Merge tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / perf / riscv_pmu_sbi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23
24 #include <asm/errata_list.h>
25 #include <asm/sbi.h>
26 #include <asm/cpufeature.h>
27
28 #define ALT_SBI_PMU_OVERFLOW(__ovl)                                     \
29 asm volatile(ALTERNATIVE_2(                                             \
30         "csrr %0, " __stringify(CSR_SSCOUNTOVF),                        \
31         "csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),             \
32                 THEAD_VENDOR_ID, ERRATA_THEAD_PMU,                      \
33                 CONFIG_ERRATA_THEAD_PMU,                                \
34         "csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),                  \
35                 0, RISCV_ISA_EXT_XANDESPMU,                             \
36                 CONFIG_ANDES_CUSTOM_PMU)                                \
37         : "=r" (__ovl) :                                                \
38         : "memory")
39
40 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)                       \
41 asm volatile(ALTERNATIVE(                                               \
42         "csrc " __stringify(CSR_IP) ", %0\n\t",                         \
43         "csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",                 \
44                 0, RISCV_ISA_EXT_XANDESPMU,                             \
45                 CONFIG_ANDES_CUSTOM_PMU)                                \
46         : : "r"(__irq_mask)                                             \
47         : "memory")
48
49 #define SYSCTL_NO_USER_ACCESS   0
50 #define SYSCTL_USER_ACCESS      1
51 #define SYSCTL_LEGACY           2
52
53 #define PERF_EVENT_FLAG_NO_USER_ACCESS  BIT(SYSCTL_NO_USER_ACCESS)
54 #define PERF_EVENT_FLAG_USER_ACCESS     BIT(SYSCTL_USER_ACCESS)
55 #define PERF_EVENT_FLAG_LEGACY          BIT(SYSCTL_LEGACY)
56
57 PMU_FORMAT_ATTR(event, "config:0-47");
58 PMU_FORMAT_ATTR(firmware, "config:63");
59
60 static struct attribute *riscv_arch_formats_attr[] = {
61         &format_attr_event.attr,
62         &format_attr_firmware.attr,
63         NULL,
64 };
65
66 static struct attribute_group riscv_pmu_format_group = {
67         .name = "format",
68         .attrs = riscv_arch_formats_attr,
69 };
70
71 static const struct attribute_group *riscv_pmu_attr_groups[] = {
72         &riscv_pmu_format_group,
73         NULL,
74 };
75
76 /* Allow user mode access by default */
77 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
78
79 /*
80  * RISC-V doesn't have heterogeneous harts yet. This need to be part of
81  * per_cpu in case of harts with different pmu counters
82  */
83 static union sbi_pmu_ctr_info *pmu_ctr_list;
84 static bool riscv_pmu_use_irq;
85 static unsigned int riscv_pmu_irq_num;
86 static unsigned int riscv_pmu_irq_mask;
87 static unsigned int riscv_pmu_irq;
88
89 /* Cache the available counters in a bitmask */
90 static unsigned long cmask;
91
92 struct sbi_pmu_event_data {
93         union {
94                 union {
95                         struct hw_gen_event {
96                                 uint32_t event_code:16;
97                                 uint32_t event_type:4;
98                                 uint32_t reserved:12;
99                         } hw_gen_event;
100                         struct hw_cache_event {
101                                 uint32_t result_id:1;
102                                 uint32_t op_id:2;
103                                 uint32_t cache_id:13;
104                                 uint32_t event_type:4;
105                                 uint32_t reserved:12;
106                         } hw_cache_event;
107                 };
108                 uint32_t event_idx;
109         };
110 };
111
112 static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
113         [PERF_COUNT_HW_CPU_CYCLES]              = {.hw_gen_event = {
114                                                         SBI_PMU_HW_CPU_CYCLES,
115                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
116         [PERF_COUNT_HW_INSTRUCTIONS]            = {.hw_gen_event = {
117                                                         SBI_PMU_HW_INSTRUCTIONS,
118                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
119         [PERF_COUNT_HW_CACHE_REFERENCES]        = {.hw_gen_event = {
120                                                         SBI_PMU_HW_CACHE_REFERENCES,
121                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
122         [PERF_COUNT_HW_CACHE_MISSES]            = {.hw_gen_event = {
123                                                         SBI_PMU_HW_CACHE_MISSES,
124                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
125         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = {.hw_gen_event = {
126                                                         SBI_PMU_HW_BRANCH_INSTRUCTIONS,
127                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
128         [PERF_COUNT_HW_BRANCH_MISSES]           = {.hw_gen_event = {
129                                                         SBI_PMU_HW_BRANCH_MISSES,
130                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
131         [PERF_COUNT_HW_BUS_CYCLES]              = {.hw_gen_event = {
132                                                         SBI_PMU_HW_BUS_CYCLES,
133                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
134         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = {
135                                                         SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
136                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
137         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = {.hw_gen_event = {
138                                                         SBI_PMU_HW_STALLED_CYCLES_BACKEND,
139                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
140         [PERF_COUNT_HW_REF_CPU_CYCLES]          = {.hw_gen_event = {
141                                                         SBI_PMU_HW_REF_CPU_CYCLES,
142                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
143 };
144
145 #define C(x) PERF_COUNT_HW_CACHE_##x
146 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
147 [PERF_COUNT_HW_CACHE_OP_MAX]
148 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
149         [C(L1D)] = {
150                 [C(OP_READ)] = {
151                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
152                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
153                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
154                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
155                 },
156                 [C(OP_WRITE)] = {
157                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
158                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
159                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
160                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
161                 },
162                 [C(OP_PREFETCH)] = {
163                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
164                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
165                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
166                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
167                 },
168         },
169         [C(L1I)] = {
170                 [C(OP_READ)] = {
171                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
172                                         C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
173                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
174                                         C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
175                 },
176                 [C(OP_WRITE)] = {
177                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
178                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
179                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
180                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
181                 },
182                 [C(OP_PREFETCH)] = {
183                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
184                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
185                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
186                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
187                 },
188         },
189         [C(LL)] = {
190                 [C(OP_READ)] = {
191                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
192                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
193                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
194                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
195                 },
196                 [C(OP_WRITE)] = {
197                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
198                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
199                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
200                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
201                 },
202                 [C(OP_PREFETCH)] = {
203                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
204                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
205                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
206                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
207                 },
208         },
209         [C(DTLB)] = {
210                 [C(OP_READ)] = {
211                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
212                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
213                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
214                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
215                 },
216                 [C(OP_WRITE)] = {
217                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
218                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
219                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
220                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
221                 },
222                 [C(OP_PREFETCH)] = {
223                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
224                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
225                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
226                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
227                 },
228         },
229         [C(ITLB)] = {
230                 [C(OP_READ)] = {
231                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
232                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
233                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
234                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
235                 },
236                 [C(OP_WRITE)] = {
237                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
238                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
239                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
240                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
241                 },
242                 [C(OP_PREFETCH)] = {
243                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
244                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
245                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
246                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
247                 },
248         },
249         [C(BPU)] = {
250                 [C(OP_READ)] = {
251                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
252                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
253                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
254                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
255                 },
256                 [C(OP_WRITE)] = {
257                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
258                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
259                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
260                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
261                 },
262                 [C(OP_PREFETCH)] = {
263                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
264                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
265                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
266                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
267                 },
268         },
269         [C(NODE)] = {
270                 [C(OP_READ)] = {
271                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
272                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
273                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
274                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
275                 },
276                 [C(OP_WRITE)] = {
277                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
278                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
279                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
280                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
281                 },
282                 [C(OP_PREFETCH)] = {
283                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
284                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
285                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
286                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
287                 },
288         },
289 };
290
291 static int pmu_sbi_ctr_get_width(int idx)
292 {
293         return pmu_ctr_list[idx].width;
294 }
295
296 static bool pmu_sbi_ctr_is_fw(int cidx)
297 {
298         union sbi_pmu_ctr_info *info;
299
300         info = &pmu_ctr_list[cidx];
301         if (!info)
302                 return false;
303
304         return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
305 }
306
307 /*
308  * Returns the counter width of a programmable counter and number of hardware
309  * counters. As we don't support heterogeneous CPUs yet, it is okay to just
310  * return the counter width of the first programmable counter.
311  */
312 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
313 {
314         int i;
315         union sbi_pmu_ctr_info *info;
316         u32 hpm_width = 0, hpm_count = 0;
317
318         if (!cmask)
319                 return -EINVAL;
320
321         for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
322                 info = &pmu_ctr_list[i];
323                 if (!info)
324                         continue;
325                 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
326                         hpm_width = info->width;
327                 if (info->type == SBI_PMU_CTR_TYPE_HW)
328                         hpm_count++;
329         }
330
331         *hw_ctr_width = hpm_width;
332         *num_hw_ctr = hpm_count;
333
334         return 0;
335 }
336 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
337
338 static uint8_t pmu_sbi_csr_index(struct perf_event *event)
339 {
340         return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
341 }
342
343 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
344 {
345         unsigned long cflags = 0;
346         bool guest_events = false;
347
348         if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
349                 guest_events = true;
350         if (event->attr.exclude_kernel)
351                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
352         if (event->attr.exclude_user)
353                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
354         if (guest_events && event->attr.exclude_hv)
355                 cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
356         if (event->attr.exclude_host)
357                 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
358         if (event->attr.exclude_guest)
359                 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
360
361         return cflags;
362 }
363
364 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
365 {
366         struct hw_perf_event *hwc = &event->hw;
367         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
368         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
369         struct sbiret ret;
370         int idx;
371         uint64_t cbase = 0, cmask = rvpmu->cmask;
372         unsigned long cflags = 0;
373
374         cflags = pmu_sbi_get_filter_flags(event);
375
376         /*
377          * In legacy mode, we have to force the fixed counters for those events
378          * but not in the user access mode as we want to use the other counters
379          * that support sampling/filtering.
380          */
381         if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
382                 if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
383                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
384                         cmask = 1;
385                 } else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
386                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
387                         cmask = 1UL << (CSR_INSTRET - CSR_CYCLE);
388                 }
389         }
390
391         /* retrieve the available counter index */
392 #if defined(CONFIG_32BIT)
393         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
394                         cmask, cflags, hwc->event_base, hwc->config,
395                         hwc->config >> 32);
396 #else
397         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
398                         cmask, cflags, hwc->event_base, hwc->config, 0);
399 #endif
400         if (ret.error) {
401                 pr_debug("Not able to find a counter for event %lx config %llx\n",
402                         hwc->event_base, hwc->config);
403                 return sbi_err_map_linux_errno(ret.error);
404         }
405
406         idx = ret.value;
407         if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
408                 return -ENOENT;
409
410         /* Additional sanity check for the counter id */
411         if (pmu_sbi_ctr_is_fw(idx)) {
412                 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
413                         return idx;
414         } else {
415                 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
416                         return idx;
417         }
418
419         return -ENOENT;
420 }
421
422 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
423 {
424
425         struct hw_perf_event *hwc = &event->hw;
426         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
427         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
428         int idx = hwc->idx;
429
430         if (pmu_sbi_ctr_is_fw(idx))
431                 clear_bit(idx, cpuc->used_fw_ctrs);
432         else
433                 clear_bit(idx, cpuc->used_hw_ctrs);
434 }
435
436 static int pmu_event_find_cache(u64 config)
437 {
438         unsigned int cache_type, cache_op, cache_result, ret;
439
440         cache_type = (config >>  0) & 0xff;
441         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
442                 return -EINVAL;
443
444         cache_op = (config >>  8) & 0xff;
445         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
446                 return -EINVAL;
447
448         cache_result = (config >> 16) & 0xff;
449         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
450                 return -EINVAL;
451
452         ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
453
454         return ret;
455 }
456
457 static bool pmu_sbi_is_fw_event(struct perf_event *event)
458 {
459         u32 type = event->attr.type;
460         u64 config = event->attr.config;
461
462         if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
463                 return true;
464         else
465                 return false;
466 }
467
468 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
469 {
470         u32 type = event->attr.type;
471         u64 config = event->attr.config;
472         int bSoftware;
473         u64 raw_config_val;
474         int ret;
475
476         switch (type) {
477         case PERF_TYPE_HARDWARE:
478                 if (config >= PERF_COUNT_HW_MAX)
479                         return -EINVAL;
480                 ret = pmu_hw_event_map[event->attr.config].event_idx;
481                 break;
482         case PERF_TYPE_HW_CACHE:
483                 ret = pmu_event_find_cache(config);
484                 break;
485         case PERF_TYPE_RAW:
486                 /*
487                  * As per SBI specification, the upper 16 bits must be unused for
488                  * a raw event. Use the MSB (63b) to distinguish between hardware
489                  * raw event and firmware events.
490                  */
491                 bSoftware = config >> 63;
492                 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
493                 if (bSoftware) {
494                         ret = (raw_config_val & 0xFFFF) |
495                                 (SBI_PMU_EVENT_TYPE_FW << 16);
496                 } else {
497                         ret = RISCV_PMU_RAW_EVENT_IDX;
498                         *econfig = raw_config_val;
499                 }
500                 break;
501         default:
502                 ret = -EINVAL;
503                 break;
504         }
505
506         return ret;
507 }
508
509 static u64 pmu_sbi_ctr_read(struct perf_event *event)
510 {
511         struct hw_perf_event *hwc = &event->hw;
512         int idx = hwc->idx;
513         struct sbiret ret;
514         union sbi_pmu_ctr_info info;
515         u64 val = 0;
516
517         if (pmu_sbi_is_fw_event(event)) {
518                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
519                                 hwc->idx, 0, 0, 0, 0, 0);
520                 if (!ret.error)
521                         val = ret.value;
522         } else {
523                 info = pmu_ctr_list[idx];
524                 val = riscv_pmu_ctr_read_csr(info.csr);
525                 if (IS_ENABLED(CONFIG_32BIT))
526                         val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
527         }
528
529         return val;
530 }
531
532 static void pmu_sbi_set_scounteren(void *arg)
533 {
534         struct perf_event *event = (struct perf_event *)arg;
535
536         if (event->hw.idx != -1)
537                 csr_write(CSR_SCOUNTEREN,
538                           csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
539 }
540
541 static void pmu_sbi_reset_scounteren(void *arg)
542 {
543         struct perf_event *event = (struct perf_event *)arg;
544
545         if (event->hw.idx != -1)
546                 csr_write(CSR_SCOUNTEREN,
547                           csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
548 }
549
550 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
551 {
552         struct sbiret ret;
553         struct hw_perf_event *hwc = &event->hw;
554         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
555
556 #if defined(CONFIG_32BIT)
557         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
558                         1, flag, ival, ival >> 32, 0);
559 #else
560         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
561                         1, flag, ival, 0, 0);
562 #endif
563         if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
564                 pr_err("Starting counter idx %d failed with error %d\n",
565                         hwc->idx, sbi_err_map_linux_errno(ret.error));
566
567         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
568             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
569                 pmu_sbi_set_scounteren((void *)event);
570 }
571
572 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
573 {
574         struct sbiret ret;
575         struct hw_perf_event *hwc = &event->hw;
576
577         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
578             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
579                 pmu_sbi_reset_scounteren((void *)event);
580
581         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
582         if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
583                 flag != SBI_PMU_STOP_FLAG_RESET)
584                 pr_err("Stopping counter idx %d failed with error %d\n",
585                         hwc->idx, sbi_err_map_linux_errno(ret.error));
586 }
587
588 static int pmu_sbi_find_num_ctrs(void)
589 {
590         struct sbiret ret;
591
592         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
593         if (!ret.error)
594                 return ret.value;
595         else
596                 return sbi_err_map_linux_errno(ret.error);
597 }
598
599 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
600 {
601         struct sbiret ret;
602         int i, num_hw_ctr = 0, num_fw_ctr = 0;
603         union sbi_pmu_ctr_info cinfo;
604
605         pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
606         if (!pmu_ctr_list)
607                 return -ENOMEM;
608
609         for (i = 0; i < nctr; i++) {
610                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
611                 if (ret.error)
612                         /* The logical counter ids are not expected to be contiguous */
613                         continue;
614
615                 *mask |= BIT(i);
616
617                 cinfo.value = ret.value;
618                 if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
619                         num_fw_ctr++;
620                 else
621                         num_hw_ctr++;
622                 pmu_ctr_list[i].value = cinfo.value;
623         }
624
625         pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
626
627         return 0;
628 }
629
630 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
631 {
632         /*
633          * No need to check the error because we are disabling all the counters
634          * which may include counters that are not enabled yet.
635          */
636         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
637                   0, pmu->cmask, 0, 0, 0, 0);
638 }
639
640 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
641 {
642         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
643
644         /* No need to check the error here as we can't do anything about the error */
645         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
646                   cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
647 }
648
649 /*
650  * This function starts all the used counters in two step approach.
651  * Any counter that did not overflow can be start in a single step
652  * while the overflowed counters need to be started with updated initialization
653  * value.
654  */
655 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
656                                                unsigned long ctr_ovf_mask)
657 {
658         int idx = 0;
659         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
660         struct perf_event *event;
661         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
662         unsigned long ctr_start_mask = 0;
663         uint64_t max_period;
664         struct hw_perf_event *hwc;
665         u64 init_val = 0;
666
667         ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
668
669         /* Start all the counters that did not overflow in a single shot */
670         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
671                   0, 0, 0, 0);
672
673         /* Reinitialize and start all the counter that overflowed */
674         while (ctr_ovf_mask) {
675                 if (ctr_ovf_mask & 0x01) {
676                         event = cpu_hw_evt->events[idx];
677                         hwc = &event->hw;
678                         max_period = riscv_pmu_ctr_get_width_mask(event);
679                         init_val = local64_read(&hwc->prev_count) & max_period;
680 #if defined(CONFIG_32BIT)
681                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
682                                   flag, init_val, init_val >> 32, 0);
683 #else
684                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
685                                   flag, init_val, 0, 0);
686 #endif
687                         perf_event_update_userpage(event);
688                 }
689                 ctr_ovf_mask = ctr_ovf_mask >> 1;
690                 idx++;
691         }
692 }
693
694 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
695 {
696         struct perf_sample_data data;
697         struct pt_regs *regs;
698         struct hw_perf_event *hw_evt;
699         union sbi_pmu_ctr_info *info;
700         int lidx, hidx, fidx;
701         struct riscv_pmu *pmu;
702         struct perf_event *event;
703         unsigned long overflow;
704         unsigned long overflowed_ctrs = 0;
705         struct cpu_hw_events *cpu_hw_evt = dev;
706         u64 start_clock = sched_clock();
707
708         if (WARN_ON_ONCE(!cpu_hw_evt))
709                 return IRQ_NONE;
710
711         /* Firmware counter don't support overflow yet */
712         fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
713         if (fidx == RISCV_MAX_COUNTERS) {
714                 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
715                 return IRQ_NONE;
716         }
717
718         event = cpu_hw_evt->events[fidx];
719         if (!event) {
720                 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
721                 return IRQ_NONE;
722         }
723
724         pmu = to_riscv_pmu(event->pmu);
725         pmu_sbi_stop_hw_ctrs(pmu);
726
727         /* Overflow status register should only be read after counter are stopped */
728         ALT_SBI_PMU_OVERFLOW(overflow);
729
730         /*
731          * Overflow interrupt pending bit should only be cleared after stopping
732          * all the counters to avoid any race condition.
733          */
734         ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
735
736         /* No overflow bit is set */
737         if (!overflow)
738                 return IRQ_NONE;
739
740         regs = get_irq_regs();
741
742         for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
743                 struct perf_event *event = cpu_hw_evt->events[lidx];
744
745                 /* Skip if invalid event or user did not request a sampling */
746                 if (!event || !is_sampling_event(event))
747                         continue;
748
749                 info = &pmu_ctr_list[lidx];
750                 /* Do a sanity check */
751                 if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
752                         continue;
753
754                 /* compute hardware counter index */
755                 hidx = info->csr - CSR_CYCLE;
756                 /* check if the corresponding bit is set in sscountovf */
757                 if (!(overflow & BIT(hidx)))
758                         continue;
759
760                 /*
761                  * Keep a track of overflowed counters so that they can be started
762                  * with updated initial value.
763                  */
764                 overflowed_ctrs |= BIT(lidx);
765                 hw_evt = &event->hw;
766                 riscv_pmu_event_update(event);
767                 perf_sample_data_init(&data, 0, hw_evt->last_period);
768                 if (riscv_pmu_event_set_period(event)) {
769                         /*
770                          * Unlike other ISAs, RISC-V don't have to disable interrupts
771                          * to avoid throttling here. As per the specification, the
772                          * interrupt remains disabled until the OF bit is set.
773                          * Interrupts are enabled again only during the start.
774                          * TODO: We will need to stop the guest counters once
775                          * virtualization support is added.
776                          */
777                         perf_event_overflow(event, &data, regs);
778                 }
779         }
780
781         pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
782         perf_sample_event_took(sched_clock() - start_clock);
783
784         return IRQ_HANDLED;
785 }
786
787 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
788 {
789         struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
790         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
791
792         /*
793          * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
794          * legacy option but that will be removed in the future.
795          */
796         if (sysctl_perf_user_access == SYSCTL_LEGACY)
797                 csr_write(CSR_SCOUNTEREN, 0x7);
798         else
799                 csr_write(CSR_SCOUNTEREN, 0x2);
800
801         /* Stop all the counters so that they can be enabled from perf */
802         pmu_sbi_stop_all(pmu);
803
804         if (riscv_pmu_use_irq) {
805                 cpu_hw_evt->irq = riscv_pmu_irq;
806                 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
807                 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
808         }
809
810         return 0;
811 }
812
813 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
814 {
815         if (riscv_pmu_use_irq) {
816                 disable_percpu_irq(riscv_pmu_irq);
817         }
818
819         /* Disable all counters access for user mode now */
820         csr_write(CSR_SCOUNTEREN, 0x0);
821
822         return 0;
823 }
824
825 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
826 {
827         int ret;
828         struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
829         struct irq_domain *domain = NULL;
830
831         if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
832                 riscv_pmu_irq_num = RV_IRQ_PMU;
833                 riscv_pmu_use_irq = true;
834         } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
835                    riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
836                    riscv_cached_marchid(0) == 0 &&
837                    riscv_cached_mimpid(0) == 0) {
838                 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
839                 riscv_pmu_use_irq = true;
840         } else if (riscv_isa_extension_available(NULL, XANDESPMU) &&
841                    IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
842                 riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
843                 riscv_pmu_use_irq = true;
844         }
845
846         riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
847
848         if (!riscv_pmu_use_irq)
849                 return -EOPNOTSUPP;
850
851         domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
852                                           DOMAIN_BUS_ANY);
853         if (!domain) {
854                 pr_err("Failed to find INTC IRQ root domain\n");
855                 return -ENODEV;
856         }
857
858         riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
859         if (!riscv_pmu_irq) {
860                 pr_err("Failed to map PMU interrupt for node\n");
861                 return -ENODEV;
862         }
863
864         ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
865         if (ret) {
866                 pr_err("registering percpu irq failed [%d]\n", ret);
867                 return ret;
868         }
869
870         return 0;
871 }
872
873 #ifdef CONFIG_CPU_PM
874 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
875                                 void *v)
876 {
877         struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
878         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
879         int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
880         struct perf_event *event;
881         int idx;
882
883         if (!enabled)
884                 return NOTIFY_OK;
885
886         for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
887                 event = cpuc->events[idx];
888                 if (!event)
889                         continue;
890
891                 switch (cmd) {
892                 case CPU_PM_ENTER:
893                         /*
894                          * Stop and update the counter
895                          */
896                         riscv_pmu_stop(event, PERF_EF_UPDATE);
897                         break;
898                 case CPU_PM_EXIT:
899                 case CPU_PM_ENTER_FAILED:
900                         /*
901                          * Restore and enable the counter.
902                          */
903                         riscv_pmu_start(event, PERF_EF_RELOAD);
904                         break;
905                 default:
906                         break;
907                 }
908         }
909
910         return NOTIFY_OK;
911 }
912
913 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
914 {
915         pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
916         return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
917 }
918
919 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
920 {
921         cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
922 }
923 #else
924 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
925 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
926 #endif
927
928 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
929 {
930         riscv_pm_pmu_unregister(pmu);
931         cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
932 }
933
934 static void pmu_sbi_event_init(struct perf_event *event)
935 {
936         /*
937          * The permissions are set at event_init so that we do not depend
938          * on the sysctl value that can change.
939          */
940         if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
941                 event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
942         else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
943                 event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
944         else
945                 event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
946 }
947
948 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
949 {
950         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
951                 return;
952
953         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
954                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
955                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
956                         return;
957                 }
958         }
959
960         /*
961          * The user mmapped the event to directly access it: this is where
962          * we determine based on sysctl_perf_user_access if we grant userspace
963          * the direct access to this event. That means that within the same
964          * task, some events may be directly accessible and some other may not,
965          * if the user changes the value of sysctl_perf_user_accesss in the
966          * meantime.
967          */
968
969         event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
970
971         /*
972          * We must enable userspace access *before* advertising in the user page
973          * that it is possible to do so to avoid any race.
974          * And we must notify all cpus here because threads that currently run
975          * on other cpus will try to directly access the counter too without
976          * calling pmu_sbi_ctr_start.
977          */
978         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
979                 on_each_cpu_mask(mm_cpumask(mm),
980                                  pmu_sbi_set_scounteren, (void *)event, 1);
981 }
982
983 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
984 {
985         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
986                 return;
987
988         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
989                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
990                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
991                         return;
992                 }
993         }
994
995         /*
996          * Here we can directly remove user access since the user does not have
997          * access to the user page anymore so we avoid the racy window where the
998          * user could have read cap_user_rdpmc to true right before we disable
999          * it.
1000          */
1001         event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1002
1003         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1004                 on_each_cpu_mask(mm_cpumask(mm),
1005                                  pmu_sbi_reset_scounteren, (void *)event, 1);
1006 }
1007
1008 static void riscv_pmu_update_counter_access(void *info)
1009 {
1010         if (sysctl_perf_user_access == SYSCTL_LEGACY)
1011                 csr_write(CSR_SCOUNTEREN, 0x7);
1012         else
1013                 csr_write(CSR_SCOUNTEREN, 0x2);
1014 }
1015
1016 static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
1017                                               int write, void *buffer,
1018                                               size_t *lenp, loff_t *ppos)
1019 {
1020         int prev = sysctl_perf_user_access;
1021         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1022
1023         /*
1024          * Test against the previous value since we clear SCOUNTEREN when
1025          * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1026          * not do that if that was already the case.
1027          */
1028         if (ret || !write || prev == sysctl_perf_user_access)
1029                 return ret;
1030
1031         on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1032
1033         return 0;
1034 }
1035
1036 static struct ctl_table sbi_pmu_sysctl_table[] = {
1037         {
1038                 .procname       = "perf_user_access",
1039                 .data           = &sysctl_perf_user_access,
1040                 .maxlen         = sizeof(unsigned int),
1041                 .mode           = 0644,
1042                 .proc_handler   = riscv_pmu_proc_user_access_handler,
1043                 .extra1         = SYSCTL_ZERO,
1044                 .extra2         = SYSCTL_TWO,
1045         },
1046         { }
1047 };
1048
1049 static int pmu_sbi_device_probe(struct platform_device *pdev)
1050 {
1051         struct riscv_pmu *pmu = NULL;
1052         int ret = -ENODEV;
1053         int num_counters;
1054
1055         pr_info("SBI PMU extension is available\n");
1056         pmu = riscv_pmu_alloc();
1057         if (!pmu)
1058                 return -ENOMEM;
1059
1060         num_counters = pmu_sbi_find_num_ctrs();
1061         if (num_counters < 0) {
1062                 pr_err("SBI PMU extension doesn't provide any counters\n");
1063                 goto out_free;
1064         }
1065
1066         /* It is possible to get from SBI more than max number of counters */
1067         if (num_counters > RISCV_MAX_COUNTERS) {
1068                 num_counters = RISCV_MAX_COUNTERS;
1069                 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1070         }
1071
1072         /* cache all the information about counters now */
1073         if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1074                 goto out_free;
1075
1076         ret = pmu_sbi_setup_irqs(pmu, pdev);
1077         if (ret < 0) {
1078                 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1079                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1080                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1081         }
1082
1083         pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1084         pmu->cmask = cmask;
1085         pmu->ctr_start = pmu_sbi_ctr_start;
1086         pmu->ctr_stop = pmu_sbi_ctr_stop;
1087         pmu->event_map = pmu_sbi_event_map;
1088         pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1089         pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1090         pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1091         pmu->ctr_read = pmu_sbi_ctr_read;
1092         pmu->event_init = pmu_sbi_event_init;
1093         pmu->event_mapped = pmu_sbi_event_mapped;
1094         pmu->event_unmapped = pmu_sbi_event_unmapped;
1095         pmu->csr_index = pmu_sbi_csr_index;
1096
1097         ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1098         if (ret)
1099                 return ret;
1100
1101         ret = riscv_pm_pmu_register(pmu);
1102         if (ret)
1103                 goto out_unregister;
1104
1105         ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1106         if (ret)
1107                 goto out_unregister;
1108
1109         register_sysctl("kernel", sbi_pmu_sysctl_table);
1110
1111         return 0;
1112
1113 out_unregister:
1114         riscv_pmu_destroy(pmu);
1115
1116 out_free:
1117         kfree(pmu);
1118         return ret;
1119 }
1120
1121 static struct platform_driver pmu_sbi_driver = {
1122         .probe          = pmu_sbi_device_probe,
1123         .driver         = {
1124                 .name   = RISCV_PMU_SBI_PDEV_NAME,
1125         },
1126 };
1127
1128 static int __init pmu_sbi_devinit(void)
1129 {
1130         int ret;
1131         struct platform_device *pdev;
1132
1133         if (sbi_spec_version < sbi_mk_version(0, 3) ||
1134             !sbi_probe_extension(SBI_EXT_PMU)) {
1135                 return 0;
1136         }
1137
1138         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1139                                       "perf/riscv/pmu:starting",
1140                                       pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1141         if (ret) {
1142                 pr_err("CPU hotplug notifier could not be registered: %d\n",
1143                        ret);
1144                 return ret;
1145         }
1146
1147         ret = platform_driver_register(&pmu_sbi_driver);
1148         if (ret)
1149                 return ret;
1150
1151         pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1152         if (IS_ERR(pdev)) {
1153                 platform_driver_unregister(&pmu_sbi_driver);
1154                 return PTR_ERR(pdev);
1155         }
1156
1157         /* Notify legacy implementation that SBI pmu is available*/
1158         riscv_pmu_legacy_skip_init();
1159
1160         return ret;
1161 }
1162 device_initcall(pmu_sbi_devinit)