a13c0b408aadfcc6d2f1f588cdd96a733961bf2a
[sfrench/cifs-2.6.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE         3072
20 #define CYCLES_PER_SECOND       8000
21 #define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_SECOND_MODULUS             8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT   16
33 #define TAG_NO_CIP_HEADER       0
34 #define TAG_CIP                 1
35
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS     2
38 #define CIP_EOH_SHIFT           31
39 #define CIP_EOH                 (1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK            0x80000000
41 #define CIP_SID_SHIFT           24
42 #define CIP_SID_MASK            0x3f000000
43 #define CIP_DBS_MASK            0x00ff0000
44 #define CIP_DBS_SHIFT           16
45 #define CIP_SPH_MASK            0x00000400
46 #define CIP_SPH_SHIFT           10
47 #define CIP_DBC_MASK            0x000000ff
48 #define CIP_FMT_SHIFT           24
49 #define CIP_FMT_MASK            0x3f000000
50 #define CIP_FDF_MASK            0x00ff0000
51 #define CIP_FDF_SHIFT           16
52 #define CIP_FDF_NO_DATA         0xff
53 #define CIP_SYT_MASK            0x0000ffff
54 #define CIP_SYT_NO_INFO         0xffff
55 #define CIP_SYT_CYCLE_MODULUS   16
56 #define CIP_NO_DATA             ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58 #define CIP_HEADER_SIZE         (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM              0x10
62 #define AMDTP_FDF_NO_DATA       0xff
63
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS  2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP       (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP          (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK      0x0000ffff
71
72 #define IT_PKT_HEADER_SIZE_CIP          CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
74
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES        5
79
80 /**
81  * amdtp_stream_init - initialize an AMDTP stream structure
82  * @s: the AMDTP stream to initialize
83  * @unit: the target of the stream
84  * @dir: the direction of stream
85  * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
86  * @fmt: the value of fmt field in CIP header
87  * @process_ctx_payloads: callback handler to process payloads of isoc context
88  * @protocol_size: the size to allocate newly for protocol
89  */
90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
91                       enum amdtp_stream_direction dir, unsigned int flags,
92                       unsigned int fmt,
93                       amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
94                       unsigned int protocol_size)
95 {
96         if (process_ctx_payloads == NULL)
97                 return -EINVAL;
98
99         s->protocol = kzalloc(protocol_size, GFP_KERNEL);
100         if (!s->protocol)
101                 return -ENOMEM;
102
103         s->unit = unit;
104         s->direction = dir;
105         s->flags = flags;
106         s->context = ERR_PTR(-1);
107         mutex_init(&s->mutex);
108         s->packet_index = 0;
109
110         init_waitqueue_head(&s->ready_wait);
111
112         s->fmt = fmt;
113         s->process_ctx_payloads = process_ctx_payloads;
114
115         return 0;
116 }
117 EXPORT_SYMBOL(amdtp_stream_init);
118
119 /**
120  * amdtp_stream_destroy - free stream resources
121  * @s: the AMDTP stream to destroy
122  */
123 void amdtp_stream_destroy(struct amdtp_stream *s)
124 {
125         /* Not initialized. */
126         if (s->protocol == NULL)
127                 return;
128
129         WARN_ON(amdtp_stream_running(s));
130         kfree(s->protocol);
131         mutex_destroy(&s->mutex);
132 }
133 EXPORT_SYMBOL(amdtp_stream_destroy);
134
135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
136         [CIP_SFC_32000]  =  8,
137         [CIP_SFC_44100]  =  8,
138         [CIP_SFC_48000]  =  8,
139         [CIP_SFC_88200]  = 16,
140         [CIP_SFC_96000]  = 16,
141         [CIP_SFC_176400] = 32,
142         [CIP_SFC_192000] = 32,
143 };
144 EXPORT_SYMBOL(amdtp_syt_intervals);
145
146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
147         [CIP_SFC_32000]  =  32000,
148         [CIP_SFC_44100]  =  44100,
149         [CIP_SFC_48000]  =  48000,
150         [CIP_SFC_88200]  =  88200,
151         [CIP_SFC_96000]  =  96000,
152         [CIP_SFC_176400] = 176400,
153         [CIP_SFC_192000] = 192000,
154 };
155 EXPORT_SYMBOL(amdtp_rate_table);
156
157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
158                                     struct snd_pcm_hw_rule *rule)
159 {
160         struct snd_interval *s = hw_param_interval(params, rule->var);
161         const struct snd_interval *r =
162                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
163         struct snd_interval t = {0};
164         unsigned int step = 0;
165         int i;
166
167         for (i = 0; i < CIP_SFC_COUNT; ++i) {
168                 if (snd_interval_test(r, amdtp_rate_table[i]))
169                         step = max(step, amdtp_syt_intervals[i]);
170         }
171
172         t.min = roundup(s->min, step);
173         t.max = rounddown(s->max, step);
174         t.integer = 1;
175
176         return snd_interval_refine(s, &t);
177 }
178
179 /**
180  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
181  * @s:          the AMDTP stream, which must be initialized.
182  * @runtime:    the PCM substream runtime
183  */
184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
185                                         struct snd_pcm_runtime *runtime)
186 {
187         struct snd_pcm_hardware *hw = &runtime->hw;
188         unsigned int ctx_header_size;
189         unsigned int maximum_usec_per_period;
190         int err;
191
192         hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
193                    SNDRV_PCM_INFO_INTERLEAVED |
194                    SNDRV_PCM_INFO_JOINT_DUPLEX |
195                    SNDRV_PCM_INFO_MMAP |
196                    SNDRV_PCM_INFO_MMAP_VALID |
197                    SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
198
199         hw->periods_min = 2;
200         hw->periods_max = UINT_MAX;
201
202         /* bytes for a frame */
203         hw->period_bytes_min = 4 * hw->channels_max;
204
205         /* Just to prevent from allocating much pages. */
206         hw->period_bytes_max = hw->period_bytes_min * 2048;
207         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
208
209         // Linux driver for 1394 OHCI controller voluntarily flushes isoc
210         // context when total size of accumulated context header reaches
211         // PAGE_SIZE. This kicks work for the isoc context and brings
212         // callback in the middle of scheduled interrupts.
213         // Although AMDTP streams in the same domain use the same events per
214         // IRQ, use the largest size of context header between IT/IR contexts.
215         // Here, use the value of context header in IR context is for both
216         // contexts.
217         if (!(s->flags & CIP_NO_HEADER))
218                 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
219         else
220                 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
221         maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
222                                   CYCLES_PER_SECOND / ctx_header_size;
223
224         // In IEC 61883-6, one isoc packet can transfer events up to the value
225         // of syt interval. This comes from the interval of isoc cycle. As 1394
226         // OHCI controller can generate hardware IRQ per isoc packet, the
227         // interval is 125 usec.
228         // However, there are two ways of transmission in IEC 61883-6; blocking
229         // and non-blocking modes. In blocking mode, the sequence of isoc packet
230         // includes 'empty' or 'NODATA' packets which include no event. In
231         // non-blocking mode, the number of events per packet is variable up to
232         // the syt interval.
233         // Due to the above protocol design, the minimum PCM frames per
234         // interrupt should be double of the value of syt interval, thus it is
235         // 250 usec.
236         err = snd_pcm_hw_constraint_minmax(runtime,
237                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
238                                            250, maximum_usec_per_period);
239         if (err < 0)
240                 goto end;
241
242         /* Non-Blocking stream has no more constraints */
243         if (!(s->flags & CIP_BLOCKING))
244                 goto end;
245
246         /*
247          * One AMDTP packet can include some frames. In blocking mode, the
248          * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
249          * depending on its sampling rate. For accurate period interrupt, it's
250          * preferrable to align period/buffer sizes to current SYT_INTERVAL.
251          */
252         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
253                                   apply_constraint_to_size, NULL,
254                                   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
255                                   SNDRV_PCM_HW_PARAM_RATE, -1);
256         if (err < 0)
257                 goto end;
258         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
259                                   apply_constraint_to_size, NULL,
260                                   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
261                                   SNDRV_PCM_HW_PARAM_RATE, -1);
262         if (err < 0)
263                 goto end;
264 end:
265         return err;
266 }
267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
268
269 /**
270  * amdtp_stream_set_parameters - set stream parameters
271  * @s: the AMDTP stream to configure
272  * @rate: the sample rate
273  * @data_block_quadlets: the size of a data block in quadlet unit
274  * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
275  *                        events.
276  *
277  * The parameters must be set before the stream is started, and must not be
278  * changed while the stream is running.
279  */
280 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
281                                 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
282 {
283         unsigned int sfc;
284
285         for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
286                 if (amdtp_rate_table[sfc] == rate)
287                         break;
288         }
289         if (sfc == ARRAY_SIZE(amdtp_rate_table))
290                 return -EINVAL;
291
292         s->sfc = sfc;
293         s->data_block_quadlets = data_block_quadlets;
294         s->syt_interval = amdtp_syt_intervals[sfc];
295
296         // default buffering in the device.
297         s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
298
299         // additional buffering needed to adjust for no-data packets.
300         if (s->flags & CIP_BLOCKING)
301                 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
302
303         s->pcm_frame_multiplier = pcm_frame_multiplier;
304
305         return 0;
306 }
307 EXPORT_SYMBOL(amdtp_stream_set_parameters);
308
309 // The CIP header is processed in context header apart from context payload.
310 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
311 {
312         unsigned int multiplier;
313
314         if (s->flags & CIP_JUMBO_PAYLOAD)
315                 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
316         else
317                 multiplier = 1;
318
319         return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
320 }
321
322 /**
323  * amdtp_stream_get_max_payload - get the stream's packet size
324  * @s: the AMDTP stream
325  *
326  * This function must not be called before the stream has been configured
327  * with amdtp_stream_set_parameters().
328  */
329 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
330 {
331         unsigned int cip_header_size;
332
333         if (!(s->flags & CIP_NO_HEADER))
334                 cip_header_size = CIP_HEADER_SIZE;
335         else
336                 cip_header_size = 0;
337
338         return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
339 }
340 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
341
342 /**
343  * amdtp_stream_pcm_prepare - prepare PCM device for running
344  * @s: the AMDTP stream
345  *
346  * This function should be called from the PCM device's .prepare callback.
347  */
348 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
349 {
350         s->pcm_buffer_pointer = 0;
351         s->pcm_period_pointer = 0;
352 }
353 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
354
355 #define prev_packet_desc(s, desc) \
356         list_prev_entry_circular(desc, &s->packet_descs_list, link)
357
358 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
359                                       unsigned int size, unsigned int pos, unsigned int count)
360 {
361         const unsigned int syt_interval = s->syt_interval;
362         int i;
363
364         for (i = 0; i < count; ++i) {
365                 struct seq_desc *desc = descs + pos;
366
367                 if (desc->syt_offset != CIP_SYT_NO_INFO)
368                         desc->data_blocks = syt_interval;
369                 else
370                         desc->data_blocks = 0;
371
372                 pos = (pos + 1) % size;
373         }
374 }
375
376 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
377                                                unsigned int size, unsigned int pos,
378                                                unsigned int count)
379 {
380         const enum cip_sfc sfc = s->sfc;
381         unsigned int state = s->ctx_data.rx.data_block_state;
382         int i;
383
384         for (i = 0; i < count; ++i) {
385                 struct seq_desc *desc = descs + pos;
386
387                 if (!cip_sfc_is_base_44100(sfc)) {
388                         // Sample_rate / 8000 is an integer, and precomputed.
389                         desc->data_blocks = state;
390                 } else {
391                         unsigned int phase = state;
392
393                 /*
394                  * This calculates the number of data blocks per packet so that
395                  * 1) the overall rate is correct and exactly synchronized to
396                  *    the bus clock, and
397                  * 2) packets with a rounded-up number of blocks occur as early
398                  *    as possible in the sequence (to prevent underruns of the
399                  *    device's buffer).
400                  */
401                         if (sfc == CIP_SFC_44100)
402                                 /* 6 6 5 6 5 6 5 ... */
403                                 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
404                         else
405                                 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
406                                 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
407                         if (++phase >= (80 >> (sfc >> 1)))
408                                 phase = 0;
409                         state = phase;
410                 }
411
412                 pos = (pos + 1) % size;
413         }
414
415         s->ctx_data.rx.data_block_state = state;
416 }
417
418 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
419                         unsigned int *syt_offset_state, enum cip_sfc sfc)
420 {
421         unsigned int syt_offset;
422
423         if (*last_syt_offset < TICKS_PER_CYCLE) {
424                 if (!cip_sfc_is_base_44100(sfc))
425                         syt_offset = *last_syt_offset + *syt_offset_state;
426                 else {
427                 /*
428                  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
429                  *   n * SYT_INTERVAL * 24576000 / sample_rate
430                  * Modulo TICKS_PER_CYCLE, the difference between successive
431                  * elements is about 1386.23.  Rounding the results of this
432                  * formula to the SYT precision results in a sequence of
433                  * differences that begins with:
434                  *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
435                  * This code generates _exactly_ the same sequence.
436                  */
437                         unsigned int phase = *syt_offset_state;
438                         unsigned int index = phase % 13;
439
440                         syt_offset = *last_syt_offset;
441                         syt_offset += 1386 + ((index && !(index & 3)) ||
442                                               phase == 146);
443                         if (++phase >= 147)
444                                 phase = 0;
445                         *syt_offset_state = phase;
446                 }
447         } else
448                 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
449         *last_syt_offset = syt_offset;
450
451         if (syt_offset >= TICKS_PER_CYCLE)
452                 syt_offset = CIP_SYT_NO_INFO;
453
454         return syt_offset;
455 }
456
457 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
458                                    unsigned int size, unsigned int pos, unsigned int count)
459 {
460         const enum cip_sfc sfc = s->sfc;
461         unsigned int last = s->ctx_data.rx.last_syt_offset;
462         unsigned int state = s->ctx_data.rx.syt_offset_state;
463         int i;
464
465         for (i = 0; i < count; ++i) {
466                 struct seq_desc *desc = descs + pos;
467
468                 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
469
470                 pos = (pos + 1) % size;
471         }
472
473         s->ctx_data.rx.last_syt_offset = last;
474         s->ctx_data.rx.syt_offset_state = state;
475 }
476
477 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
478                                        unsigned int transfer_delay)
479 {
480         unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
481         unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
482         unsigned int syt_offset;
483
484         // Round up.
485         if (syt_cycle_lo < cycle_lo)
486                 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
487         syt_cycle_lo -= cycle_lo;
488
489         // Subtract transfer delay so that the synchronization offset is not so large
490         // at transmission.
491         syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
492         if (syt_offset < transfer_delay)
493                 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
494
495         return syt_offset - transfer_delay;
496 }
497
498 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
499 // Additionally, the sequence of tx packets is severely checked against any discontinuity
500 // before filling entries in the queue. The calculation is safe even if it looks fragile by
501 // overrun.
502 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
503 {
504         const unsigned int cache_size = s->ctx_data.tx.cache.size;
505         unsigned int cycles = s->ctx_data.tx.cache.pos;
506
507         if (cycles < head)
508                 cycles += cache_size;
509         cycles -= head;
510
511         return cycles;
512 }
513
514 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
515 {
516         const unsigned int transfer_delay = s->transfer_delay;
517         const unsigned int cache_size = s->ctx_data.tx.cache.size;
518         struct seq_desc *cache = s->ctx_data.tx.cache.descs;
519         unsigned int cache_pos = s->ctx_data.tx.cache.pos;
520         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
521         int i;
522
523         for (i = 0; i < desc_count; ++i) {
524                 struct seq_desc *dst = cache + cache_pos;
525
526                 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
527                         dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
528                 else
529                         dst->syt_offset = CIP_SYT_NO_INFO;
530                 dst->data_blocks = src->data_blocks;
531
532                 cache_pos = (cache_pos + 1) % cache_size;
533                 src = amdtp_stream_next_packet_desc(s, src);
534         }
535
536         s->ctx_data.tx.cache.pos = cache_pos;
537 }
538
539 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
540                                  unsigned int pos, unsigned int count)
541 {
542         pool_ideal_syt_offsets(s, descs, size, pos, count);
543
544         if (s->flags & CIP_BLOCKING)
545                 pool_blocking_data_blocks(s, descs, size, pos, count);
546         else
547                 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
548 }
549
550 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
551                               unsigned int pos, unsigned int count)
552 {
553         struct amdtp_stream *target = s->ctx_data.rx.replay_target;
554         const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
555         const unsigned int cache_size = target->ctx_data.tx.cache.size;
556         unsigned int cache_pos = s->ctx_data.rx.cache_pos;
557         int i;
558
559         for (i = 0; i < count; ++i) {
560                 descs[pos] = cache[cache_pos];
561                 cache_pos = (cache_pos + 1) % cache_size;
562                 pos = (pos + 1) % size;
563         }
564
565         s->ctx_data.rx.cache_pos = cache_pos;
566 }
567
568 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
569                            unsigned int pos, unsigned int count)
570 {
571         struct amdtp_domain *d = s->domain;
572         void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
573                                unsigned int pos, unsigned int count);
574
575         if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
576                 pool_seq_descs = pool_ideal_seq_descs;
577         } else {
578                 if (!d->replay.on_the_fly) {
579                         pool_seq_descs = pool_replayed_seq;
580                 } else {
581                         struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
582                         const unsigned int cache_size = tx->ctx_data.tx.cache.size;
583                         const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
584                         unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
585
586                         if (cached_cycles > count && cached_cycles > cache_size / 2)
587                                 pool_seq_descs = pool_replayed_seq;
588                         else
589                                 pool_seq_descs = pool_ideal_seq_descs;
590                 }
591         }
592
593         pool_seq_descs(s, descs, size, pos, count);
594 }
595
596 static void update_pcm_pointers(struct amdtp_stream *s,
597                                 struct snd_pcm_substream *pcm,
598                                 unsigned int frames)
599 {
600         unsigned int ptr;
601
602         ptr = s->pcm_buffer_pointer + frames;
603         if (ptr >= pcm->runtime->buffer_size)
604                 ptr -= pcm->runtime->buffer_size;
605         WRITE_ONCE(s->pcm_buffer_pointer, ptr);
606
607         s->pcm_period_pointer += frames;
608         if (s->pcm_period_pointer >= pcm->runtime->period_size) {
609                 s->pcm_period_pointer -= pcm->runtime->period_size;
610
611                 // The program in user process should periodically check the status of intermediate
612                 // buffer associated to PCM substream to process PCM frames in the buffer, instead
613                 // of receiving notification of period elapsed by poll wait.
614                 if (!pcm->runtime->no_period_wakeup) {
615                         if (in_softirq()) {
616                                 // In software IRQ context for 1394 OHCI.
617                                 snd_pcm_period_elapsed(pcm);
618                         } else {
619                                 // In process context of ALSA PCM application under acquired lock of
620                                 // PCM substream.
621                                 snd_pcm_period_elapsed_under_stream_lock(pcm);
622                         }
623                 }
624         }
625 }
626
627 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
628                         bool sched_irq)
629 {
630         int err;
631
632         params->interrupt = sched_irq;
633         params->tag = s->tag;
634         params->sy = 0;
635
636         err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
637                                    s->buffer.packets[s->packet_index].offset);
638         if (err < 0) {
639                 dev_err(&s->unit->device, "queueing error: %d\n", err);
640                 goto end;
641         }
642
643         if (++s->packet_index >= s->queue_size)
644                 s->packet_index = 0;
645 end:
646         return err;
647 }
648
649 static inline int queue_out_packet(struct amdtp_stream *s,
650                                    struct fw_iso_packet *params, bool sched_irq)
651 {
652         params->skip =
653                 !!(params->header_length == 0 && params->payload_length == 0);
654         return queue_packet(s, params, sched_irq);
655 }
656
657 static inline int queue_in_packet(struct amdtp_stream *s,
658                                   struct fw_iso_packet *params)
659 {
660         // Queue one packet for IR context.
661         params->header_length = s->ctx_data.tx.ctx_header_size;
662         params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
663         params->skip = false;
664         return queue_packet(s, params, false);
665 }
666
667 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
668                         unsigned int data_block_counter, unsigned int syt)
669 {
670         cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
671                                 (s->data_block_quadlets << CIP_DBS_SHIFT) |
672                                 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
673                                 data_block_counter);
674         cip_header[1] = cpu_to_be32(CIP_EOH |
675                         ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
676                         ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
677                         (syt & CIP_SYT_MASK));
678 }
679
680 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
681                                 struct fw_iso_packet *params, unsigned int header_length,
682                                 unsigned int data_blocks,
683                                 unsigned int data_block_counter,
684                                 unsigned int syt, unsigned int index, u32 curr_cycle_time)
685 {
686         unsigned int payload_length;
687         __be32 *cip_header;
688
689         payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
690         params->payload_length = payload_length;
691
692         if (header_length > 0) {
693                 cip_header = (__be32 *)params->header;
694                 generate_cip_header(s, cip_header, data_block_counter, syt);
695                 params->header_length = header_length;
696         } else {
697                 cip_header = NULL;
698         }
699
700         trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
701                            data_block_counter, s->packet_index, index, curr_cycle_time);
702 }
703
704 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
705                             unsigned int payload_length,
706                             unsigned int *data_blocks,
707                             unsigned int *data_block_counter, unsigned int *syt)
708 {
709         u32 cip_header[2];
710         unsigned int sph;
711         unsigned int fmt;
712         unsigned int fdf;
713         unsigned int dbc;
714         bool lost;
715
716         cip_header[0] = be32_to_cpu(buf[0]);
717         cip_header[1] = be32_to_cpu(buf[1]);
718
719         /*
720          * This module supports 'Two-quadlet CIP header with SYT field'.
721          * For convenience, also check FMT field is AM824 or not.
722          */
723         if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
724              ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
725             (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
726                 dev_info_ratelimited(&s->unit->device,
727                                 "Invalid CIP header for AMDTP: %08X:%08X\n",
728                                 cip_header[0], cip_header[1]);
729                 return -EAGAIN;
730         }
731
732         /* Check valid protocol or not. */
733         sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
734         fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
735         if (sph != s->sph || fmt != s->fmt) {
736                 dev_info_ratelimited(&s->unit->device,
737                                      "Detect unexpected protocol: %08x %08x\n",
738                                      cip_header[0], cip_header[1]);
739                 return -EAGAIN;
740         }
741
742         /* Calculate data blocks */
743         fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
744         if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
745                 *data_blocks = 0;
746         } else {
747                 unsigned int data_block_quadlets =
748                                 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
749                 /* avoid division by zero */
750                 if (data_block_quadlets == 0) {
751                         dev_err(&s->unit->device,
752                                 "Detect invalid value in dbs field: %08X\n",
753                                 cip_header[0]);
754                         return -EPROTO;
755                 }
756                 if (s->flags & CIP_WRONG_DBS)
757                         data_block_quadlets = s->data_block_quadlets;
758
759                 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
760         }
761
762         /* Check data block counter continuity */
763         dbc = cip_header[0] & CIP_DBC_MASK;
764         if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
765             *data_block_counter != UINT_MAX)
766                 dbc = *data_block_counter;
767
768         if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
769             *data_block_counter == UINT_MAX) {
770                 lost = false;
771         } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
772                 lost = dbc != *data_block_counter;
773         } else {
774                 unsigned int dbc_interval;
775
776                 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
777                         dbc_interval = s->ctx_data.tx.dbc_interval;
778                 else
779                         dbc_interval = *data_blocks;
780
781                 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
782         }
783
784         if (lost) {
785                 dev_err(&s->unit->device,
786                         "Detect discontinuity of CIP: %02X %02X\n",
787                         *data_block_counter, dbc);
788                 return -EIO;
789         }
790
791         *data_block_counter = dbc;
792
793         if (!(s->flags & CIP_UNAWARE_SYT))
794                 *syt = cip_header[1] & CIP_SYT_MASK;
795
796         return 0;
797 }
798
799 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
800                                const __be32 *ctx_header,
801                                unsigned int *data_blocks,
802                                unsigned int *data_block_counter,
803                                unsigned int *syt, unsigned int packet_index, unsigned int index,
804                                u32 curr_cycle_time)
805 {
806         unsigned int payload_length;
807         const __be32 *cip_header;
808         unsigned int cip_header_size;
809
810         payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
811
812         if (!(s->flags & CIP_NO_HEADER))
813                 cip_header_size = CIP_HEADER_SIZE;
814         else
815                 cip_header_size = 0;
816
817         if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
818                 dev_err(&s->unit->device,
819                         "Detect jumbo payload: %04x %04x\n",
820                         payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
821                 return -EIO;
822         }
823
824         if (cip_header_size > 0) {
825                 if (payload_length >= cip_header_size) {
826                         int err;
827
828                         cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
829                         err = check_cip_header(s, cip_header, payload_length - cip_header_size,
830                                                data_blocks, data_block_counter, syt);
831                         if (err < 0)
832                                 return err;
833                 } else {
834                         // Handle the cycle so that empty packet arrives.
835                         cip_header = NULL;
836                         *data_blocks = 0;
837                         *syt = 0;
838                 }
839         } else {
840                 cip_header = NULL;
841                 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
842                 *syt = 0;
843
844                 if (*data_block_counter == UINT_MAX)
845                         *data_block_counter = 0;
846         }
847
848         trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
849                            *data_block_counter, packet_index, index, curr_cycle_time);
850
851         return 0;
852 }
853
854 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
855 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
856 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
857 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
858 {
859         return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
860 }
861
862 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
863 {
864         u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
865         return compute_ohci_iso_ctx_cycle_count(tstamp);
866 }
867
868 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
869 {
870         cycle += addend;
871         if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
872                 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
873         return cycle;
874 }
875
876 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
877 {
878         if (minuend < subtrahend)
879                 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
880
881         return minuend - subtrahend;
882 }
883
884 static int compare_ohci_cycle_count(u32 lval, u32 rval)
885 {
886         if (lval == rval)
887                 return 0;
888         else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
889                 return -1;
890         else
891                 return 1;
892 }
893
894 // Align to actual cycle count for the packet which is going to be scheduled.
895 // This module queued the same number of isochronous cycle as the size of queue
896 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
897 // the size of queue for scheduled cycle.
898 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
899                                         unsigned int queue_size)
900 {
901         u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
902         return increment_ohci_cycle_count(cycle, queue_size);
903 }
904
905 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
906                                     const __be32 *ctx_header, unsigned int packet_count,
907                                     unsigned int *desc_count)
908 {
909         unsigned int next_cycle = s->next_cycle;
910         unsigned int dbc = s->data_block_counter;
911         unsigned int packet_index = s->packet_index;
912         unsigned int queue_size = s->queue_size;
913         u32 curr_cycle_time = 0;
914         int i;
915         int err;
916
917         if (trace_amdtp_packet_enabled())
918                 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
919
920         *desc_count = 0;
921         for (i = 0; i < packet_count; ++i) {
922                 unsigned int cycle;
923                 bool lost;
924                 unsigned int data_blocks;
925                 unsigned int syt;
926
927                 cycle = compute_ohci_cycle_count(ctx_header[1]);
928                 lost = (next_cycle != cycle);
929                 if (lost) {
930                         if (s->flags & CIP_NO_HEADER) {
931                                 // Fireface skips transmission just for an isoc cycle corresponding
932                                 // to empty packet.
933                                 unsigned int prev_cycle = next_cycle;
934
935                                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
936                                 lost = (next_cycle != cycle);
937                                 if (!lost) {
938                                         // Prepare a description for the skipped cycle for
939                                         // sequence replay.
940                                         desc->cycle = prev_cycle;
941                                         desc->syt = 0;
942                                         desc->data_blocks = 0;
943                                         desc->data_block_counter = dbc;
944                                         desc->ctx_payload = NULL;
945                                         desc = amdtp_stream_next_packet_desc(s, desc);
946                                         ++(*desc_count);
947                                 }
948                         } else if (s->flags & CIP_JUMBO_PAYLOAD) {
949                                 // OXFW970 skips transmission for several isoc cycles during
950                                 // asynchronous transaction. The sequence replay is impossible due
951                                 // to the reason.
952                                 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
953                                                                 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
954                                 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
955                         }
956                         if (lost) {
957                                 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
958                                         next_cycle, cycle);
959                                 return -EIO;
960                         }
961                 }
962
963                 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
964                                           packet_index, i, curr_cycle_time);
965                 if (err < 0)
966                         return err;
967
968                 desc->cycle = cycle;
969                 desc->syt = syt;
970                 desc->data_blocks = data_blocks;
971                 desc->data_block_counter = dbc;
972                 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
973
974                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
975                         dbc = (dbc + desc->data_blocks) & 0xff;
976
977                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
978                 desc = amdtp_stream_next_packet_desc(s, desc);
979                 ++(*desc_count);
980                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
981                 packet_index = (packet_index + 1) % queue_size;
982         }
983
984         s->next_cycle = next_cycle;
985         s->data_block_counter = dbc;
986
987         return 0;
988 }
989
990 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
991                                 unsigned int transfer_delay)
992 {
993         unsigned int syt;
994
995         syt_offset += transfer_delay;
996         syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
997               (syt_offset % TICKS_PER_CYCLE);
998         return syt & CIP_SYT_MASK;
999 }
1000
1001 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1002                                      const __be32 *ctx_header, unsigned int packet_count)
1003 {
1004         struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1005         unsigned int seq_size = s->ctx_data.rx.seq.size;
1006         unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1007         unsigned int dbc = s->data_block_counter;
1008         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1009         int i;
1010
1011         pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1012
1013         for (i = 0; i < packet_count; ++i) {
1014                 unsigned int index = (s->packet_index + i) % s->queue_size;
1015                 const struct seq_desc *seq = seq_descs + seq_pos;
1016
1017                 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1018
1019                 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1020                         desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1021                 else
1022                         desc->syt = CIP_SYT_NO_INFO;
1023
1024                 desc->data_blocks = seq->data_blocks;
1025
1026                 if (s->flags & CIP_DBC_IS_END_EVENT)
1027                         dbc = (dbc + desc->data_blocks) & 0xff;
1028
1029                 desc->data_block_counter = dbc;
1030
1031                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1032                         dbc = (dbc + desc->data_blocks) & 0xff;
1033
1034                 desc->ctx_payload = s->buffer.packets[index].buffer;
1035
1036                 seq_pos = (seq_pos + 1) % seq_size;
1037                 desc = amdtp_stream_next_packet_desc(s, desc);
1038
1039                 ++ctx_header;
1040         }
1041
1042         s->data_block_counter = dbc;
1043         s->ctx_data.rx.seq.pos = seq_pos;
1044 }
1045
1046 static inline void cancel_stream(struct amdtp_stream *s)
1047 {
1048         s->packet_index = -1;
1049         if (in_softirq())
1050                 amdtp_stream_pcm_abort(s);
1051         WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1052 }
1053
1054 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1055                                                  const struct pkt_desc *desc, unsigned int count)
1056 {
1057         unsigned int data_block_count = 0;
1058         u32 latest_cycle;
1059         u32 cycle_time;
1060         u32 curr_cycle;
1061         u32 cycle_gap;
1062         int i, err;
1063
1064         if (count == 0)
1065                 goto end;
1066
1067         // Forward to the latest record.
1068         for (i = 0; i < count - 1; ++i)
1069                 desc = amdtp_stream_next_packet_desc(s, desc);
1070         latest_cycle = desc->cycle;
1071
1072         err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1073         if (err < 0)
1074                 goto end;
1075
1076         // Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1077         // format of 1394 OHCI isochronous context.
1078         curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1079
1080         if (s->direction == AMDTP_IN_STREAM) {
1081                 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1082                 // it corresponds to arrived isochronous packet.
1083                 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1084                         goto end;
1085                 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1086
1087                 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1088                 // value expectedly corresponds to a few packets (0-2) since the packet arrived at
1089                 // the most recent isochronous cycle has been already processed.
1090                 for (i = 0; i < cycle_gap; ++i) {
1091                         desc = amdtp_stream_next_packet_desc(s, desc);
1092                         data_block_count += desc->data_blocks;
1093                 }
1094         } else {
1095                 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1096                 // since it was already scheduled.
1097                 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1098                         goto end;
1099                 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1100
1101                 // NOTE: use history of scheduled packets.
1102                 for (i = 0; i < cycle_gap; ++i) {
1103                         data_block_count += desc->data_blocks;
1104                         desc = prev_packet_desc(s, desc);
1105                 }
1106         }
1107 end:
1108         return data_block_count * s->pcm_frame_multiplier;
1109 }
1110
1111 static void process_ctx_payloads(struct amdtp_stream *s,
1112                                  const struct pkt_desc *desc,
1113                                  unsigned int count)
1114 {
1115         struct snd_pcm_substream *pcm;
1116         int i;
1117
1118         pcm = READ_ONCE(s->pcm);
1119         s->process_ctx_payloads(s, desc, count, pcm);
1120
1121         if (pcm) {
1122                 unsigned int data_block_count = 0;
1123
1124                 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1125
1126                 for (i = 0; i < count; ++i) {
1127                         data_block_count += desc->data_blocks;
1128                         desc = amdtp_stream_next_packet_desc(s, desc);
1129                 }
1130
1131                 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1132         }
1133 }
1134
1135 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1136                                void *header, void *private_data)
1137 {
1138         struct amdtp_stream *s = private_data;
1139         const struct amdtp_domain *d = s->domain;
1140         const __be32 *ctx_header = header;
1141         const unsigned int events_per_period = d->events_per_period;
1142         unsigned int event_count = s->ctx_data.rx.event_count;
1143         struct pkt_desc *desc = s->packet_descs_cursor;
1144         unsigned int pkt_header_length;
1145         unsigned int packets;
1146         u32 curr_cycle_time;
1147         bool need_hw_irq;
1148         int i;
1149
1150         if (s->packet_index < 0)
1151                 return;
1152
1153         // Calculate the number of packets in buffer and check XRUN.
1154         packets = header_length / sizeof(*ctx_header);
1155
1156         generate_rx_packet_descs(s, desc, ctx_header, packets);
1157
1158         process_ctx_payloads(s, desc, packets);
1159
1160         if (!(s->flags & CIP_NO_HEADER))
1161                 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1162         else
1163                 pkt_header_length = 0;
1164
1165         if (s == d->irq_target) {
1166                 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1167                 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1168                 // with some requests, instead of scheduled hardware IRQ of an IT context.
1169                 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1170                 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1171         } else {
1172                 need_hw_irq = false;
1173         }
1174
1175         if (trace_amdtp_packet_enabled())
1176                 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1177
1178         for (i = 0; i < packets; ++i) {
1179                 struct {
1180                         struct fw_iso_packet params;
1181                         __be32 header[CIP_HEADER_QUADLETS];
1182                 } template = { {0}, {0} };
1183                 bool sched_irq = false;
1184
1185                 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1186                                     desc->data_blocks, desc->data_block_counter,
1187                                     desc->syt, i, curr_cycle_time);
1188
1189                 if (s == s->domain->irq_target) {
1190                         event_count += desc->data_blocks;
1191                         if (event_count >= events_per_period) {
1192                                 event_count -= events_per_period;
1193                                 sched_irq = need_hw_irq;
1194                         }
1195                 }
1196
1197                 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1198                         cancel_stream(s);
1199                         return;
1200                 }
1201
1202                 desc = amdtp_stream_next_packet_desc(s, desc);
1203         }
1204
1205         s->ctx_data.rx.event_count = event_count;
1206         s->packet_descs_cursor = desc;
1207 }
1208
1209 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1210                             void *header, void *private_data)
1211 {
1212         struct amdtp_stream *s = private_data;
1213         struct amdtp_domain *d = s->domain;
1214         const __be32 *ctx_header = header;
1215         unsigned int packets;
1216         unsigned int cycle;
1217         int i;
1218
1219         if (s->packet_index < 0)
1220                 return;
1221
1222         packets = header_length / sizeof(*ctx_header);
1223
1224         cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1225         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1226
1227         for (i = 0; i < packets; ++i) {
1228                 struct fw_iso_packet params = {
1229                         .header_length = 0,
1230                         .payload_length = 0,
1231                 };
1232                 bool sched_irq = (s == d->irq_target && i == packets - 1);
1233
1234                 if (queue_out_packet(s, &params, sched_irq) < 0) {
1235                         cancel_stream(s);
1236                         return;
1237                 }
1238         }
1239 }
1240
1241 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1242                                 void *header, void *private_data);
1243
1244 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1245                                         size_t header_length, void *header, void *private_data)
1246 {
1247         struct amdtp_stream *s = private_data;
1248         struct amdtp_domain *d = s->domain;
1249         __be32 *ctx_header = header;
1250         const unsigned int queue_size = s->queue_size;
1251         unsigned int packets;
1252         unsigned int offset;
1253
1254         if (s->packet_index < 0)
1255                 return;
1256
1257         packets = header_length / sizeof(*ctx_header);
1258
1259         offset = 0;
1260         while (offset < packets) {
1261                 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1262
1263                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1264                         break;
1265
1266                 ++offset;
1267         }
1268
1269         if (offset > 0) {
1270                 unsigned int length = sizeof(*ctx_header) * offset;
1271
1272                 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1273                 if (amdtp_streaming_error(s))
1274                         return;
1275
1276                 ctx_header += offset;
1277                 header_length -= length;
1278         }
1279
1280         if (offset < packets) {
1281                 s->ready_processing = true;
1282                 wake_up(&s->ready_wait);
1283
1284                 if (d->replay.enable)
1285                         s->ctx_data.rx.cache_pos = 0;
1286
1287                 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1288                 if (amdtp_streaming_error(s))
1289                         return;
1290
1291                 if (s == d->irq_target)
1292                         s->context->callback.sc = irq_target_callback;
1293                 else
1294                         s->context->callback.sc = process_rx_packets;
1295         }
1296 }
1297
1298 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1299                                void *header, void *private_data)
1300 {
1301         struct amdtp_stream *s = private_data;
1302         __be32 *ctx_header = header;
1303         struct pkt_desc *desc = s->packet_descs_cursor;
1304         unsigned int packet_count;
1305         unsigned int desc_count;
1306         int i;
1307         int err;
1308
1309         if (s->packet_index < 0)
1310                 return;
1311
1312         // Calculate the number of packets in buffer and check XRUN.
1313         packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1314
1315         desc_count = 0;
1316         err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1317         if (err < 0) {
1318                 if (err != -EAGAIN) {
1319                         cancel_stream(s);
1320                         return;
1321                 }
1322         } else {
1323                 struct amdtp_domain *d = s->domain;
1324
1325                 process_ctx_payloads(s, desc, desc_count);
1326
1327                 if (d->replay.enable)
1328                         cache_seq(s, desc, desc_count);
1329
1330                 for (i = 0; i < desc_count; ++i)
1331                         desc = amdtp_stream_next_packet_desc(s, desc);
1332                 s->packet_descs_cursor = desc;
1333         }
1334
1335         for (i = 0; i < packet_count; ++i) {
1336                 struct fw_iso_packet params = {0};
1337
1338                 if (queue_in_packet(s, &params) < 0) {
1339                         cancel_stream(s);
1340                         return;
1341                 }
1342         }
1343 }
1344
1345 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1346                             void *header, void *private_data)
1347 {
1348         struct amdtp_stream *s = private_data;
1349         const __be32 *ctx_header = header;
1350         unsigned int packets;
1351         unsigned int cycle;
1352         int i;
1353
1354         if (s->packet_index < 0)
1355                 return;
1356
1357         packets = header_length / s->ctx_data.tx.ctx_header_size;
1358
1359         ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1360         cycle = compute_ohci_cycle_count(ctx_header[1]);
1361         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1362
1363         for (i = 0; i < packets; ++i) {
1364                 struct fw_iso_packet params = {0};
1365
1366                 if (queue_in_packet(s, &params) < 0) {
1367                         cancel_stream(s);
1368                         return;
1369                 }
1370         }
1371 }
1372
1373 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1374                                         size_t header_length, void *header, void *private_data)
1375 {
1376         struct amdtp_stream *s = private_data;
1377         struct amdtp_domain *d = s->domain;
1378         __be32 *ctx_header;
1379         unsigned int packets;
1380         unsigned int offset;
1381
1382         if (s->packet_index < 0)
1383                 return;
1384
1385         packets = header_length / s->ctx_data.tx.ctx_header_size;
1386
1387         offset = 0;
1388         ctx_header = header;
1389         while (offset < packets) {
1390                 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1391
1392                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1393                         break;
1394
1395                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1396                 ++offset;
1397         }
1398
1399         ctx_header = header;
1400
1401         if (offset > 0) {
1402                 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1403
1404                 drop_tx_packets(context, tstamp, length, ctx_header, s);
1405                 if (amdtp_streaming_error(s))
1406                         return;
1407
1408                 ctx_header += length / sizeof(*ctx_header);
1409                 header_length -= length;
1410         }
1411
1412         if (offset < packets) {
1413                 s->ready_processing = true;
1414                 wake_up(&s->ready_wait);
1415
1416                 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1417                 if (amdtp_streaming_error(s))
1418                         return;
1419
1420                 context->callback.sc = process_tx_packets;
1421         }
1422 }
1423
1424 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1425                                       size_t header_length, void *header, void *private_data)
1426 {
1427         struct amdtp_stream *s = private_data;
1428         struct amdtp_domain *d = s->domain;
1429         __be32 *ctx_header;
1430         unsigned int count;
1431         unsigned int events;
1432         int i;
1433
1434         if (s->packet_index < 0)
1435                 return;
1436
1437         count = header_length / s->ctx_data.tx.ctx_header_size;
1438
1439         // Attempt to detect any event in the batch of packets.
1440         events = 0;
1441         ctx_header = header;
1442         for (i = 0; i < count; ++i) {
1443                 unsigned int payload_quads =
1444                         (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1445                 unsigned int data_blocks;
1446
1447                 if (s->flags & CIP_NO_HEADER) {
1448                         data_blocks = payload_quads / s->data_block_quadlets;
1449                 } else {
1450                         __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1451
1452                         if (payload_quads < CIP_HEADER_QUADLETS) {
1453                                 data_blocks = 0;
1454                         } else {
1455                                 payload_quads -= CIP_HEADER_QUADLETS;
1456
1457                                 if (s->flags & CIP_UNAWARE_SYT) {
1458                                         data_blocks = payload_quads / s->data_block_quadlets;
1459                                 } else {
1460                                         u32 cip1 = be32_to_cpu(cip_headers[1]);
1461
1462                                         // NODATA packet can includes any data blocks but they are
1463                                         // not available as event.
1464                                         if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1465                                                 data_blocks = 0;
1466                                         else
1467                                                 data_blocks = payload_quads / s->data_block_quadlets;
1468                                 }
1469                         }
1470                 }
1471
1472                 events += data_blocks;
1473
1474                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1475         }
1476
1477         drop_tx_packets(context, tstamp, header_length, header, s);
1478
1479         if (events > 0)
1480                 s->ctx_data.tx.event_starts = true;
1481
1482         // Decide the cycle count to begin processing content of packet in IR contexts.
1483         {
1484                 unsigned int stream_count = 0;
1485                 unsigned int event_starts_count = 0;
1486                 unsigned int cycle = UINT_MAX;
1487
1488                 list_for_each_entry(s, &d->streams, list) {
1489                         if (s->direction == AMDTP_IN_STREAM) {
1490                                 ++stream_count;
1491                                 if (s->ctx_data.tx.event_starts)
1492                                         ++event_starts_count;
1493                         }
1494                 }
1495
1496                 if (stream_count == event_starts_count) {
1497                         unsigned int next_cycle;
1498
1499                         list_for_each_entry(s, &d->streams, list) {
1500                                 if (s->direction != AMDTP_IN_STREAM)
1501                                         continue;
1502
1503                                 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1504                                                                 d->processing_cycle.tx_init_skip);
1505                                 if (cycle == UINT_MAX ||
1506                                     compare_ohci_cycle_count(next_cycle, cycle) > 0)
1507                                         cycle = next_cycle;
1508
1509                                 s->context->callback.sc = process_tx_packets_intermediately;
1510                         }
1511
1512                         d->processing_cycle.tx_start = cycle;
1513                 }
1514         }
1515 }
1516
1517 static void process_ctxs_in_domain(struct amdtp_domain *d)
1518 {
1519         struct amdtp_stream *s;
1520
1521         list_for_each_entry(s, &d->streams, list) {
1522                 if (s != d->irq_target && amdtp_stream_running(s))
1523                         fw_iso_context_flush_completions(s->context);
1524
1525                 if (amdtp_streaming_error(s))
1526                         goto error;
1527         }
1528
1529         return;
1530 error:
1531         if (amdtp_stream_running(d->irq_target))
1532                 cancel_stream(d->irq_target);
1533
1534         list_for_each_entry(s, &d->streams, list) {
1535                 if (amdtp_stream_running(s))
1536                         cancel_stream(s);
1537         }
1538 }
1539
1540 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1541                                 void *header, void *private_data)
1542 {
1543         struct amdtp_stream *s = private_data;
1544         struct amdtp_domain *d = s->domain;
1545
1546         process_rx_packets(context, tstamp, header_length, header, private_data);
1547         process_ctxs_in_domain(d);
1548 }
1549
1550 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1551                                         size_t header_length, void *header, void *private_data)
1552 {
1553         struct amdtp_stream *s = private_data;
1554         struct amdtp_domain *d = s->domain;
1555
1556         process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1557         process_ctxs_in_domain(d);
1558 }
1559
1560 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1561                                      size_t header_length, void *header, void *private_data)
1562 {
1563         struct amdtp_stream *s = private_data;
1564         struct amdtp_domain *d = s->domain;
1565         bool ready_to_start;
1566
1567         skip_rx_packets(context, tstamp, header_length, header, private_data);
1568         process_ctxs_in_domain(d);
1569
1570         if (d->replay.enable && !d->replay.on_the_fly) {
1571                 unsigned int rx_count = 0;
1572                 unsigned int rx_ready_count = 0;
1573                 struct amdtp_stream *rx;
1574
1575                 list_for_each_entry(rx, &d->streams, list) {
1576                         struct amdtp_stream *tx;
1577                         unsigned int cached_cycles;
1578
1579                         if (rx->direction != AMDTP_OUT_STREAM)
1580                                 continue;
1581                         ++rx_count;
1582
1583                         tx = rx->ctx_data.rx.replay_target;
1584                         cached_cycles = calculate_cached_cycle_count(tx, 0);
1585                         if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1586                                 ++rx_ready_count;
1587                 }
1588
1589                 ready_to_start = (rx_count == rx_ready_count);
1590         } else {
1591                 ready_to_start = true;
1592         }
1593
1594         // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1595         // contexts are expected to start and get callback when reaching here.
1596         if (ready_to_start) {
1597                 unsigned int cycle = s->next_cycle;
1598                 list_for_each_entry(s, &d->streams, list) {
1599                         if (s->direction != AMDTP_OUT_STREAM)
1600                                 continue;
1601
1602                         if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1603                                 cycle = s->next_cycle;
1604
1605                         if (s == d->irq_target)
1606                                 s->context->callback.sc = irq_target_callback_intermediately;
1607                         else
1608                                 s->context->callback.sc = process_rx_packets_intermediately;
1609                 }
1610
1611                 d->processing_cycle.rx_start = cycle;
1612         }
1613 }
1614
1615 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1616 // transmit first packet.
1617 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1618                                         u32 tstamp, size_t header_length,
1619                                         void *header, void *private_data)
1620 {
1621         struct amdtp_stream *s = private_data;
1622         struct amdtp_domain *d = s->domain;
1623
1624         if (s->direction == AMDTP_IN_STREAM) {
1625                 context->callback.sc = drop_tx_packets_initially;
1626         } else {
1627                 if (s == d->irq_target)
1628                         context->callback.sc = irq_target_callback_skip;
1629                 else
1630                         context->callback.sc = skip_rx_packets;
1631         }
1632
1633         context->callback.sc(context, tstamp, header_length, header, s);
1634 }
1635
1636 /**
1637  * amdtp_stream_start - start transferring packets
1638  * @s: the AMDTP stream to start
1639  * @channel: the isochronous channel on the bus
1640  * @speed: firewire speed code
1641  * @queue_size: The number of packets in the queue.
1642  * @idle_irq_interval: the interval to queue packet during initial state.
1643  *
1644  * The stream cannot be started until it has been configured with
1645  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1646  * device can be started.
1647  */
1648 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1649                               unsigned int queue_size, unsigned int idle_irq_interval)
1650 {
1651         bool is_irq_target = (s == s->domain->irq_target);
1652         unsigned int ctx_header_size;
1653         unsigned int max_ctx_payload_size;
1654         enum dma_data_direction dir;
1655         struct pkt_desc *descs;
1656         int i, type, tag, err;
1657
1658         mutex_lock(&s->mutex);
1659
1660         if (WARN_ON(amdtp_stream_running(s) ||
1661                     (s->data_block_quadlets < 1))) {
1662                 err = -EBADFD;
1663                 goto err_unlock;
1664         }
1665
1666         if (s->direction == AMDTP_IN_STREAM) {
1667                 // NOTE: IT context should be used for constant IRQ.
1668                 if (is_irq_target) {
1669                         err = -EINVAL;
1670                         goto err_unlock;
1671                 }
1672
1673                 s->data_block_counter = UINT_MAX;
1674         } else {
1675                 s->data_block_counter = 0;
1676         }
1677
1678         // initialize packet buffer.
1679         if (s->direction == AMDTP_IN_STREAM) {
1680                 dir = DMA_FROM_DEVICE;
1681                 type = FW_ISO_CONTEXT_RECEIVE;
1682                 if (!(s->flags & CIP_NO_HEADER))
1683                         ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1684                 else
1685                         ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1686         } else {
1687                 dir = DMA_TO_DEVICE;
1688                 type = FW_ISO_CONTEXT_TRANSMIT;
1689                 ctx_header_size = 0;    // No effect for IT context.
1690         }
1691         max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1692
1693         err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1694         if (err < 0)
1695                 goto err_unlock;
1696         s->queue_size = queue_size;
1697
1698         s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1699                                           type, channel, speed, ctx_header_size,
1700                                           amdtp_stream_first_callback, s);
1701         if (IS_ERR(s->context)) {
1702                 err = PTR_ERR(s->context);
1703                 if (err == -EBUSY)
1704                         dev_err(&s->unit->device,
1705                                 "no free stream on this controller\n");
1706                 goto err_buffer;
1707         }
1708
1709         amdtp_stream_update(s);
1710
1711         if (s->direction == AMDTP_IN_STREAM) {
1712                 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1713                 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1714                 s->ctx_data.tx.event_starts = false;
1715
1716                 if (s->domain->replay.enable) {
1717                         // struct fw_iso_context.drop_overflow_headers is false therefore it's
1718                         // possible to cache much unexpectedly.
1719                         s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1720                                                           queue_size * 3 / 2);
1721                         s->ctx_data.tx.cache.pos = 0;
1722                         s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1723                                                 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1724                         if (!s->ctx_data.tx.cache.descs) {
1725                                 err = -ENOMEM;
1726                                 goto err_context;
1727                         }
1728                 }
1729         } else {
1730                 static const struct {
1731                         unsigned int data_block;
1732                         unsigned int syt_offset;
1733                 } *entry, initial_state[] = {
1734                         [CIP_SFC_32000]  = {  4, 3072 },
1735                         [CIP_SFC_48000]  = {  6, 1024 },
1736                         [CIP_SFC_96000]  = { 12, 1024 },
1737                         [CIP_SFC_192000] = { 24, 1024 },
1738                         [CIP_SFC_44100]  = {  0,   67 },
1739                         [CIP_SFC_88200]  = {  0,   67 },
1740                         [CIP_SFC_176400] = {  0,   67 },
1741                 };
1742
1743                 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1744                 if (!s->ctx_data.rx.seq.descs) {
1745                         err = -ENOMEM;
1746                         goto err_context;
1747                 }
1748                 s->ctx_data.rx.seq.size = queue_size;
1749                 s->ctx_data.rx.seq.pos = 0;
1750
1751                 entry = &initial_state[s->sfc];
1752                 s->ctx_data.rx.data_block_state = entry->data_block;
1753                 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1754                 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1755
1756                 s->ctx_data.rx.event_count = 0;
1757         }
1758
1759         if (s->flags & CIP_NO_HEADER)
1760                 s->tag = TAG_NO_CIP_HEADER;
1761         else
1762                 s->tag = TAG_CIP;
1763
1764         // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1765         // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1766         // could take a round over queue of AMDTP packet descriptors and small loss of history. For
1767         // safe, keep more 8 elements for the queue, equivalent to 1 ms.
1768         descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1769         if (!descs) {
1770                 err = -ENOMEM;
1771                 goto err_context;
1772         }
1773         s->packet_descs = descs;
1774
1775         INIT_LIST_HEAD(&s->packet_descs_list);
1776         for (i = 0; i < s->queue_size; ++i) {
1777                 INIT_LIST_HEAD(&descs->link);
1778                 list_add_tail(&descs->link, &s->packet_descs_list);
1779                 ++descs;
1780         }
1781         s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1782
1783         s->packet_index = 0;
1784         do {
1785                 struct fw_iso_packet params;
1786
1787                 if (s->direction == AMDTP_IN_STREAM) {
1788                         err = queue_in_packet(s, &params);
1789                 } else {
1790                         bool sched_irq = false;
1791
1792                         params.header_length = 0;
1793                         params.payload_length = 0;
1794
1795                         if (is_irq_target) {
1796                                 sched_irq = !((s->packet_index + 1) %
1797                                               idle_irq_interval);
1798                         }
1799
1800                         err = queue_out_packet(s, &params, sched_irq);
1801                 }
1802                 if (err < 0)
1803                         goto err_pkt_descs;
1804         } while (s->packet_index > 0);
1805
1806         /* NOTE: TAG1 matches CIP. This just affects in stream. */
1807         tag = FW_ISO_CONTEXT_MATCH_TAG1;
1808         if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1809                 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1810
1811         s->ready_processing = false;
1812         err = fw_iso_context_start(s->context, -1, 0, tag);
1813         if (err < 0)
1814                 goto err_pkt_descs;
1815
1816         mutex_unlock(&s->mutex);
1817
1818         return 0;
1819 err_pkt_descs:
1820         kfree(s->packet_descs);
1821         s->packet_descs = NULL;
1822 err_context:
1823         if (s->direction == AMDTP_OUT_STREAM) {
1824                 kfree(s->ctx_data.rx.seq.descs);
1825         } else {
1826                 if (s->domain->replay.enable)
1827                         kfree(s->ctx_data.tx.cache.descs);
1828         }
1829         fw_iso_context_destroy(s->context);
1830         s->context = ERR_PTR(-1);
1831 err_buffer:
1832         iso_packets_buffer_destroy(&s->buffer, s->unit);
1833 err_unlock:
1834         mutex_unlock(&s->mutex);
1835
1836         return err;
1837 }
1838
1839 /**
1840  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1841  * @d: the AMDTP domain.
1842  * @s: the AMDTP stream that transports the PCM data
1843  *
1844  * Returns the current buffer position, in frames.
1845  */
1846 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1847                                               struct amdtp_stream *s)
1848 {
1849         struct amdtp_stream *irq_target = d->irq_target;
1850
1851         // Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
1852         if (irq_target && amdtp_stream_running(irq_target)) {
1853                 // In software IRQ context, the call causes dead-lock to disable the tasklet
1854                 // synchronously.
1855                 if (!in_softirq())
1856                         fw_iso_context_flush_completions(irq_target->context);
1857         }
1858
1859         return READ_ONCE(s->pcm_buffer_pointer);
1860 }
1861 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1862
1863 /**
1864  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1865  * @d: the AMDTP domain.
1866  * @s: the AMDTP stream that transfers the PCM frames
1867  *
1868  * Returns zero always.
1869  */
1870 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1871 {
1872         struct amdtp_stream *irq_target = d->irq_target;
1873
1874         // Process isochronous packets for recent isochronous cycle to handle
1875         // queued PCM frames.
1876         if (irq_target && amdtp_stream_running(irq_target))
1877                 fw_iso_context_flush_completions(irq_target->context);
1878
1879         return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1882
1883 /**
1884  * amdtp_stream_update - update the stream after a bus reset
1885  * @s: the AMDTP stream
1886  */
1887 void amdtp_stream_update(struct amdtp_stream *s)
1888 {
1889         /* Precomputing. */
1890         WRITE_ONCE(s->source_node_id_field,
1891                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1892 }
1893 EXPORT_SYMBOL(amdtp_stream_update);
1894
1895 /**
1896  * amdtp_stream_stop - stop sending packets
1897  * @s: the AMDTP stream to stop
1898  *
1899  * All PCM and MIDI devices of the stream must be stopped before the stream
1900  * itself can be stopped.
1901  */
1902 static void amdtp_stream_stop(struct amdtp_stream *s)
1903 {
1904         mutex_lock(&s->mutex);
1905
1906         if (!amdtp_stream_running(s)) {
1907                 mutex_unlock(&s->mutex);
1908                 return;
1909         }
1910
1911         fw_iso_context_stop(s->context);
1912         fw_iso_context_destroy(s->context);
1913         s->context = ERR_PTR(-1);
1914         iso_packets_buffer_destroy(&s->buffer, s->unit);
1915         kfree(s->packet_descs);
1916         s->packet_descs = NULL;
1917
1918         if (s->direction == AMDTP_OUT_STREAM) {
1919                 kfree(s->ctx_data.rx.seq.descs);
1920         } else {
1921                 if (s->domain->replay.enable)
1922                         kfree(s->ctx_data.tx.cache.descs);
1923         }
1924
1925         mutex_unlock(&s->mutex);
1926 }
1927
1928 /**
1929  * amdtp_stream_pcm_abort - abort the running PCM device
1930  * @s: the AMDTP stream about to be stopped
1931  *
1932  * If the isochronous stream needs to be stopped asynchronously, call this
1933  * function first to stop the PCM device.
1934  */
1935 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1936 {
1937         struct snd_pcm_substream *pcm;
1938
1939         pcm = READ_ONCE(s->pcm);
1940         if (pcm)
1941                 snd_pcm_stop_xrun(pcm);
1942 }
1943 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1944
1945 /**
1946  * amdtp_domain_init - initialize an AMDTP domain structure
1947  * @d: the AMDTP domain to initialize.
1948  */
1949 int amdtp_domain_init(struct amdtp_domain *d)
1950 {
1951         INIT_LIST_HEAD(&d->streams);
1952
1953         d->events_per_period = 0;
1954
1955         return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1958
1959 /**
1960  * amdtp_domain_destroy - destroy an AMDTP domain structure
1961  * @d: the AMDTP domain to destroy.
1962  */
1963 void amdtp_domain_destroy(struct amdtp_domain *d)
1964 {
1965         // At present nothing to do.
1966         return;
1967 }
1968 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1969
1970 /**
1971  * amdtp_domain_add_stream - register isoc context into the domain.
1972  * @d: the AMDTP domain.
1973  * @s: the AMDTP stream.
1974  * @channel: the isochronous channel on the bus.
1975  * @speed: firewire speed code.
1976  */
1977 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1978                             int channel, int speed)
1979 {
1980         struct amdtp_stream *tmp;
1981
1982         list_for_each_entry(tmp, &d->streams, list) {
1983                 if (s == tmp)
1984                         return -EBUSY;
1985         }
1986
1987         list_add(&s->list, &d->streams);
1988
1989         s->channel = channel;
1990         s->speed = speed;
1991         s->domain = d;
1992
1993         return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1996
1997 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1998 // is less than the number of rx streams, the first tx stream is selected.
1999 static int make_association(struct amdtp_domain *d)
2000 {
2001         unsigned int dst_index = 0;
2002         struct amdtp_stream *rx;
2003
2004         // Make association to replay target.
2005         list_for_each_entry(rx, &d->streams, list) {
2006                 if (rx->direction == AMDTP_OUT_STREAM) {
2007                         unsigned int src_index = 0;
2008                         struct amdtp_stream *tx = NULL;
2009                         struct amdtp_stream *s;
2010
2011                         list_for_each_entry(s, &d->streams, list) {
2012                                 if (s->direction == AMDTP_IN_STREAM) {
2013                                         if (dst_index == src_index) {
2014                                                 tx = s;
2015                                                 break;
2016                                         }
2017
2018                                         ++src_index;
2019                                 }
2020                         }
2021                         if (!tx) {
2022                                 // Select the first entry.
2023                                 list_for_each_entry(s, &d->streams, list) {
2024                                         if (s->direction == AMDTP_IN_STREAM) {
2025                                                 tx = s;
2026                                                 break;
2027                                         }
2028                                 }
2029                                 // No target is available to replay sequence.
2030                                 if (!tx)
2031                                         return -EINVAL;
2032                         }
2033
2034                         rx->ctx_data.rx.replay_target = tx;
2035
2036                         ++dst_index;
2037                 }
2038         }
2039
2040         return 0;
2041 }
2042
2043 /**
2044  * amdtp_domain_start - start sending packets for isoc context in the domain.
2045  * @d: the AMDTP domain.
2046  * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2047  *                       contexts.
2048  * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2049  *              IT context.
2050  * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2051  *                     according to arrival of events in tx packets.
2052  */
2053 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2054                        bool replay_on_the_fly)
2055 {
2056         unsigned int events_per_buffer = d->events_per_buffer;
2057         unsigned int events_per_period = d->events_per_period;
2058         unsigned int queue_size;
2059         struct amdtp_stream *s;
2060         bool found = false;
2061         int err;
2062
2063         if (replay_seq) {
2064                 err = make_association(d);
2065                 if (err < 0)
2066                         return err;
2067         }
2068         d->replay.enable = replay_seq;
2069         d->replay.on_the_fly = replay_on_the_fly;
2070
2071         // Select an IT context as IRQ target.
2072         list_for_each_entry(s, &d->streams, list) {
2073                 if (s->direction == AMDTP_OUT_STREAM) {
2074                         found = true;
2075                         break;
2076                 }
2077         }
2078         if (!found)
2079                 return -ENXIO;
2080         d->irq_target = s;
2081
2082         d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2083
2084         // This is a case that AMDTP streams in domain run just for MIDI
2085         // substream. Use the number of events equivalent to 10 msec as
2086         // interval of hardware IRQ.
2087         if (events_per_period == 0)
2088                 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2089         if (events_per_buffer == 0)
2090                 events_per_buffer = events_per_period * 3;
2091
2092         queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2093                                   amdtp_rate_table[d->irq_target->sfc]);
2094
2095         list_for_each_entry(s, &d->streams, list) {
2096                 unsigned int idle_irq_interval = 0;
2097
2098                 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2099                         idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2100                                                          amdtp_rate_table[d->irq_target->sfc]);
2101                 }
2102
2103                 // Starts immediately but actually DMA context starts several hundred cycles later.
2104                 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2105                 if (err < 0)
2106                         goto error;
2107         }
2108
2109         return 0;
2110 error:
2111         list_for_each_entry(s, &d->streams, list)
2112                 amdtp_stream_stop(s);
2113         return err;
2114 }
2115 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2116
2117 /**
2118  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2119  * @d: the AMDTP domain to which the isoc contexts belong.
2120  */
2121 void amdtp_domain_stop(struct amdtp_domain *d)
2122 {
2123         struct amdtp_stream *s, *next;
2124
2125         if (d->irq_target)
2126                 amdtp_stream_stop(d->irq_target);
2127
2128         list_for_each_entry_safe(s, next, &d->streams, list) {
2129                 list_del(&s->list);
2130
2131                 if (s != d->irq_target)
2132                         amdtp_stream_stop(s);
2133         }
2134
2135         d->events_per_period = 0;
2136         d->irq_target = NULL;
2137 }
2138 EXPORT_SYMBOL_GPL(amdtp_domain_stop);