this 'device' dont need to change
10379          * its refcount.
10380          */
10381 }
10382 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10383
10384
10385 /**
10386  *      register_netdev - register a network device
10387  *      @dev: device to register
10388  *
10389  *      Take a completed network device structure and add it to the kernel
10390  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10391  *      chain. 0 is returned on success. A negative errno code is returned
10392  *      on a failure to set up the device, or if the name is a duplicate.
10393  *
10394  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10395  *      and expands the device name if you passed a format string to
10396  *      alloc_netdev.
10397  */
10398 int register_netdev(struct net_device *dev)
10399 {
10400         int err;
10401
10402         if (rtnl_lock_killable())
10403                 return -EINTR;
10404         err = register_netdevice(dev);
10405         rtnl_unlock();
10406         return err;
10407 }
10408 EXPORT_SYMBOL(register_netdev);
10409
10410 int netdev_refcnt_read(const struct net_device *dev)
10411 {
10412 #ifdef CONFIG_PCPU_DEV_REFCNT
10413         int i, refcnt = 0;
10414
10415         for_each_possible_cpu(i)
10416                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10417         return refcnt;
10418 #else
10419         return refcount_read(&dev->dev_refcnt);
10420 #endif
10421 }
10422 EXPORT_SYMBOL(netdev_refcnt_read);
10423
10424 int netdev_unregister_timeout_secs __read_mostly = 10;
10425
10426 #define WAIT_REFS_MIN_MSECS 1
10427 #define WAIT_REFS_MAX_MSECS 250
10428 /**
10429  * netdev_wait_allrefs_any - wait until all references are gone.
10430  * @list: list of net_devices to wait on
10431  *
10432  * This is called when unregistering network devices.
10433  *
10434  * Any protocol or device that holds a reference should register
10435  * for netdevice notification, and cleanup and put back the
10436  * reference if they receive an UNREGISTER event.
10437  * We can get stuck here if buggy protocols don't correctly
10438  * call dev_put.
10439  */
10440 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10441 {
10442         unsigned long rebroadcast_time, warning_time;
10443         struct net_device *dev;
10444         int wait = 0;
10445
10446         rebroadcast_time = warning_time = jiffies;
10447
10448         list_for_each_entry(dev, list, todo_list)
10449                 if (netdev_refcnt_read(dev) == 1)
10450                         return dev;
10451
10452         while (true) {
10453                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10454                         rtnl_lock();
10455
10456                         /* Rebroadcast unregister notification */
10457                         list_for_each_entry(dev, list, todo_list)
10458                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10459
10460                         __rtnl_unlock();
10461                         rcu_barrier();
10462                         rtnl_lock();
10463
10464                         list_for_each_entry(dev, list, todo_list)
10465                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10466                                              &dev->state)) {
10467                                         /* We must not have linkwatch events
10468                                          * pending on unregister. If this
10469                                          * happens, we simply run the queue
10470                                          * unscheduled, resulting in a noop
10471                                          * for this device.
10472                                          */
10473                                         linkwatch_run_queue();
10474                                         break;
10475                                 }
10476
10477                         __rtnl_unlock();
10478
10479                         rebroadcast_time = jiffies;
10480                 }
10481
10482                 if (!wait) {
10483                         rcu_barrier();
10484                         wait = WAIT_REFS_MIN_MSECS;
10485                 } else {
10486                         msleep(wait);
10487                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10488                 }
10489
10490                 list_for_each_entry(dev, list, todo_list)
10491                         if (netdev_refcnt_read(dev) == 1)
10492                                 return dev;
10493
10494                 if (time_after(jiffies, warning_time +
10495                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10496                         list_for_each_entry(dev, list, todo_list) {
10497                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10498                                          dev->name, netdev_refcnt_read(dev));
10499                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10500                         }
10501
10502                         warning_time = jiffies;
10503                 }
10504         }
10505 }
10506
10507 /* The sequence is:
10508  *
10509  *      rtnl_lock();
10510  *      ...
10511  *      register_netdevice(x1);
10512  *      register_netdevice(x2);
10513  *      ...
10514  *      unregister_netdevice(y1);
10515  *      unregister_netdevice(y2);
10516  *      ...
10517  *      rtnl_unlock();
10518  *      free_netdev(y1);
10519  *      free_netdev(y2);
10520  *
10521  * We are invoked by rtnl_unlock().
10522  * This allows us to deal with problems:
10523  * 1) We can delete sysfs objects which invoke hotplug
10524  *    without deadlocking with linkwatch via keventd.
10525  * 2) Since we run with the RTNL semaphore not held, we can sleep
10526  *    safely in order to wait for the netdev refcnt to drop to zero.
10527  *
10528  * We must not return until all unregister events added during
10529  * the interval the lock was held have been completed.
10530  */
10531 void netdev_run_todo(void)
10532 {
10533         struct net_device *dev, *tmp;
10534         struct list_head list;
10535         int cnt;
10536 #ifdef CONFIG_LOCKDEP
10537         struct list_head unlink_list;
10538
10539         list_replace_init(&net_unlink_list, &unlink_list);
10540
10541         while (!list_empty(&unlink_list)) {
10542                 struct net_device *dev = list_first_entry(&unlink_list,
10543                                                           struct net_device,
10544                                                           unlink_list);
10545                 list_del_init(&dev->unlink_list);
10546                 dev->nested_level = dev->lower_level - 1;
10547         }
10548 #endif
10549
10550         /* Snapshot list, allow later requests */
10551         list_replace_init(&net_todo_list, &list);
10552
10553         __rtnl_unlock();
10554
10555         /* Wait for rcu callbacks to finish before next phase */
10556         if (!list_empty(&list))
10557                 rcu_barrier();
10558
10559         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10560                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10561                         netdev_WARN(dev, "run_todo but not unregistering\n");
10562                         list_del(&dev->todo_list);
10563                         continue;
10564                 }
10565
10566                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10567                 linkwatch_sync_dev(dev);
10568         }
10569
10570         cnt = 0;
10571         while (!list_empty(&list)) {
10572                 dev = netdev_wait_allrefs_any(&list);
10573                 list_del(&dev->todo_list);
10574
10575                 /* paranoia */
10576                 BUG_ON(netdev_refcnt_read(dev) != 1);
10577                 BUG_ON(!list_empty(&dev->ptype_all));
10578                 BUG_ON(!list_empty(&dev->ptype_specific));
10579                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10580                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10581
10582                 netdev_do_free_pcpu_stats(dev);
10583                 if (dev->priv_destructor)
10584                         dev->priv_destructor(dev);
10585                 if (dev->needs_free_netdev)
10586                         free_netdev(dev);
10587
10588                 cnt++;
10589
10590                 /* Free network device */
10591                 kobject_put(&dev->dev.kobj);
10592         }
10593         if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10594                 wake_up(&netdev_unregistering_wq);
10595 }
10596
10597 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10598  * all the same fields in the same order as net_device_stats, with only
10599  * the type differing, but rtnl_link_stats64 may have additional fields
10600  * at the end for newer counters.
10601  */
10602 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10603                              const struct net_device_stats *netdev_stats)
10604 {
10605         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10606         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10607         u64 *dst = (u64 *)stats64;
10608
10609         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10610         for (i = 0; i < n; i++)
10611                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10612         /* zero out counters that only exist in rtnl_link_stats64 */
10613         memset((char *)stats64 + n * sizeof(u64), 0,
10614                sizeof(*stats64) - n * sizeof(u64));
10615 }
10616 EXPORT_SYMBOL(netdev_stats_to_stats64);
10617
10618 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10619                 struct net_device *dev)
10620 {
10621         struct net_device_core_stats __percpu *p;
10622
10623         p = alloc_percpu_gfp(struct net_device_core_stats,
10624                              GFP_ATOMIC | __GFP_NOWARN);
10625
10626         if (p && cmpxchg(&dev->core_stats, NULL, p))
10627                 free_percpu(p);
10628
10629         /* This READ_ONCE() pairs with the cmpxchg() above */
10630         return READ_ONCE(dev->core_stats);
10631 }
10632
10633 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10634 {
10635         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10636         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10637         unsigned long __percpu *field;
10638
10639         if (unlikely(!p)) {
10640                 p = netdev_core_stats_alloc(dev);
10641                 if (!p)
10642                         return;
10643         }
10644
10645         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10646         this_cpu_inc(*field);
10647 }
10648 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10649
10650 /**
10651  *      dev_get_stats   - get network device statistics
10652  *      @dev: device to get statistics from
10653  *      @storage: place to store stats
10654  *
10655  *      Get network statistics from device. Return @storage.
10656  *      The device driver may provide its own method by setting
10657  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10658  *      otherwise the internal statistics structure is used.
10659  */
10660 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10661                                         struct rtnl_link_stats64 *storage)
10662 {
10663         const struct net_device_ops *ops = dev->netdev_ops;
10664         const struct net_device_core_stats __percpu *p;
10665
10666         if (ops->ndo_get_stats64) {
10667                 memset(storage, 0, sizeof(*storage));
10668                 ops->ndo_get_stats64(dev, storage);
10669         } else if (ops->ndo_get_stats) {
10670                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10671         } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10672                 dev_get_tstats64(dev, storage);
10673         } else {
10674                 netdev_stats_to_stats64(storage, &dev->stats);
10675         }
10676
10677         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10678         p = READ_ONCE(dev->core_stats);
10679         if (p) {
10680                 const struct net_device_core_stats *core_stats;
10681                 int i;
10682
10683                 for_each_possible_cpu(i) {
10684                         core_stats = per_cpu_ptr(p, i);
10685                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10686                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10687                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10688                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10689                 }
10690         }
10691         return storage;
10692 }
10693 EXPORT_SYMBOL(dev_get_stats);
10694
10695 /**
10696  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10697  *      @s: place to store stats
10698  *      @netstats: per-cpu network stats to read from
10699  *
10700  *      Read per-cpu network statistics and populate the related fields in @s.
10701  */
10702 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10703                            const struct pcpu_sw_netstats __percpu *netstats)
10704 {
10705         int cpu;
10706
10707         for_each_possible_cpu(cpu) {
10708                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10709                 const struct pcpu_sw_netstats *stats;
10710                 unsigned int start;
10711
10712                 stats = per_cpu_ptr(netstats, cpu);
10713                 do {
10714                         start = u64_stats_fetch_begin(&stats->syncp);
10715                         rx_packets = u64_stats_read(&stats->rx_packets);
10716                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10717                         tx_packets = u64_stats_read(&stats->tx_packets);
10718                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10719                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10720
10721                 s->rx_packets += rx_packets;
10722                 s->rx_bytes   += rx_bytes;
10723                 s->tx_packets += tx_packets;
10724                 s->tx_bytes   += tx_bytes;
10725         }
10726 }
10727 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10728
10729 /**
10730  *      dev_get_tstats64 - ndo_get_stats64 implementation
10731  *      @dev: device to get statistics from
10732  *      @s: place to store stats
10733  *
10734  *      Populate @s from dev->stats and dev->tstats. Can be used as
10735  *      ndo_get_stats64() callback.
10736  */
10737 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10738 {
10739         netdev_stats_to_stats64(s, &dev->stats);
10740         dev_fetch_sw_netstats(s, dev->tstats);
10741 }
10742 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10743
10744 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10745 {
10746         struct netdev_queue *queue = dev_ingress_queue(dev);
10747
10748 #ifdef CONFIG_NET_CLS_ACT
10749         if (queue)
10750                 return queue;
10751         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10752         if (!queue)
10753                 return NULL;
10754         netdev_init_one_queue(dev, queue, NULL);
10755         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10756         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10757         rcu_assign_pointer(dev->ingress_queue, queue);
10758 #endif
10759         return queue;
10760 }
10761
10762 static const struct ethtool_ops default_ethtool_ops;
10763
10764 void netdev_set_default_ethtool_ops(struct net_device *dev,
10765                                     const struct ethtool_ops *ops)
10766 {
10767         if (dev->ethtool_ops == &default_ethtool_ops)
10768                 dev->ethtool_ops = ops;
10769 }
10770 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10771
10772 /**
10773  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10774  * @dev: netdev to enable the IRQ coalescing on
10775  *
10776  * Sets a conservative default for SW IRQ coalescing. Users can use
10777  * sysfs attributes to override the default values.
10778  */
10779 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10780 {
10781         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10782
10783         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10784                 dev->gro_flush_timeout = 20000;
10785                 dev->napi_defer_hard_irqs = 1;
10786         }
10787 }
10788 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10789
10790 void netdev_freemem(struct net_device *dev)
10791 {
10792         char *addr = (char *)dev - dev->padded;
10793
10794         kvfree(addr);
10795 }
10796
10797 /**
10798  * alloc_netdev_mqs - allocate network device
10799  * @sizeof_priv: size of private data to allocate space for
10800  * @name: device name format string
10801  * @name_assign_type: origin of device name
10802  * @setup: callback to initialize device
10803  * @txqs: the number of TX subqueues to allocate
10804  * @rxqs: the number of RX subqueues to allocate
10805  *
10806  * Allocates a struct net_device with private data area for driver use
10807  * and performs basic initialization.  Also allocates subqueue structs
10808  * for each queue on the device.
10809  */
10810 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10811                 unsigned char name_assign_type,
10812                 void (*setup)(struct net_device *),
10813                 unsigned int txqs, unsigned int rxqs)
10814 {
10815         struct net_device *dev;
10816         unsigned int alloc_size;
10817         struct net_device *p;
10818
10819         BUG_ON(strlen(name) >= sizeof(dev->name));
10820
10821         if (txqs < 1) {
10822                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10823                 return NULL;
10824         }
10825
10826         if (rxqs < 1) {
10827                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10828                 return NULL;
10829         }
10830
10831         alloc_size = sizeof(struct net_device);
10832         if (sizeof_priv) {
10833                 /* ensure 32-byte alignment of private area */
10834                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10835                 alloc_size += sizeof_priv;
10836         }
10837         /* ensure 32-byte alignment of whole construct */
10838         alloc_size += NETDEV_ALIGN - 1;
10839
10840         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10841         if (!p)
10842                 return NULL;
10843
10844         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10845         dev->padded = (char *)dev - (char *)p;
10846
10847         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10848 #ifdef CONFIG_PCPU_DEV_REFCNT
10849         dev->pcpu_refcnt = alloc_percpu(int);
10850         if (!dev->pcpu_refcnt)
10851                 goto free_dev;
10852         __dev_hold(dev);
10853 #else
10854         refcount_set(&dev->dev_refcnt, 1);
10855 #endif
10856
10857         if (dev_addr_init(dev))
10858                 goto free_pcpu;
10859
10860         dev_mc_init(dev);
10861         dev_uc_init(dev);
10862
10863         dev_net_set(dev, &init_net);
10864
10865         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10866         dev->xdp_zc_max_segs = 1;
10867         dev->gso_max_segs = GSO_MAX_SEGS;
10868         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10869         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10870         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10871         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10872         dev->tso_max_segs = TSO_MAX_SEGS;
10873         dev->upper_level = 1;
10874         dev->lower_level = 1;
10875 #ifdef CONFIG_LOCKDEP
10876         dev->nested_level = 0;
10877         INIT_LIST_HEAD(&dev->unlink_list);
10878 #endif
10879
10880         INIT_LIST_HEAD(&dev->napi_list);
10881         INIT_LIST_HEAD(&dev->unreg_list);
10882         INIT_LIST_HEAD(&dev->close_list);
10883         INIT_LIST_HEAD(&dev->link_watch_list);
10884         INIT_LIST_HEAD(&dev->adj_list.upper);
10885         INIT_LIST_HEAD(&dev->adj_list.lower);
10886         INIT_LIST_HEAD(&dev->ptype_all);
10887         INIT_LIST_HEAD(&dev->ptype_specific);
10888         INIT_LIST_HEAD(&dev->net_notifier_list);
10889 #ifdef CONFIG_NET_SCHED
10890         hash_init(dev->qdisc_hash);
10891 #endif
10892         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10893         setup(dev);
10894
10895         if (!dev->tx_queue_len) {
10896                 dev->priv_flags |= IFF_NO_QUEUE;
10897                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10898         }
10899
10900         dev->num_tx_queues = txqs;
10901         dev->real_num_tx_queues = txqs;
10902         if (netif_alloc_netdev_queues(dev))
10903                 goto free_all;
10904
10905         dev->num_rx_queues = rxqs;
10906         dev->real_num_rx_queues = rxqs;
10907         if (netif_alloc_rx_queues(dev))
10908                 goto free_all;
10909
10910         strcpy(dev->name, name);
10911         dev->name_assign_type = name_assign_type;
10912         dev->group = INIT_NETDEV_GROUP;
10913         if (!dev->ethtool_ops)
10914                 dev->ethtool_ops = &default_ethtool_ops;
10915
10916         nf_hook_netdev_init(dev);
10917
10918         return dev;
10919
10920 free_all:
10921         free_netdev(dev);
10922         return NULL;
10923
10924 free_pcpu:
10925 #ifdef CONFIG_PCPU_DEV_REFCNT
10926         free_percpu(dev->pcpu_refcnt);
10927 free_dev:
10928 #endif
10929         netdev_freemem(dev);
10930         return NULL;
10931 }
10932 EXPORT_SYMBOL(alloc_netdev_mqs);
10933
10934 /**
10935  * free_netdev - free network device
10936  * @dev: device
10937  *
10938  * This function does the last stage of destroying an allocated device
10939  * interface. The reference to the device object is released. If this
10940  * is the last reference then it will be freed.Must be called in process
10941  * context.
10942  */
10943 void free_netdev(struct net_device *dev)
10944 {
10945         struct napi_struct *p, *n;
10946
10947         might_sleep();
10948
10949         /* When called immediately after register_netdevice() failed the unwind
10950          * handling may still be dismantling the device. Handle that case by
10951          * deferring the free.
10952          */
10953         if (dev->reg_state == NETREG_UNREGISTERING) {
10954                 ASSERT_RTNL();
10955                 dev->needs_free_netdev = true;
10956                 return;
10957         }
10958
10959         netif_free_tx_queues(dev);
10960         netif_free_rx_queues(dev);
10961
10962         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10963
10964         /* Flush device addresses */
10965         dev_addr_flush(dev);
10966
10967         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10968                 netif_napi_del(p);
10969
10970         ref_tracker_dir_exit(&dev->refcnt_tracker);
10971 #ifdef CONFIG_PCPU_DEV_REFCNT
10972         free_percpu(dev->pcpu_refcnt);
10973         dev->pcpu_refcnt = NULL;
10974 #endif
10975         free_percpu(dev->core_stats);
10976         dev->core_stats = NULL;
10977         free_percpu(dev->xdp_bulkq);
10978         dev->xdp_bulkq = NULL;
10979
10980         /*  Compatibility with error handling in drivers */
10981         if (dev->reg_state == NETREG_UNINITIALIZED) {
10982                 netdev_freemem(dev);
10983                 return;
10984         }
10985
10986         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10987         WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10988
10989         /* will free via device release */
10990         put_device(&dev->dev);
10991 }
10992 EXPORT_SYMBOL(free_netdev);
10993
10994 /**
10995  *      synchronize_net -  Synchronize with packet receive processing
10996  *
10997  *      Wait for packets currently being received to be done.
10998  *      Does not block later packets from starting.
10999  */
11000 void synchronize_net(void)
11001 {
11002         might_sleep();
11003         if (rtnl_is_locked())
11004                 synchronize_rcu_expedited();
11005         else
11006                 synchronize_rcu();
11007 }
11008 EXPORT_SYMBOL(synchronize_net);
11009
11010 /**
11011  *      unregister_netdevice_queue - remove device from the kernel
11012  *      @dev: device
11013  *      @head: list
11014  *
11015  *      This function shuts down a device interface and removes it
11016  *      from the kernel tables.
11017  *      If head not NULL, device is queued to be unregistered later.
11018  *
11019  *      Callers must hold the rtnl semaphore.  You may want
11020  *      unregister_netdev() instead of this.
11021  */
11022
11023 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11024 {
11025         ASSERT_RTNL();
11026
11027         if (head) {
11028                 list_move_tail(&dev->unreg_list, head);
11029         } else {
11030                 LIST_HEAD(single);
11031
11032                 list_add(&dev->unreg_list, &single);
11033                 unregister_netdevice_many(&single);
11034         }
11035 }
11036 EXPORT_SYMBOL(unregister_netdevice_queue);
11037
11038 void unregister_netdevice_many_notify(struct list_head *head,
11039                                       u32 portid, const struct nlmsghdr *nlh)
11040 {
11041         struct net_device *dev, *tmp;
11042         LIST_HEAD(close_head);
11043         int cnt = 0;
11044
11045         BUG_ON(dev_boot_phase);
11046         ASSERT_RTNL();
11047
11048         if (list_empty(head))
11049                 return;
11050
11051         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11052                 /* Some devices call without registering
11053                  * for initialization unwind. Remove those
11054                  * devices and proceed with the remaining.
11055                  */
11056                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11057                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11058                                  dev->name, dev);
11059
11060                         WARN_ON(1);
11061                         list_del(&dev->unreg_list);
11062                         continue;
11063                 }
11064                 dev->dismantle = true;
11065                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11066         }
11067
11068         /* If device is running, close it first. */
11069         list_for_each_entry(dev, head, unreg_list)
11070                 list_add_tail(&dev->close_list, &close_head);
11071         dev_close_many(&close_head, true);
11072
11073         list_for_each_entry(dev, head, unreg_list) {
11074                 /* And unlink it from device chain. */
11075                 unlist_netdevice(dev);
11076                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11077         }
11078         flush_all_backlogs();
11079
11080         synchronize_net();
11081
11082         list_for_each_entry(dev, head, unreg_list) {
11083                 struct sk_buff *skb = NULL;
11084
11085                 /* Shutdown queueing discipline. */
11086                 dev_shutdown(dev);
11087                 dev_tcx_uninstall(dev);
11088                 dev_xdp_uninstall(dev);
11089                 bpf_dev_bound_netdev_unregister(dev);
11090
11091                 netdev_offload_xstats_disable_all(dev);
11092
11093                 /* Notify protocols, that we are about to destroy
11094                  * this device. They should clean all the things.
11095                  */
11096                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11097
11098                 if (!dev->rtnl_link_ops ||
11099                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11100                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11101                                                      GFP_KERNEL, NULL, 0,
11102                                                      portid, nlh);
11103
11104                 /*
11105                  *      Flush the unicast and multicast chains
11106                  */
11107                 dev_uc_flush(dev);
11108                 dev_mc_flush(dev);
11109
11110                 netdev_name_node_alt_flush(dev);
11111                 netdev_name_node_free(dev->name_node);
11112
11113                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11114
11115                 if (dev->netdev_ops->ndo_uninit)
11116                         dev->netdev_ops->ndo_uninit(dev);
11117
11118                 if (skb)
11119                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11120
11121                 /* Notifier chain MUST detach us all upper devices. */
11122                 WARN_ON(netdev_has_any_upper_dev(dev));
11123                 WARN_ON(netdev_has_any_lower_dev(dev));
11124
11125                 /* Remove entries from kobject tree */
11126                 netdev_unregister_kobject(dev);
11127 #ifdef CONFIG_XPS
11128                 /* Remove XPS queueing entries */
11129                 netif_reset_xps_queues_gt(dev, 0);
11130 #endif
11131         }
11132
11133         synchronize_net();
11134
11135         list_for_each_entry(dev, head, unreg_list) {
11136                 netdev_put(dev, &dev->dev_registered_tracker);
11137                 net_set_todo(dev);
11138                 cnt++;
11139         }
11140         atomic_add(cnt, &dev_unreg_count);
11141
11142         list_del(head);
11143 }
11144
11145 /**
11146  *      unregister_netdevice_many - unregister many devices
11147  *      @head: list of devices
11148  *
11149  *  Note: As most callers use a stack allocated list_head,
11150  *  we force a list_del() to make sure stack wont be corrupted later.
11151  */
11152 void unregister_netdevice_many(struct list_head *head)
11153 {
11154         unregister_netdevice_many_notify(head, 0, NULL);
11155 }
11156 EXPORT_SYMBOL(unregister_netdevice_many);
11157
11158 /**
11159  *      unregister_netdev - remove device from the kernel
11160  *      @dev: device
11161  *
11162  *      This function shuts down a device interface and removes it
11163  *      from the kernel tables.
11164  *
11165  *      This is just a wrapper for unregister_netdevice that takes
11166  *      the rtnl semaphore.  In general you want to use this and not
11167  *      unregister_netdevice.
11168  */
11169 void unregister_netdev(struct net_device *dev)
11170 {
11171         rtnl_lock();
11172         unregister_netdevice(dev);
11173         rtnl_unlock();
11174 }
11175 EXPORT_SYMBOL(unregister_netdev);
11176
11177 /**
11178  *      __dev_change_net_namespace - move device to different nethost namespace
11179  *      @dev: device
11180  *      @net: network namespace
11181  *      @pat: If not NULL name pattern to try if the current device name
11182  *            is already taken in the destination network namespace.
11183  *      @new_ifindex: If not zero, specifies device index in the target
11184  *                    namespace.
11185  *
11186  *      This function shuts down a device interface and moves it
11187  *      to a new network namespace. On success 0 is returned, on
11188  *      a failure a netagive errno code is returned.
11189  *
11190  *      Callers must hold the rtnl semaphore.
11191  */
11192
11193 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11194                                const char *pat, int new_ifindex)
11195 {
11196         struct netdev_name_node *name_node;
11197         struct net *net_old = dev_net(dev);
11198         char new_name[IFNAMSIZ] = {};
11199         int err, new_nsid;
11200
11201         ASSERT_RTNL();
11202
11203         /* Don't allow namespace local devices to be moved. */
11204         err = -EINVAL;
11205         if (dev->features & NETIF_F_NETNS_LOCAL)
11206                 goto out;
11207
11208         /* Ensure the device has been registrered */
11209         if (dev->reg_state != NETREG_REGISTERED)
11210                 goto out;
11211
11212         /* Get out if there is nothing todo */
11213         err = 0;
11214         if (net_eq(net_old, net))
11215                 goto out;
11216
11217         /* Pick the destination device name, and ensure
11218          * we can use it in the destination network namespace.
11219          */
11220         err = -EEXIST;
11221         if (netdev_name_in_use(net, dev->name)) {
11222                 /* We get here if we can't use the current device name */
11223                 if (!pat)
11224                         goto out;
11225                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11226                 if (err < 0)
11227                         goto out;
11228         }
11229         /* Check that none of the altnames conflicts. */
11230         err = -EEXIST;
11231         netdev_for_each_altname(dev, name_node)
11232                 if (netdev_name_in_use(net, name_node->name))
11233                         goto out;
11234
11235         /* Check that new_ifindex isn't used yet. */
11236         if (new_ifindex) {
11237                 err = dev_index_reserve(net, new_ifindex);
11238                 if (err < 0)
11239                         goto out;
11240         } else {
11241                 /* If there is an ifindex conflict assign a new one */
11242                 err = dev_index_reserve(net, dev->ifindex);
11243                 if (err == -EBUSY)
11244                         err = dev_index_reserve(net, 0);
11245                 if (err < 0)
11246                         goto out;
11247                 new_ifindex = err;
11248         }
11249
11250         /*
11251          * And now a mini version of register_netdevice unregister_netdevice.
11252          */
11253
11254         /* If device is running close it first. */
11255         dev_close(dev);
11256
11257         /* And unlink it from device chain */
11258         unlist_netdevice(dev);
11259
11260         synchronize_net();
11261
11262         /* Shutdown queueing discipline. */
11263         dev_shutdown(dev);
11264
11265         /* Notify protocols, that we are about to destroy
11266          * this device. They should clean all the things.
11267          *
11268          * Note that dev->reg_state stays at NETREG_REGISTERED.
11269          * This is wanted because this way 8021q and macvlan know
11270          * the device is just moving and can keep their slaves up.
11271          */
11272         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11273         rcu_barrier();
11274
11275         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11276
11277         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11278                             new_ifindex);
11279
11280         /*
11281          *      Flush the unicast and multicast chains
11282          */
11283         dev_uc_flush(dev);
11284         dev_mc_flush(dev);
11285
11286         /* Send a netdev-removed uevent to the old namespace */
11287         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11288         netdev_adjacent_del_links(dev);
11289
11290         /* Move per-net netdevice notifiers that are following the netdevice */
11291         move_netdevice_notifiers_dev_net(dev, net);
11292
11293         /* Actually switch the network namespace */
11294         dev_net_set(dev, net);
11295         dev->ifindex = new_ifindex;
11296
11297         if (new_name[0]) /* Rename the netdev to prepared name */
11298                 strscpy(dev->name, new_name, IFNAMSIZ);
11299
11300         /* Fixup kobjects */
11301         dev_set_uevent_suppress(&dev->dev, 1);
11302         err = device_rename(&dev->dev, dev->name);
11303         dev_set_uevent_suppress(&dev->dev, 0);
11304         WARN_ON(err);
11305
11306         /* Send a netdev-add uevent to the new namespace */
11307         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11308         netdev_adjacent_add_links(dev);
11309
11310         /* Adapt owner in case owning user namespace of target network
11311          * namespace is different from the original one.
11312          */
11313         err = netdev_change_owner(dev, net_old, net);
11314         WARN_ON(err);
11315
11316         /* Add the device back in the hashes */
11317         list_netdevice(dev);
11318
11319         /* Notify protocols, that a new device appeared. */
11320         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11321
11322         /*
11323          *      Prevent userspace races by waiting until the network
11324          *      device is fully setup before sending notifications.
11325          */
11326         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11327
11328         synchronize_net();
11329         err = 0;
11330 out:
11331         return err;
11332 }
11333 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11334
11335 static int dev_cpu_dead(unsigned int oldcpu)
11336 {
11337         struct sk_buff **list_skb;
11338         struct sk_buff *skb;
11339         unsigned int cpu;
11340         struct softnet_data *sd, *oldsd, *remsd = NULL;
11341
11342         local_irq_disable();
11343         cpu = smp_processor_id();
11344         sd = &per_cpu(softnet_data, cpu);
11345         oldsd = &per_cpu(softnet_data, oldcpu);
11346
11347         /* Find end of our completion_queue. */
11348         list_skb = &sd->completion_queue;
11349         while (*list_skb)
11350                 list_skb = &(*list_skb)->next;
11351         /* Append completion queue from offline CPU. */
11352         *list_skb = oldsd->completion_queue;
11353         oldsd->completion_queue = NULL;
11354
11355         /* Append output queue from offline CPU. */
11356         if (oldsd->output_queue) {
11357                 *sd->output_queue_tailp = oldsd->output_queue;
11358                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11359                 oldsd->output_queue = NULL;
11360                 oldsd->output_queue_tailp = &oldsd->output_queue;
11361         }
11362         /* Append NAPI poll list from offline CPU, with one exception :
11363          * process_backlog() must be called by cpu owning percpu backlog.
11364          * We properly handle process_queue & input_pkt_queue later.
11365          */
11366         while (!list_empty(&oldsd->poll_list)) {
11367                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11368                                                             struct napi_struct,
11369                                                             poll_list);
11370
11371                 list_del_init(&napi->poll_list);
11372                 if (napi->poll == process_backlog)
11373                         napi->state = 0;
11374                 else
11375                         ____napi_schedule(sd, napi);
11376         }
11377
11378         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11379         local_irq_enable();
11380
11381 #ifdef CONFIG_RPS
11382         remsd = oldsd->rps_ipi_list;
11383         oldsd->rps_ipi_list = NULL;
11384 #endif
11385         /* send out pending IPI's on offline CPU */
11386         net_rps_send_ipi(remsd);
11387
11388         /* Process offline CPU's input_pkt_queue */
11389         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11390                 netif_rx(skb);
11391                 input_queue_head_incr(oldsd);
11392         }
11393         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11394                 netif_rx(skb);
11395                 input_queue_head_incr(oldsd);
11396         }
11397
11398         return 0;
11399 }
11400
11401 /**
11402  *      netdev_increment_features - increment feature set by one
11403  *      @all: current feature set
11404  *      @one: new feature set
11405  *      @mask: mask feature set
11406  *
11407  *      Computes a new feature set after adding a device with feature set
11408  *      @one to the master device with current feature set @all.  Will not
11409  *      enable anything that is off in @mask. Returns the new feature set.
11410  */
11411 netdev_features_t netdev_increment_features(netdev_features_t all,
11412         netdev_features_t one, netdev_features_t mask)
11413 {
11414         if (mask & NETIF_F_HW_CSUM)
11415                 mask |= NETIF_F_CSUM_MASK;
11416         mask |= NETIF_F_VLAN_CHALLENGED;
11417
11418         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11419         all &= one | ~NETIF_F_ALL_FOR_ALL;
11420
11421         /* If one device supports hw checksumming, set for all. */
11422         if (all & NETIF_F_HW_CSUM)
11423                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11424
11425         return all;
11426 }
11427 EXPORT_SYMBOL(netdev_increment_features);
11428
11429 static struct hlist_head * __net_init netdev_create_hash(void)
11430 {
11431         int i;
11432         struct hlist_head *hash;
11433
11434         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11435         if (hash != NULL)
11436                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11437                         INIT_HLIST_HEAD(&hash[i]);
11438
11439         return hash;
11440 }
11441
11442 /* Initialize per network namespace state */
11443 static int __net_init netdev_init(struct net *net)
11444 {
11445         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11446                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11447
11448         INIT_LIST_HEAD(&net->dev_base_head);
11449
11450         net->dev_name_head = netdev_create_hash();
11451         if (net->dev_name_head == NULL)
11452                 goto err_name;
11453
11454         net->dev_index_head = netdev_create_hash();
11455         if (net->dev_index_head == NULL)
11456                 goto err_idx;
11457
11458         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11459
11460         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11461
11462         return 0;
11463
11464 err_idx:
11465         kfree(net->dev_name_head);
11466 err_name:
11467         return -ENOMEM;
11468 }
11469
11470 /**
11471  *      netdev_drivername - network driver for the device
11472  *      @dev: network device
11473  *
11474  *      Determine network driver for device.
11475  */
11476 const char *netdev_drivername(const struct net_device *dev)
11477 {
11478         const struct device_driver *driver;
11479         const struct device *parent;
11480         const char *empty = "";
11481
11482         parent = dev->dev.parent;
11483         if (!parent)
11484                 return empty;
11485
11486         driver = parent->driver;
11487         if (driver && driver->name)
11488                 return driver->name;
11489         return empty;
11490 }
11491
11492 static void __netdev_printk(const char *level, const struct net_device *dev,
11493                             struct va_format *vaf)
11494 {
11495         if (dev && dev->dev.parent) {
11496                 dev_printk_emit(level[1] - '0',
11497                                 dev->dev.parent,
11498                                 "%s %s %s%s: %pV",
11499                                 dev_driver_string(dev->dev.parent),
11500                                 dev_name(dev->dev.parent),
11501                                 netdev_name(dev), netdev_reg_state(dev),
11502                                 vaf);
11503         } else if (dev) {
11504                 printk("%s%s%s: %pV",
11505                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11506         } else {
11507                 printk("%s(NULL net_device): %pV", level, vaf);
11508         }
11509 }
11510
11511 void netdev_printk(const char *level, const struct net_device *dev,
11512                    const char *format, ...)
11513 {
11514         struct va_format vaf;
11515         va_list args;
11516
11517         va_start(args, format);
11518
11519         vaf.fmt = format;
11520         vaf.va = &args;
11521
11522         __netdev_printk(level, dev, &vaf);
11523
11524         va_end(args);
11525 }
11526 EXPORT_SYMBOL(netdev_printk);
11527
11528 #define define_netdev_printk_level(func, level)                 \
11529 void func(const struct net_device *dev, const char *fmt, ...)   \
11530 {                                                               \
11531         struct va_format vaf;                                   \
11532         va_list args;                                           \
11533                                                                 \
11534         va_start(args, fmt);                                    \
11535                                                                 \
11536         vaf.fmt = fmt;                                          \
11537         vaf.va = &args;                                         \
11538                                                                 \
11539         __netdev_printk(level, dev, &vaf);                      \
11540                                                                 \
11541         va_end(args);                                           \
11542 }                                                               \
11543 EXPORT_SYMBOL(func);
11544
11545 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11546 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11547 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11548 define_netdev_printk_level(netdev_err, KERN_ERR);
11549 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11550 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11551 define_netdev_printk_level(netdev_info, KERN_INFO);
11552
11553 static void __net_exit netdev_exit(struct net *net)
11554 {
11555         kfree(net->dev_name_head);
11556         kfree(net->dev_index_head);
11557         xa_destroy(&net->dev_by_index);
11558         if (net != &init_net)
11559                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11560 }
11561
11562 static struct pernet_operations __net_initdata netdev_net_ops = {
11563         .init = netdev_init,
11564         .exit = netdev_exit,
11565 };
11566
11567 static void __net_exit default_device_exit_net(struct net *net)
11568 {
11569         struct netdev_name_node *name_node, *tmp;
11570         struct net_device *dev, *aux;
11571         /*
11572          * Push all migratable network devices back to the
11573          * initial network namespace
11574          */
11575         ASSERT_RTNL();
11576         for_each_netdev_safe(net, dev, aux) {
11577                 int err;
11578                 char fb_name[IFNAMSIZ];
11579
11580                 /* Ignore unmoveable devices (i.e. loopback) */
11581                 if (dev->features & NETIF_F_NETNS_LOCAL)
11582                         continue;
11583
11584                 /* Leave virtual devices for the generic cleanup */
11585                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11586                         continue;
11587
11588                 /* Push remaining network devices to init_net */
11589                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11590                 if (netdev_name_in_use(&init_net, fb_name))
11591                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11592
11593                 netdev_for_each_altname_safe(dev, name_node, tmp)
11594                         if (netdev_name_in_use(&init_net, name_node->name))
11595                                 __netdev_name_node_alt_destroy(name_node);
11596
11597                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11598                 if (err) {
11599                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11600                                  __func__, dev->name, err);
11601                         BUG();
11602                 }
11603         }
11604 }
11605
11606 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11607 {
11608         /* At exit all network devices most be removed from a network
11609          * namespace.  Do this in the reverse order of registration.
11610          * Do this across as many network namespaces as possible to
11611          * improve batching efficiency.
11612          */
11613         struct net_device *dev;
11614         struct net *net;
11615         LIST_HEAD(dev_kill_list);
11616
11617         rtnl_lock();
11618         list_for_each_entry(net, net_list, exit_list) {
11619                 default_device_exit_net(net);
11620                 cond_resched();
11621         }
11622
11623         list_for_each_entry(net, net_list, exit_list) {
11624                 for_each_netdev_reverse(net, dev) {
11625                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11626                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11627                         else
11628                                 unregister_netdevice_queue(dev, &dev_kill_list);
11629                 }
11630         }
11631         unregister_netdevice_many(&dev_kill_list);
11632         rtnl_unlock();
11633 }
11634
11635 static struct pernet_operations __net_initdata default_device_ops = {
11636         .exit_batch = default_device_exit_batch,
11637 };
11638
11639 static void __init net_dev_struct_check(void)
11640 {
11641         /* TX read-mostly hotpath */
11642         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11643         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11644         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11645         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11646         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11647         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11648         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11649         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11650         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11651         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11652         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11653         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11654         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11655 #ifdef CONFIG_XPS
11656         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11657 #endif
11658 #ifdef CONFIG_NETFILTER_EGRESS
11659         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11660 #endif
11661 #ifdef CONFIG_NET_XGRESS
11662         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11663 #endif
11664         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11665
11666         /* TXRX read-mostly hotpath */
11667         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11668         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11669         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11670         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11671         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11672         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11673
11674         /* RX read-mostly hotpath */
11675         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11676         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11677         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11678         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11679         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11680         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11681         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11682         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11683         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11684         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11685         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11686 #ifdef CONFIG_NETPOLL
11687         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11688 #endif
11689 #ifdef CONFIG_NET_XGRESS
11690         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11691 #endif
11692         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11693 }
11694
11695 /*
11696  *      Initialize the DEV module. At boot time this walks the device list and
11697  *      unhooks any devices that fail to initialise (normally hardware not
11698  *      present) and leaves us with a valid list of present and active devices.
11699  *
11700  */
11701
11702 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11703 #define SYSTEM_PERCPU_PAGE_POOL_SIZE    ((1 << 20) / PAGE_SIZE)
11704
11705 static int net_page_pool_create(int cpuid)
11706 {
11707 #if IS_ENABLED(CONFIG_PAGE_POOL)
11708         struct page_pool_params page_pool_params = {
11709                 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11710                 .flags = PP_FLAG_SYSTEM_POOL,
11711                 .nid = NUMA_NO_NODE,
11712         };
11713         struct page_pool *pp_ptr;
11714
11715         pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11716         if (IS_ERR(pp_ptr))
11717                 return -ENOMEM;
11718
11719         per_cpu(system_page_pool, cpuid) = pp_ptr;
11720 #endif
11721         return 0;
11722 }
11723
11724 /*
11725  *       This is called single threaded during boot, so no need
11726  *       to take the rtnl semaphore.
11727  */
11728 static int __init net_dev_init(void)
11729 {
11730         int i, rc = -ENOMEM;
11731
11732         BUG_ON(!dev_boot_phase);
11733
11734         net_dev_struct_check();
11735
11736         if (dev_proc_init())
11737                 goto out;
11738
11739         if (netdev_kobject_init())
11740                 goto out;
11741
11742         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11743                 INIT_LIST_HEAD(&ptype_base[i]);
11744
11745         if (register_pernet_subsys(&netdev_net_ops))
11746                 goto out;
11747
11748         /*
11749          *      Initialise the packet receive queues.
11750          */
11751
11752         for_each_possible_cpu(i) {
11753                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11754                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11755
11756                 INIT_WORK(flush, flush_backlog);
11757
11758                 skb_queue_head_init(&sd->input_pkt_queue);
11759                 skb_queue_head_init(&sd->process_queue);
11760 #ifdef CONFIG_XFRM_OFFLOAD
11761                 skb_queue_head_init(&sd->xfrm_backlog);
11762 #endif
11763                 INIT_LIST_HEAD(&sd->poll_list);
11764                 sd->output_queue_tailp = &sd->output_queue;
11765 #ifdef CONFIG_RPS
11766                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11767                 sd->cpu = i;
11768 #endif
11769                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11770                 spin_lock_init(&sd->defer_lock);
11771
11772                 init_gro_hash(&sd->backlog);
11773                 sd->backlog.poll = process_backlog;
11774                 sd->backlog.weight = weight_p;
11775
11776                 if (net_page_pool_create(i))
11777                         goto out;
11778         }
11779
11780         dev_boot_phase = 0;
11781
11782         /* The loopback device is special if any other network devices
11783          * is present in a network namespace the loopback device must
11784          * be present. Since we now dynamically allocate and free the
11785          * loopback device ensure this invariant is maintained by
11786          * keeping the loopback device as the first device on the
11787          * list of network devices.  Ensuring the loopback devices
11788          * is the first device that appears and the last network device
11789          * that disappears.
11790          */
11791         if (register_pernet_device(&loopback_net_ops))
11792                 goto out;
11793
11794         if (register_pernet_device(&default_device_ops))
11795                 goto out;
11796
11797         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11798         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11799
11800         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11801                                        NULL, dev_cpu_dead);
11802         WARN_ON(rc < 0);
11803         rc = 0;
11804 out:
11805         if (rc < 0) {
11806                 for_each_possible_cpu(i) {
11807                         struct page_pool *pp_ptr;
11808
11809                         pp_ptr = per_cpu(system_page_pool, i);
11810                         if (!pp_ptr)
11811                                 continue;
11812
11813                         page_pool_destroy(pp_ptr);
11814                         per_cpu(system_page_pool, i) = NULL;
11815                 }
11816         }
11817
11818         return rc;
11819 }
11820
11821 subsys_initcall(net_dev_init);