Merge tag 'nvme-6.9-2024-03-21' of git://git.infradead.org/nvme into block-6.9
[sfrench/cifs-2.6.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 struct nvme_tcp_queue;
28
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54                  "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56
57 #ifdef CONFIG_DEBUG_LOCK_ALLOC
58 /* lockdep can detect a circular dependency of the form
59  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60  * because dependencies are tracked for both nvme-tcp and user contexts. Using
61  * a separate class prevents lockdep from conflating nvme-tcp socket use with
62  * user-space socket API use.
63  */
64 static struct lock_class_key nvme_tcp_sk_key[2];
65 static struct lock_class_key nvme_tcp_slock_key[2];
66
67 static void nvme_tcp_reclassify_socket(struct socket *sock)
68 {
69         struct sock *sk = sock->sk;
70
71         if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
72                 return;
73
74         switch (sk->sk_family) {
75         case AF_INET:
76                 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77                                               &nvme_tcp_slock_key[0],
78                                               "sk_lock-AF_INET-NVME",
79                                               &nvme_tcp_sk_key[0]);
80                 break;
81         case AF_INET6:
82                 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83                                               &nvme_tcp_slock_key[1],
84                                               "sk_lock-AF_INET6-NVME",
85                                               &nvme_tcp_sk_key[1]);
86                 break;
87         default:
88                 WARN_ON_ONCE(1);
89         }
90 }
91 #else
92 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
93 #endif
94
95 enum nvme_tcp_send_state {
96         NVME_TCP_SEND_CMD_PDU = 0,
97         NVME_TCP_SEND_H2C_PDU,
98         NVME_TCP_SEND_DATA,
99         NVME_TCP_SEND_DDGST,
100 };
101
102 struct nvme_tcp_request {
103         struct nvme_request     req;
104         void                    *pdu;
105         struct nvme_tcp_queue   *queue;
106         u32                     data_len;
107         u32                     pdu_len;
108         u32                     pdu_sent;
109         u32                     h2cdata_left;
110         u32                     h2cdata_offset;
111         u16                     ttag;
112         __le16                  status;
113         struct list_head        entry;
114         struct llist_node       lentry;
115         __le32                  ddgst;
116
117         struct bio              *curr_bio;
118         struct iov_iter         iter;
119
120         /* send state */
121         size_t                  offset;
122         size_t                  data_sent;
123         enum nvme_tcp_send_state state;
124 };
125
126 enum nvme_tcp_queue_flags {
127         NVME_TCP_Q_ALLOCATED    = 0,
128         NVME_TCP_Q_LIVE         = 1,
129         NVME_TCP_Q_POLLING      = 2,
130 };
131
132 enum nvme_tcp_recv_state {
133         NVME_TCP_RECV_PDU = 0,
134         NVME_TCP_RECV_DATA,
135         NVME_TCP_RECV_DDGST,
136 };
137
138 struct nvme_tcp_ctrl;
139 struct nvme_tcp_queue {
140         struct socket           *sock;
141         struct work_struct      io_work;
142         int                     io_cpu;
143
144         struct mutex            queue_lock;
145         struct mutex            send_mutex;
146         struct llist_head       req_list;
147         struct list_head        send_list;
148
149         /* recv state */
150         void                    *pdu;
151         int                     pdu_remaining;
152         int                     pdu_offset;
153         size_t                  data_remaining;
154         size_t                  ddgst_remaining;
155         unsigned int            nr_cqe;
156
157         /* send state */
158         struct nvme_tcp_request *request;
159
160         u32                     maxh2cdata;
161         size_t                  cmnd_capsule_len;
162         struct nvme_tcp_ctrl    *ctrl;
163         unsigned long           flags;
164         bool                    rd_enabled;
165
166         bool                    hdr_digest;
167         bool                    data_digest;
168         struct ahash_request    *rcv_hash;
169         struct ahash_request    *snd_hash;
170         __le32                  exp_ddgst;
171         __le32                  recv_ddgst;
172         struct completion       tls_complete;
173         int                     tls_err;
174         struct page_frag_cache  pf_cache;
175
176         void (*state_change)(struct sock *);
177         void (*data_ready)(struct sock *);
178         void (*write_space)(struct sock *);
179 };
180
181 struct nvme_tcp_ctrl {
182         /* read only in the hot path */
183         struct nvme_tcp_queue   *queues;
184         struct blk_mq_tag_set   tag_set;
185
186         /* other member variables */
187         struct list_head        list;
188         struct blk_mq_tag_set   admin_tag_set;
189         struct sockaddr_storage addr;
190         struct sockaddr_storage src_addr;
191         struct nvme_ctrl        ctrl;
192
193         struct work_struct      err_work;
194         struct delayed_work     connect_work;
195         struct nvme_tcp_request async_req;
196         u32                     io_queues[HCTX_MAX_TYPES];
197 };
198
199 static LIST_HEAD(nvme_tcp_ctrl_list);
200 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
201 static struct workqueue_struct *nvme_tcp_wq;
202 static const struct blk_mq_ops nvme_tcp_mq_ops;
203 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
204 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
205
206 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
207 {
208         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
209 }
210
211 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
212 {
213         return queue - queue->ctrl->queues;
214 }
215
216 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
217 {
218         if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
219                 return 0;
220
221         return ctrl->opts->tls;
222 }
223
224 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
225 {
226         u32 queue_idx = nvme_tcp_queue_id(queue);
227
228         if (queue_idx == 0)
229                 return queue->ctrl->admin_tag_set.tags[queue_idx];
230         return queue->ctrl->tag_set.tags[queue_idx - 1];
231 }
232
233 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
234 {
235         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
236 }
237
238 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
239 {
240         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
241 }
242
243 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
244 {
245         return req->pdu;
246 }
247
248 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
249 {
250         /* use the pdu space in the back for the data pdu */
251         return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
252                 sizeof(struct nvme_tcp_data_pdu);
253 }
254
255 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
256 {
257         if (nvme_is_fabrics(req->req.cmd))
258                 return NVME_TCP_ADMIN_CCSZ;
259         return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
260 }
261
262 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
263 {
264         return req == &req->queue->ctrl->async_req;
265 }
266
267 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
268 {
269         struct request *rq;
270
271         if (unlikely(nvme_tcp_async_req(req)))
272                 return false; /* async events don't have a request */
273
274         rq = blk_mq_rq_from_pdu(req);
275
276         return rq_data_dir(rq) == WRITE && req->data_len &&
277                 req->data_len <= nvme_tcp_inline_data_size(req);
278 }
279
280 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
281 {
282         return req->iter.bvec->bv_page;
283 }
284
285 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
286 {
287         return req->iter.bvec->bv_offset + req->iter.iov_offset;
288 }
289
290 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
291 {
292         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
293                         req->pdu_len - req->pdu_sent);
294 }
295
296 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
297 {
298         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
299                         req->pdu_len - req->pdu_sent : 0;
300 }
301
302 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
303                 int len)
304 {
305         return nvme_tcp_pdu_data_left(req) <= len;
306 }
307
308 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
309                 unsigned int dir)
310 {
311         struct request *rq = blk_mq_rq_from_pdu(req);
312         struct bio_vec *vec;
313         unsigned int size;
314         int nr_bvec;
315         size_t offset;
316
317         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
318                 vec = &rq->special_vec;
319                 nr_bvec = 1;
320                 size = blk_rq_payload_bytes(rq);
321                 offset = 0;
322         } else {
323                 struct bio *bio = req->curr_bio;
324                 struct bvec_iter bi;
325                 struct bio_vec bv;
326
327                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
328                 nr_bvec = 0;
329                 bio_for_each_bvec(bv, bio, bi) {
330                         nr_bvec++;
331                 }
332                 size = bio->bi_iter.bi_size;
333                 offset = bio->bi_iter.bi_bvec_done;
334         }
335
336         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
337         req->iter.iov_offset = offset;
338 }
339
340 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
341                 int len)
342 {
343         req->data_sent += len;
344         req->pdu_sent += len;
345         iov_iter_advance(&req->iter, len);
346         if (!iov_iter_count(&req->iter) &&
347             req->data_sent < req->data_len) {
348                 req->curr_bio = req->curr_bio->bi_next;
349                 nvme_tcp_init_iter(req, ITER_SOURCE);
350         }
351 }
352
353 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
354 {
355         int ret;
356
357         /* drain the send queue as much as we can... */
358         do {
359                 ret = nvme_tcp_try_send(queue);
360         } while (ret > 0);
361 }
362
363 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
364 {
365         return !list_empty(&queue->send_list) ||
366                 !llist_empty(&queue->req_list);
367 }
368
369 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
370                 bool sync, bool last)
371 {
372         struct nvme_tcp_queue *queue = req->queue;
373         bool empty;
374
375         empty = llist_add(&req->lentry, &queue->req_list) &&
376                 list_empty(&queue->send_list) && !queue->request;
377
378         /*
379          * if we're the first on the send_list and we can try to send
380          * directly, otherwise queue io_work. Also, only do that if we
381          * are on the same cpu, so we don't introduce contention.
382          */
383         if (queue->io_cpu == raw_smp_processor_id() &&
384             sync && empty && mutex_trylock(&queue->send_mutex)) {
385                 nvme_tcp_send_all(queue);
386                 mutex_unlock(&queue->send_mutex);
387         }
388
389         if (last && nvme_tcp_queue_more(queue))
390                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
391 }
392
393 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
394 {
395         struct nvme_tcp_request *req;
396         struct llist_node *node;
397
398         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
399                 req = llist_entry(node, struct nvme_tcp_request, lentry);
400                 list_add(&req->entry, &queue->send_list);
401         }
402 }
403
404 static inline struct nvme_tcp_request *
405 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
406 {
407         struct nvme_tcp_request *req;
408
409         req = list_first_entry_or_null(&queue->send_list,
410                         struct nvme_tcp_request, entry);
411         if (!req) {
412                 nvme_tcp_process_req_list(queue);
413                 req = list_first_entry_or_null(&queue->send_list,
414                                 struct nvme_tcp_request, entry);
415                 if (unlikely(!req))
416                         return NULL;
417         }
418
419         list_del(&req->entry);
420         return req;
421 }
422
423 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
424                 __le32 *dgst)
425 {
426         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
427         crypto_ahash_final(hash);
428 }
429
430 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
431                 struct page *page, off_t off, size_t len)
432 {
433         struct scatterlist sg;
434
435         sg_init_table(&sg, 1);
436         sg_set_page(&sg, page, len, off);
437         ahash_request_set_crypt(hash, &sg, NULL, len);
438         crypto_ahash_update(hash);
439 }
440
441 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
442                 void *pdu, size_t len)
443 {
444         struct scatterlist sg;
445
446         sg_init_one(&sg, pdu, len);
447         ahash_request_set_crypt(hash, &sg, pdu + len, len);
448         crypto_ahash_digest(hash);
449 }
450
451 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
452                 void *pdu, size_t pdu_len)
453 {
454         struct nvme_tcp_hdr *hdr = pdu;
455         __le32 recv_digest;
456         __le32 exp_digest;
457
458         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
459                 dev_err(queue->ctrl->ctrl.device,
460                         "queue %d: header digest flag is cleared\n",
461                         nvme_tcp_queue_id(queue));
462                 return -EPROTO;
463         }
464
465         recv_digest = *(__le32 *)(pdu + hdr->hlen);
466         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
467         exp_digest = *(__le32 *)(pdu + hdr->hlen);
468         if (recv_digest != exp_digest) {
469                 dev_err(queue->ctrl->ctrl.device,
470                         "header digest error: recv %#x expected %#x\n",
471                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
472                 return -EIO;
473         }
474
475         return 0;
476 }
477
478 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
479 {
480         struct nvme_tcp_hdr *hdr = pdu;
481         u8 digest_len = nvme_tcp_hdgst_len(queue);
482         u32 len;
483
484         len = le32_to_cpu(hdr->plen) - hdr->hlen -
485                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
486
487         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
488                 dev_err(queue->ctrl->ctrl.device,
489                         "queue %d: data digest flag is cleared\n",
490                 nvme_tcp_queue_id(queue));
491                 return -EPROTO;
492         }
493         crypto_ahash_init(queue->rcv_hash);
494
495         return 0;
496 }
497
498 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
499                 struct request *rq, unsigned int hctx_idx)
500 {
501         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
502
503         page_frag_free(req->pdu);
504 }
505
506 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
507                 struct request *rq, unsigned int hctx_idx,
508                 unsigned int numa_node)
509 {
510         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
511         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
512         struct nvme_tcp_cmd_pdu *pdu;
513         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
514         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
515         u8 hdgst = nvme_tcp_hdgst_len(queue);
516
517         req->pdu = page_frag_alloc(&queue->pf_cache,
518                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
519                 GFP_KERNEL | __GFP_ZERO);
520         if (!req->pdu)
521                 return -ENOMEM;
522
523         pdu = req->pdu;
524         req->queue = queue;
525         nvme_req(rq)->ctrl = &ctrl->ctrl;
526         nvme_req(rq)->cmd = &pdu->cmd;
527
528         return 0;
529 }
530
531 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
532                 unsigned int hctx_idx)
533 {
534         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
535         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
536
537         hctx->driver_data = queue;
538         return 0;
539 }
540
541 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
542                 unsigned int hctx_idx)
543 {
544         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
545         struct nvme_tcp_queue *queue = &ctrl->queues[0];
546
547         hctx->driver_data = queue;
548         return 0;
549 }
550
551 static enum nvme_tcp_recv_state
552 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
553 {
554         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
555                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
556                 NVME_TCP_RECV_DATA;
557 }
558
559 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
560 {
561         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
562                                 nvme_tcp_hdgst_len(queue);
563         queue->pdu_offset = 0;
564         queue->data_remaining = -1;
565         queue->ddgst_remaining = 0;
566 }
567
568 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
569 {
570         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
571                 return;
572
573         dev_warn(ctrl->device, "starting error recovery\n");
574         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
575 }
576
577 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
578                 struct nvme_completion *cqe)
579 {
580         struct nvme_tcp_request *req;
581         struct request *rq;
582
583         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
584         if (!rq) {
585                 dev_err(queue->ctrl->ctrl.device,
586                         "got bad cqe.command_id %#x on queue %d\n",
587                         cqe->command_id, nvme_tcp_queue_id(queue));
588                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
589                 return -EINVAL;
590         }
591
592         req = blk_mq_rq_to_pdu(rq);
593         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
594                 req->status = cqe->status;
595
596         if (!nvme_try_complete_req(rq, req->status, cqe->result))
597                 nvme_complete_rq(rq);
598         queue->nr_cqe++;
599
600         return 0;
601 }
602
603 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
604                 struct nvme_tcp_data_pdu *pdu)
605 {
606         struct request *rq;
607
608         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
609         if (!rq) {
610                 dev_err(queue->ctrl->ctrl.device,
611                         "got bad c2hdata.command_id %#x on queue %d\n",
612                         pdu->command_id, nvme_tcp_queue_id(queue));
613                 return -ENOENT;
614         }
615
616         if (!blk_rq_payload_bytes(rq)) {
617                 dev_err(queue->ctrl->ctrl.device,
618                         "queue %d tag %#x unexpected data\n",
619                         nvme_tcp_queue_id(queue), rq->tag);
620                 return -EIO;
621         }
622
623         queue->data_remaining = le32_to_cpu(pdu->data_length);
624
625         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
626             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
627                 dev_err(queue->ctrl->ctrl.device,
628                         "queue %d tag %#x SUCCESS set but not last PDU\n",
629                         nvme_tcp_queue_id(queue), rq->tag);
630                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
631                 return -EPROTO;
632         }
633
634         return 0;
635 }
636
637 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
638                 struct nvme_tcp_rsp_pdu *pdu)
639 {
640         struct nvme_completion *cqe = &pdu->cqe;
641         int ret = 0;
642
643         /*
644          * AEN requests are special as they don't time out and can
645          * survive any kind of queue freeze and often don't respond to
646          * aborts.  We don't even bother to allocate a struct request
647          * for them but rather special case them here.
648          */
649         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
650                                      cqe->command_id)))
651                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
652                                 &cqe->result);
653         else
654                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
655
656         return ret;
657 }
658
659 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
660 {
661         struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
662         struct nvme_tcp_queue *queue = req->queue;
663         struct request *rq = blk_mq_rq_from_pdu(req);
664         u32 h2cdata_sent = req->pdu_len;
665         u8 hdgst = nvme_tcp_hdgst_len(queue);
666         u8 ddgst = nvme_tcp_ddgst_len(queue);
667
668         req->state = NVME_TCP_SEND_H2C_PDU;
669         req->offset = 0;
670         req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
671         req->pdu_sent = 0;
672         req->h2cdata_left -= req->pdu_len;
673         req->h2cdata_offset += h2cdata_sent;
674
675         memset(data, 0, sizeof(*data));
676         data->hdr.type = nvme_tcp_h2c_data;
677         if (!req->h2cdata_left)
678                 data->hdr.flags = NVME_TCP_F_DATA_LAST;
679         if (queue->hdr_digest)
680                 data->hdr.flags |= NVME_TCP_F_HDGST;
681         if (queue->data_digest)
682                 data->hdr.flags |= NVME_TCP_F_DDGST;
683         data->hdr.hlen = sizeof(*data);
684         data->hdr.pdo = data->hdr.hlen + hdgst;
685         data->hdr.plen =
686                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
687         data->ttag = req->ttag;
688         data->command_id = nvme_cid(rq);
689         data->data_offset = cpu_to_le32(req->h2cdata_offset);
690         data->data_length = cpu_to_le32(req->pdu_len);
691 }
692
693 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
694                 struct nvme_tcp_r2t_pdu *pdu)
695 {
696         struct nvme_tcp_request *req;
697         struct request *rq;
698         u32 r2t_length = le32_to_cpu(pdu->r2t_length);
699         u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
700
701         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
702         if (!rq) {
703                 dev_err(queue->ctrl->ctrl.device,
704                         "got bad r2t.command_id %#x on queue %d\n",
705                         pdu->command_id, nvme_tcp_queue_id(queue));
706                 return -ENOENT;
707         }
708         req = blk_mq_rq_to_pdu(rq);
709
710         if (unlikely(!r2t_length)) {
711                 dev_err(queue->ctrl->ctrl.device,
712                         "req %d r2t len is %u, probably a bug...\n",
713                         rq->tag, r2t_length);
714                 return -EPROTO;
715         }
716
717         if (unlikely(req->data_sent + r2t_length > req->data_len)) {
718                 dev_err(queue->ctrl->ctrl.device,
719                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
720                         rq->tag, r2t_length, req->data_len, req->data_sent);
721                 return -EPROTO;
722         }
723
724         if (unlikely(r2t_offset < req->data_sent)) {
725                 dev_err(queue->ctrl->ctrl.device,
726                         "req %d unexpected r2t offset %u (expected %zu)\n",
727                         rq->tag, r2t_offset, req->data_sent);
728                 return -EPROTO;
729         }
730
731         req->pdu_len = 0;
732         req->h2cdata_left = r2t_length;
733         req->h2cdata_offset = r2t_offset;
734         req->ttag = pdu->ttag;
735
736         nvme_tcp_setup_h2c_data_pdu(req);
737         nvme_tcp_queue_request(req, false, true);
738
739         return 0;
740 }
741
742 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
743                 unsigned int *offset, size_t *len)
744 {
745         struct nvme_tcp_hdr *hdr;
746         char *pdu = queue->pdu;
747         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
748         int ret;
749
750         ret = skb_copy_bits(skb, *offset,
751                 &pdu[queue->pdu_offset], rcv_len);
752         if (unlikely(ret))
753                 return ret;
754
755         queue->pdu_remaining -= rcv_len;
756         queue->pdu_offset += rcv_len;
757         *offset += rcv_len;
758         *len -= rcv_len;
759         if (queue->pdu_remaining)
760                 return 0;
761
762         hdr = queue->pdu;
763         if (queue->hdr_digest) {
764                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
765                 if (unlikely(ret))
766                         return ret;
767         }
768
769
770         if (queue->data_digest) {
771                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
772                 if (unlikely(ret))
773                         return ret;
774         }
775
776         switch (hdr->type) {
777         case nvme_tcp_c2h_data:
778                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
779         case nvme_tcp_rsp:
780                 nvme_tcp_init_recv_ctx(queue);
781                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
782         case nvme_tcp_r2t:
783                 nvme_tcp_init_recv_ctx(queue);
784                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
785         default:
786                 dev_err(queue->ctrl->ctrl.device,
787                         "unsupported pdu type (%d)\n", hdr->type);
788                 return -EINVAL;
789         }
790 }
791
792 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
793 {
794         union nvme_result res = {};
795
796         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
797                 nvme_complete_rq(rq);
798 }
799
800 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
801                               unsigned int *offset, size_t *len)
802 {
803         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
804         struct request *rq =
805                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
806         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
807
808         while (true) {
809                 int recv_len, ret;
810
811                 recv_len = min_t(size_t, *len, queue->data_remaining);
812                 if (!recv_len)
813                         break;
814
815                 if (!iov_iter_count(&req->iter)) {
816                         req->curr_bio = req->curr_bio->bi_next;
817
818                         /*
819                          * If we don`t have any bios it means that controller
820                          * sent more data than we requested, hence error
821                          */
822                         if (!req->curr_bio) {
823                                 dev_err(queue->ctrl->ctrl.device,
824                                         "queue %d no space in request %#x",
825                                         nvme_tcp_queue_id(queue), rq->tag);
826                                 nvme_tcp_init_recv_ctx(queue);
827                                 return -EIO;
828                         }
829                         nvme_tcp_init_iter(req, ITER_DEST);
830                 }
831
832                 /* we can read only from what is left in this bio */
833                 recv_len = min_t(size_t, recv_len,
834                                 iov_iter_count(&req->iter));
835
836                 if (queue->data_digest)
837                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
838                                 &req->iter, recv_len, queue->rcv_hash);
839                 else
840                         ret = skb_copy_datagram_iter(skb, *offset,
841                                         &req->iter, recv_len);
842                 if (ret) {
843                         dev_err(queue->ctrl->ctrl.device,
844                                 "queue %d failed to copy request %#x data",
845                                 nvme_tcp_queue_id(queue), rq->tag);
846                         return ret;
847                 }
848
849                 *len -= recv_len;
850                 *offset += recv_len;
851                 queue->data_remaining -= recv_len;
852         }
853
854         if (!queue->data_remaining) {
855                 if (queue->data_digest) {
856                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
857                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
858                 } else {
859                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
860                                 nvme_tcp_end_request(rq,
861                                                 le16_to_cpu(req->status));
862                                 queue->nr_cqe++;
863                         }
864                         nvme_tcp_init_recv_ctx(queue);
865                 }
866         }
867
868         return 0;
869 }
870
871 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
872                 struct sk_buff *skb, unsigned int *offset, size_t *len)
873 {
874         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
875         char *ddgst = (char *)&queue->recv_ddgst;
876         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
877         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
878         int ret;
879
880         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
881         if (unlikely(ret))
882                 return ret;
883
884         queue->ddgst_remaining -= recv_len;
885         *offset += recv_len;
886         *len -= recv_len;
887         if (queue->ddgst_remaining)
888                 return 0;
889
890         if (queue->recv_ddgst != queue->exp_ddgst) {
891                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
892                                         pdu->command_id);
893                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
894
895                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
896
897                 dev_err(queue->ctrl->ctrl.device,
898                         "data digest error: recv %#x expected %#x\n",
899                         le32_to_cpu(queue->recv_ddgst),
900                         le32_to_cpu(queue->exp_ddgst));
901         }
902
903         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
904                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
905                                         pdu->command_id);
906                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
907
908                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
909                 queue->nr_cqe++;
910         }
911
912         nvme_tcp_init_recv_ctx(queue);
913         return 0;
914 }
915
916 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
917                              unsigned int offset, size_t len)
918 {
919         struct nvme_tcp_queue *queue = desc->arg.data;
920         size_t consumed = len;
921         int result;
922
923         if (unlikely(!queue->rd_enabled))
924                 return -EFAULT;
925
926         while (len) {
927                 switch (nvme_tcp_recv_state(queue)) {
928                 case NVME_TCP_RECV_PDU:
929                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
930                         break;
931                 case NVME_TCP_RECV_DATA:
932                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
933                         break;
934                 case NVME_TCP_RECV_DDGST:
935                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
936                         break;
937                 default:
938                         result = -EFAULT;
939                 }
940                 if (result) {
941                         dev_err(queue->ctrl->ctrl.device,
942                                 "receive failed:  %d\n", result);
943                         queue->rd_enabled = false;
944                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
945                         return result;
946                 }
947         }
948
949         return consumed;
950 }
951
952 static void nvme_tcp_data_ready(struct sock *sk)
953 {
954         struct nvme_tcp_queue *queue;
955
956         trace_sk_data_ready(sk);
957
958         read_lock_bh(&sk->sk_callback_lock);
959         queue = sk->sk_user_data;
960         if (likely(queue && queue->rd_enabled) &&
961             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
962                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
963         read_unlock_bh(&sk->sk_callback_lock);
964 }
965
966 static void nvme_tcp_write_space(struct sock *sk)
967 {
968         struct nvme_tcp_queue *queue;
969
970         read_lock_bh(&sk->sk_callback_lock);
971         queue = sk->sk_user_data;
972         if (likely(queue && sk_stream_is_writeable(sk))) {
973                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
974                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
975         }
976         read_unlock_bh(&sk->sk_callback_lock);
977 }
978
979 static void nvme_tcp_state_change(struct sock *sk)
980 {
981         struct nvme_tcp_queue *queue;
982
983         read_lock_bh(&sk->sk_callback_lock);
984         queue = sk->sk_user_data;
985         if (!queue)
986                 goto done;
987
988         switch (sk->sk_state) {
989         case TCP_CLOSE:
990         case TCP_CLOSE_WAIT:
991         case TCP_LAST_ACK:
992         case TCP_FIN_WAIT1:
993         case TCP_FIN_WAIT2:
994                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
995                 break;
996         default:
997                 dev_info(queue->ctrl->ctrl.device,
998                         "queue %d socket state %d\n",
999                         nvme_tcp_queue_id(queue), sk->sk_state);
1000         }
1001
1002         queue->state_change(sk);
1003 done:
1004         read_unlock_bh(&sk->sk_callback_lock);
1005 }
1006
1007 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1008 {
1009         queue->request = NULL;
1010 }
1011
1012 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1013 {
1014         if (nvme_tcp_async_req(req)) {
1015                 union nvme_result res = {};
1016
1017                 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1018                                 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1019         } else {
1020                 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1021                                 NVME_SC_HOST_PATH_ERROR);
1022         }
1023 }
1024
1025 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1026 {
1027         struct nvme_tcp_queue *queue = req->queue;
1028         int req_data_len = req->data_len;
1029         u32 h2cdata_left = req->h2cdata_left;
1030
1031         while (true) {
1032                 struct bio_vec bvec;
1033                 struct msghdr msg = {
1034                         .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1035                 };
1036                 struct page *page = nvme_tcp_req_cur_page(req);
1037                 size_t offset = nvme_tcp_req_cur_offset(req);
1038                 size_t len = nvme_tcp_req_cur_length(req);
1039                 bool last = nvme_tcp_pdu_last_send(req, len);
1040                 int req_data_sent = req->data_sent;
1041                 int ret;
1042
1043                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1044                         msg.msg_flags |= MSG_EOR;
1045                 else
1046                         msg.msg_flags |= MSG_MORE;
1047
1048                 if (!sendpage_ok(page))
1049                         msg.msg_flags &= ~MSG_SPLICE_PAGES;
1050
1051                 bvec_set_page(&bvec, page, len, offset);
1052                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1053                 ret = sock_sendmsg(queue->sock, &msg);
1054                 if (ret <= 0)
1055                         return ret;
1056
1057                 if (queue->data_digest)
1058                         nvme_tcp_ddgst_update(queue->snd_hash, page,
1059                                         offset, ret);
1060
1061                 /*
1062                  * update the request iterator except for the last payload send
1063                  * in the request where we don't want to modify it as we may
1064                  * compete with the RX path completing the request.
1065                  */
1066                 if (req_data_sent + ret < req_data_len)
1067                         nvme_tcp_advance_req(req, ret);
1068
1069                 /* fully successful last send in current PDU */
1070                 if (last && ret == len) {
1071                         if (queue->data_digest) {
1072                                 nvme_tcp_ddgst_final(queue->snd_hash,
1073                                         &req->ddgst);
1074                                 req->state = NVME_TCP_SEND_DDGST;
1075                                 req->offset = 0;
1076                         } else {
1077                                 if (h2cdata_left)
1078                                         nvme_tcp_setup_h2c_data_pdu(req);
1079                                 else
1080                                         nvme_tcp_done_send_req(queue);
1081                         }
1082                         return 1;
1083                 }
1084         }
1085         return -EAGAIN;
1086 }
1087
1088 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1089 {
1090         struct nvme_tcp_queue *queue = req->queue;
1091         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1092         struct bio_vec bvec;
1093         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1094         bool inline_data = nvme_tcp_has_inline_data(req);
1095         u8 hdgst = nvme_tcp_hdgst_len(queue);
1096         int len = sizeof(*pdu) + hdgst - req->offset;
1097         int ret;
1098
1099         if (inline_data || nvme_tcp_queue_more(queue))
1100                 msg.msg_flags |= MSG_MORE;
1101         else
1102                 msg.msg_flags |= MSG_EOR;
1103
1104         if (queue->hdr_digest && !req->offset)
1105                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1106
1107         bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1108         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1109         ret = sock_sendmsg(queue->sock, &msg);
1110         if (unlikely(ret <= 0))
1111                 return ret;
1112
1113         len -= ret;
1114         if (!len) {
1115                 if (inline_data) {
1116                         req->state = NVME_TCP_SEND_DATA;
1117                         if (queue->data_digest)
1118                                 crypto_ahash_init(queue->snd_hash);
1119                 } else {
1120                         nvme_tcp_done_send_req(queue);
1121                 }
1122                 return 1;
1123         }
1124         req->offset += ret;
1125
1126         return -EAGAIN;
1127 }
1128
1129 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1130 {
1131         struct nvme_tcp_queue *queue = req->queue;
1132         struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1133         struct bio_vec bvec;
1134         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1135         u8 hdgst = nvme_tcp_hdgst_len(queue);
1136         int len = sizeof(*pdu) - req->offset + hdgst;
1137         int ret;
1138
1139         if (queue->hdr_digest && !req->offset)
1140                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1141
1142         if (!req->h2cdata_left)
1143                 msg.msg_flags |= MSG_SPLICE_PAGES;
1144
1145         bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1146         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1147         ret = sock_sendmsg(queue->sock, &msg);
1148         if (unlikely(ret <= 0))
1149                 return ret;
1150
1151         len -= ret;
1152         if (!len) {
1153                 req->state = NVME_TCP_SEND_DATA;
1154                 if (queue->data_digest)
1155                         crypto_ahash_init(queue->snd_hash);
1156                 return 1;
1157         }
1158         req->offset += ret;
1159
1160         return -EAGAIN;
1161 }
1162
1163 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1164 {
1165         struct nvme_tcp_queue *queue = req->queue;
1166         size_t offset = req->offset;
1167         u32 h2cdata_left = req->h2cdata_left;
1168         int ret;
1169         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1170         struct kvec iov = {
1171                 .iov_base = (u8 *)&req->ddgst + req->offset,
1172                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1173         };
1174
1175         if (nvme_tcp_queue_more(queue))
1176                 msg.msg_flags |= MSG_MORE;
1177         else
1178                 msg.msg_flags |= MSG_EOR;
1179
1180         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1181         if (unlikely(ret <= 0))
1182                 return ret;
1183
1184         if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1185                 if (h2cdata_left)
1186                         nvme_tcp_setup_h2c_data_pdu(req);
1187                 else
1188                         nvme_tcp_done_send_req(queue);
1189                 return 1;
1190         }
1191
1192         req->offset += ret;
1193         return -EAGAIN;
1194 }
1195
1196 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1197 {
1198         struct nvme_tcp_request *req;
1199         unsigned int noreclaim_flag;
1200         int ret = 1;
1201
1202         if (!queue->request) {
1203                 queue->request = nvme_tcp_fetch_request(queue);
1204                 if (!queue->request)
1205                         return 0;
1206         }
1207         req = queue->request;
1208
1209         noreclaim_flag = memalloc_noreclaim_save();
1210         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1211                 ret = nvme_tcp_try_send_cmd_pdu(req);
1212                 if (ret <= 0)
1213                         goto done;
1214                 if (!nvme_tcp_has_inline_data(req))
1215                         goto out;
1216         }
1217
1218         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1219                 ret = nvme_tcp_try_send_data_pdu(req);
1220                 if (ret <= 0)
1221                         goto done;
1222         }
1223
1224         if (req->state == NVME_TCP_SEND_DATA) {
1225                 ret = nvme_tcp_try_send_data(req);
1226                 if (ret <= 0)
1227                         goto done;
1228         }
1229
1230         if (req->state == NVME_TCP_SEND_DDGST)
1231                 ret = nvme_tcp_try_send_ddgst(req);
1232 done:
1233         if (ret == -EAGAIN) {
1234                 ret = 0;
1235         } else if (ret < 0) {
1236                 dev_err(queue->ctrl->ctrl.device,
1237                         "failed to send request %d\n", ret);
1238                 nvme_tcp_fail_request(queue->request);
1239                 nvme_tcp_done_send_req(queue);
1240         }
1241 out:
1242         memalloc_noreclaim_restore(noreclaim_flag);
1243         return ret;
1244 }
1245
1246 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1247 {
1248         struct socket *sock = queue->sock;
1249         struct sock *sk = sock->sk;
1250         read_descriptor_t rd_desc;
1251         int consumed;
1252
1253         rd_desc.arg.data = queue;
1254         rd_desc.count = 1;
1255         lock_sock(sk);
1256         queue->nr_cqe = 0;
1257         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1258         release_sock(sk);
1259         return consumed;
1260 }
1261
1262 static void nvme_tcp_io_work(struct work_struct *w)
1263 {
1264         struct nvme_tcp_queue *queue =
1265                 container_of(w, struct nvme_tcp_queue, io_work);
1266         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1267
1268         do {
1269                 bool pending = false;
1270                 int result;
1271
1272                 if (mutex_trylock(&queue->send_mutex)) {
1273                         result = nvme_tcp_try_send(queue);
1274                         mutex_unlock(&queue->send_mutex);
1275                         if (result > 0)
1276                                 pending = true;
1277                         else if (unlikely(result < 0))
1278                                 break;
1279                 }
1280
1281                 result = nvme_tcp_try_recv(queue);
1282                 if (result > 0)
1283                         pending = true;
1284                 else if (unlikely(result < 0))
1285                         return;
1286
1287                 if (!pending || !queue->rd_enabled)
1288                         return;
1289
1290         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1291
1292         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1293 }
1294
1295 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1296 {
1297         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1298
1299         ahash_request_free(queue->rcv_hash);
1300         ahash_request_free(queue->snd_hash);
1301         crypto_free_ahash(tfm);
1302 }
1303
1304 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1305 {
1306         struct crypto_ahash *tfm;
1307
1308         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1309         if (IS_ERR(tfm))
1310                 return PTR_ERR(tfm);
1311
1312         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1313         if (!queue->snd_hash)
1314                 goto free_tfm;
1315         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1316
1317         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1318         if (!queue->rcv_hash)
1319                 goto free_snd_hash;
1320         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1321
1322         return 0;
1323 free_snd_hash:
1324         ahash_request_free(queue->snd_hash);
1325 free_tfm:
1326         crypto_free_ahash(tfm);
1327         return -ENOMEM;
1328 }
1329
1330 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1331 {
1332         struct nvme_tcp_request *async = &ctrl->async_req;
1333
1334         page_frag_free(async->pdu);
1335 }
1336
1337 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1338 {
1339         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1340         struct nvme_tcp_request *async = &ctrl->async_req;
1341         u8 hdgst = nvme_tcp_hdgst_len(queue);
1342
1343         async->pdu = page_frag_alloc(&queue->pf_cache,
1344                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1345                 GFP_KERNEL | __GFP_ZERO);
1346         if (!async->pdu)
1347                 return -ENOMEM;
1348
1349         async->queue = &ctrl->queues[0];
1350         return 0;
1351 }
1352
1353 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1354 {
1355         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1356         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1357         unsigned int noreclaim_flag;
1358
1359         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1360                 return;
1361
1362         if (queue->hdr_digest || queue->data_digest)
1363                 nvme_tcp_free_crypto(queue);
1364
1365         page_frag_cache_drain(&queue->pf_cache);
1366
1367         noreclaim_flag = memalloc_noreclaim_save();
1368         /* ->sock will be released by fput() */
1369         fput(queue->sock->file);
1370         queue->sock = NULL;
1371         memalloc_noreclaim_restore(noreclaim_flag);
1372
1373         kfree(queue->pdu);
1374         mutex_destroy(&queue->send_mutex);
1375         mutex_destroy(&queue->queue_lock);
1376 }
1377
1378 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1379 {
1380         struct nvme_tcp_icreq_pdu *icreq;
1381         struct nvme_tcp_icresp_pdu *icresp;
1382         char cbuf[CMSG_LEN(sizeof(char))] = {};
1383         u8 ctype;
1384         struct msghdr msg = {};
1385         struct kvec iov;
1386         bool ctrl_hdgst, ctrl_ddgst;
1387         u32 maxh2cdata;
1388         int ret;
1389
1390         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1391         if (!icreq)
1392                 return -ENOMEM;
1393
1394         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1395         if (!icresp) {
1396                 ret = -ENOMEM;
1397                 goto free_icreq;
1398         }
1399
1400         icreq->hdr.type = nvme_tcp_icreq;
1401         icreq->hdr.hlen = sizeof(*icreq);
1402         icreq->hdr.pdo = 0;
1403         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1404         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1405         icreq->maxr2t = 0; /* single inflight r2t supported */
1406         icreq->hpda = 0; /* no alignment constraint */
1407         if (queue->hdr_digest)
1408                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1409         if (queue->data_digest)
1410                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1411
1412         iov.iov_base = icreq;
1413         iov.iov_len = sizeof(*icreq);
1414         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1415         if (ret < 0) {
1416                 pr_warn("queue %d: failed to send icreq, error %d\n",
1417                         nvme_tcp_queue_id(queue), ret);
1418                 goto free_icresp;
1419         }
1420
1421         memset(&msg, 0, sizeof(msg));
1422         iov.iov_base = icresp;
1423         iov.iov_len = sizeof(*icresp);
1424         if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1425                 msg.msg_control = cbuf;
1426                 msg.msg_controllen = sizeof(cbuf);
1427         }
1428         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1429                         iov.iov_len, msg.msg_flags);
1430         if (ret < 0) {
1431                 pr_warn("queue %d: failed to receive icresp, error %d\n",
1432                         nvme_tcp_queue_id(queue), ret);
1433                 goto free_icresp;
1434         }
1435         ret = -ENOTCONN;
1436         if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1437                 ctype = tls_get_record_type(queue->sock->sk,
1438                                             (struct cmsghdr *)cbuf);
1439                 if (ctype != TLS_RECORD_TYPE_DATA) {
1440                         pr_err("queue %d: unhandled TLS record %d\n",
1441                                nvme_tcp_queue_id(queue), ctype);
1442                         goto free_icresp;
1443                 }
1444         }
1445         ret = -EINVAL;
1446         if (icresp->hdr.type != nvme_tcp_icresp) {
1447                 pr_err("queue %d: bad type returned %d\n",
1448                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1449                 goto free_icresp;
1450         }
1451
1452         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1453                 pr_err("queue %d: bad pdu length returned %d\n",
1454                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1455                 goto free_icresp;
1456         }
1457
1458         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1459                 pr_err("queue %d: bad pfv returned %d\n",
1460                         nvme_tcp_queue_id(queue), icresp->pfv);
1461                 goto free_icresp;
1462         }
1463
1464         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1465         if ((queue->data_digest && !ctrl_ddgst) ||
1466             (!queue->data_digest && ctrl_ddgst)) {
1467                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1468                         nvme_tcp_queue_id(queue),
1469                         queue->data_digest ? "enabled" : "disabled",
1470                         ctrl_ddgst ? "enabled" : "disabled");
1471                 goto free_icresp;
1472         }
1473
1474         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1475         if ((queue->hdr_digest && !ctrl_hdgst) ||
1476             (!queue->hdr_digest && ctrl_hdgst)) {
1477                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1478                         nvme_tcp_queue_id(queue),
1479                         queue->hdr_digest ? "enabled" : "disabled",
1480                         ctrl_hdgst ? "enabled" : "disabled");
1481                 goto free_icresp;
1482         }
1483
1484         if (icresp->cpda != 0) {
1485                 pr_err("queue %d: unsupported cpda returned %d\n",
1486                         nvme_tcp_queue_id(queue), icresp->cpda);
1487                 goto free_icresp;
1488         }
1489
1490         maxh2cdata = le32_to_cpu(icresp->maxdata);
1491         if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1492                 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1493                        nvme_tcp_queue_id(queue), maxh2cdata);
1494                 goto free_icresp;
1495         }
1496         queue->maxh2cdata = maxh2cdata;
1497
1498         ret = 0;
1499 free_icresp:
1500         kfree(icresp);
1501 free_icreq:
1502         kfree(icreq);
1503         return ret;
1504 }
1505
1506 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1507 {
1508         return nvme_tcp_queue_id(queue) == 0;
1509 }
1510
1511 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1512 {
1513         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1514         int qid = nvme_tcp_queue_id(queue);
1515
1516         return !nvme_tcp_admin_queue(queue) &&
1517                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1518 }
1519
1520 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1521 {
1522         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1523         int qid = nvme_tcp_queue_id(queue);
1524
1525         return !nvme_tcp_admin_queue(queue) &&
1526                 !nvme_tcp_default_queue(queue) &&
1527                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1528                           ctrl->io_queues[HCTX_TYPE_READ];
1529 }
1530
1531 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1532 {
1533         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1534         int qid = nvme_tcp_queue_id(queue);
1535
1536         return !nvme_tcp_admin_queue(queue) &&
1537                 !nvme_tcp_default_queue(queue) &&
1538                 !nvme_tcp_read_queue(queue) &&
1539                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1540                           ctrl->io_queues[HCTX_TYPE_READ] +
1541                           ctrl->io_queues[HCTX_TYPE_POLL];
1542 }
1543
1544 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1545 {
1546         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1547         int qid = nvme_tcp_queue_id(queue);
1548         int n = 0;
1549
1550         if (nvme_tcp_default_queue(queue))
1551                 n = qid - 1;
1552         else if (nvme_tcp_read_queue(queue))
1553                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1554         else if (nvme_tcp_poll_queue(queue))
1555                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1556                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1557         if (wq_unbound)
1558                 queue->io_cpu = WORK_CPU_UNBOUND;
1559         else
1560                 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1561 }
1562
1563 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1564 {
1565         struct nvme_tcp_queue *queue = data;
1566         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1567         int qid = nvme_tcp_queue_id(queue);
1568         struct key *tls_key;
1569
1570         dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1571                 qid, pskid, status);
1572
1573         if (status) {
1574                 queue->tls_err = -status;
1575                 goto out_complete;
1576         }
1577
1578         tls_key = key_lookup(pskid);
1579         if (IS_ERR(tls_key)) {
1580                 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1581                          qid, pskid);
1582                 queue->tls_err = -ENOKEY;
1583         } else {
1584                 ctrl->ctrl.tls_key = tls_key;
1585                 queue->tls_err = 0;
1586         }
1587
1588 out_complete:
1589         complete(&queue->tls_complete);
1590 }
1591
1592 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1593                               struct nvme_tcp_queue *queue,
1594                               key_serial_t pskid)
1595 {
1596         int qid = nvme_tcp_queue_id(queue);
1597         int ret;
1598         struct tls_handshake_args args;
1599         unsigned long tmo = tls_handshake_timeout * HZ;
1600         key_serial_t keyring = nvme_keyring_id();
1601
1602         dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1603                 qid, pskid);
1604         memset(&args, 0, sizeof(args));
1605         args.ta_sock = queue->sock;
1606         args.ta_done = nvme_tcp_tls_done;
1607         args.ta_data = queue;
1608         args.ta_my_peerids[0] = pskid;
1609         args.ta_num_peerids = 1;
1610         if (nctrl->opts->keyring)
1611                 keyring = key_serial(nctrl->opts->keyring);
1612         args.ta_keyring = keyring;
1613         args.ta_timeout_ms = tls_handshake_timeout * 1000;
1614         queue->tls_err = -EOPNOTSUPP;
1615         init_completion(&queue->tls_complete);
1616         ret = tls_client_hello_psk(&args, GFP_KERNEL);
1617         if (ret) {
1618                 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1619                         qid, ret);
1620                 return ret;
1621         }
1622         ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1623         if (ret <= 0) {
1624                 if (ret == 0)
1625                         ret = -ETIMEDOUT;
1626
1627                 dev_err(nctrl->device,
1628                         "queue %d: TLS handshake failed, error %d\n",
1629                         qid, ret);
1630                 tls_handshake_cancel(queue->sock->sk);
1631         } else {
1632                 dev_dbg(nctrl->device,
1633                         "queue %d: TLS handshake complete, error %d\n",
1634                         qid, queue->tls_err);
1635                 ret = queue->tls_err;
1636         }
1637         return ret;
1638 }
1639
1640 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1641                                 key_serial_t pskid)
1642 {
1643         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1644         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1645         int ret, rcv_pdu_size;
1646         struct file *sock_file;
1647
1648         mutex_init(&queue->queue_lock);
1649         queue->ctrl = ctrl;
1650         init_llist_head(&queue->req_list);
1651         INIT_LIST_HEAD(&queue->send_list);
1652         mutex_init(&queue->send_mutex);
1653         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1654
1655         if (qid > 0)
1656                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1657         else
1658                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1659                                                 NVME_TCP_ADMIN_CCSZ;
1660
1661         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1662                         IPPROTO_TCP, &queue->sock);
1663         if (ret) {
1664                 dev_err(nctrl->device,
1665                         "failed to create socket: %d\n", ret);
1666                 goto err_destroy_mutex;
1667         }
1668
1669         sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1670         if (IS_ERR(sock_file)) {
1671                 ret = PTR_ERR(sock_file);
1672                 goto err_destroy_mutex;
1673         }
1674         nvme_tcp_reclassify_socket(queue->sock);
1675
1676         /* Single syn retry */
1677         tcp_sock_set_syncnt(queue->sock->sk, 1);
1678
1679         /* Set TCP no delay */
1680         tcp_sock_set_nodelay(queue->sock->sk);
1681
1682         /*
1683          * Cleanup whatever is sitting in the TCP transmit queue on socket
1684          * close. This is done to prevent stale data from being sent should
1685          * the network connection be restored before TCP times out.
1686          */
1687         sock_no_linger(queue->sock->sk);
1688
1689         if (so_priority > 0)
1690                 sock_set_priority(queue->sock->sk, so_priority);
1691
1692         /* Set socket type of service */
1693         if (nctrl->opts->tos >= 0)
1694                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1695
1696         /* Set 10 seconds timeout for icresp recvmsg */
1697         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1698
1699         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1700         queue->sock->sk->sk_use_task_frag = false;
1701         nvme_tcp_set_queue_io_cpu(queue);
1702         queue->request = NULL;
1703         queue->data_remaining = 0;
1704         queue->ddgst_remaining = 0;
1705         queue->pdu_remaining = 0;
1706         queue->pdu_offset = 0;
1707         sk_set_memalloc(queue->sock->sk);
1708
1709         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1710                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1711                         sizeof(ctrl->src_addr));
1712                 if (ret) {
1713                         dev_err(nctrl->device,
1714                                 "failed to bind queue %d socket %d\n",
1715                                 qid, ret);
1716                         goto err_sock;
1717                 }
1718         }
1719
1720         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1721                 char *iface = nctrl->opts->host_iface;
1722                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1723
1724                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1725                                       optval, strlen(iface));
1726                 if (ret) {
1727                         dev_err(nctrl->device,
1728                           "failed to bind to interface %s queue %d err %d\n",
1729                           iface, qid, ret);
1730                         goto err_sock;
1731                 }
1732         }
1733
1734         queue->hdr_digest = nctrl->opts->hdr_digest;
1735         queue->data_digest = nctrl->opts->data_digest;
1736         if (queue->hdr_digest || queue->data_digest) {
1737                 ret = nvme_tcp_alloc_crypto(queue);
1738                 if (ret) {
1739                         dev_err(nctrl->device,
1740                                 "failed to allocate queue %d crypto\n", qid);
1741                         goto err_sock;
1742                 }
1743         }
1744
1745         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1746                         nvme_tcp_hdgst_len(queue);
1747         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1748         if (!queue->pdu) {
1749                 ret = -ENOMEM;
1750                 goto err_crypto;
1751         }
1752
1753         dev_dbg(nctrl->device, "connecting queue %d\n",
1754                         nvme_tcp_queue_id(queue));
1755
1756         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1757                 sizeof(ctrl->addr), 0);
1758         if (ret) {
1759                 dev_err(nctrl->device,
1760                         "failed to connect socket: %d\n", ret);
1761                 goto err_rcv_pdu;
1762         }
1763
1764         /* If PSKs are configured try to start TLS */
1765         if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1766                 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1767                 if (ret)
1768                         goto err_init_connect;
1769         }
1770
1771         ret = nvme_tcp_init_connection(queue);
1772         if (ret)
1773                 goto err_init_connect;
1774
1775         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1776
1777         return 0;
1778
1779 err_init_connect:
1780         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1781 err_rcv_pdu:
1782         kfree(queue->pdu);
1783 err_crypto:
1784         if (queue->hdr_digest || queue->data_digest)
1785                 nvme_tcp_free_crypto(queue);
1786 err_sock:
1787         /* ->sock will be released by fput() */
1788         fput(queue->sock->file);
1789         queue->sock = NULL;
1790 err_destroy_mutex:
1791         mutex_destroy(&queue->send_mutex);
1792         mutex_destroy(&queue->queue_lock);
1793         return ret;
1794 }
1795
1796 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1797 {
1798         struct socket *sock = queue->sock;
1799
1800         write_lock_bh(&sock->sk->sk_callback_lock);
1801         sock->sk->sk_user_data  = NULL;
1802         sock->sk->sk_data_ready = queue->data_ready;
1803         sock->sk->sk_state_change = queue->state_change;
1804         sock->sk->sk_write_space  = queue->write_space;
1805         write_unlock_bh(&sock->sk->sk_callback_lock);
1806 }
1807
1808 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1809 {
1810         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1811         nvme_tcp_restore_sock_ops(queue);
1812         cancel_work_sync(&queue->io_work);
1813 }
1814
1815 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1816 {
1817         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1818         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1819
1820         if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1821                 return;
1822
1823         mutex_lock(&queue->queue_lock);
1824         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1825                 __nvme_tcp_stop_queue(queue);
1826         mutex_unlock(&queue->queue_lock);
1827 }
1828
1829 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1830 {
1831         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1832         queue->sock->sk->sk_user_data = queue;
1833         queue->state_change = queue->sock->sk->sk_state_change;
1834         queue->data_ready = queue->sock->sk->sk_data_ready;
1835         queue->write_space = queue->sock->sk->sk_write_space;
1836         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1837         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1838         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1839 #ifdef CONFIG_NET_RX_BUSY_POLL
1840         queue->sock->sk->sk_ll_usec = 1;
1841 #endif
1842         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1843 }
1844
1845 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1846 {
1847         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1848         struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1849         int ret;
1850
1851         queue->rd_enabled = true;
1852         nvme_tcp_init_recv_ctx(queue);
1853         nvme_tcp_setup_sock_ops(queue);
1854
1855         if (idx)
1856                 ret = nvmf_connect_io_queue(nctrl, idx);
1857         else
1858                 ret = nvmf_connect_admin_queue(nctrl);
1859
1860         if (!ret) {
1861                 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1862         } else {
1863                 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1864                         __nvme_tcp_stop_queue(queue);
1865                 dev_err(nctrl->device,
1866                         "failed to connect queue: %d ret=%d\n", idx, ret);
1867         }
1868         return ret;
1869 }
1870
1871 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1872 {
1873         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1874                 cancel_work_sync(&ctrl->async_event_work);
1875                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1876                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1877         }
1878
1879         nvme_tcp_free_queue(ctrl, 0);
1880 }
1881
1882 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1883 {
1884         int i;
1885
1886         for (i = 1; i < ctrl->queue_count; i++)
1887                 nvme_tcp_free_queue(ctrl, i);
1888 }
1889
1890 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1891 {
1892         int i;
1893
1894         for (i = 1; i < ctrl->queue_count; i++)
1895                 nvme_tcp_stop_queue(ctrl, i);
1896 }
1897
1898 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1899                                     int first, int last)
1900 {
1901         int i, ret;
1902
1903         for (i = first; i < last; i++) {
1904                 ret = nvme_tcp_start_queue(ctrl, i);
1905                 if (ret)
1906                         goto out_stop_queues;
1907         }
1908
1909         return 0;
1910
1911 out_stop_queues:
1912         for (i--; i >= first; i--)
1913                 nvme_tcp_stop_queue(ctrl, i);
1914         return ret;
1915 }
1916
1917 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1918 {
1919         int ret;
1920         key_serial_t pskid = 0;
1921
1922         if (nvme_tcp_tls(ctrl)) {
1923                 if (ctrl->opts->tls_key)
1924                         pskid = key_serial(ctrl->opts->tls_key);
1925                 else
1926                         pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1927                                                       ctrl->opts->host->nqn,
1928                                                       ctrl->opts->subsysnqn);
1929                 if (!pskid) {
1930                         dev_err(ctrl->device, "no valid PSK found\n");
1931                         return -ENOKEY;
1932                 }
1933         }
1934
1935         ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1936         if (ret)
1937                 return ret;
1938
1939         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1940         if (ret)
1941                 goto out_free_queue;
1942
1943         return 0;
1944
1945 out_free_queue:
1946         nvme_tcp_free_queue(ctrl, 0);
1947         return ret;
1948 }
1949
1950 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1951 {
1952         int i, ret;
1953
1954         if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1955                 dev_err(ctrl->device, "no PSK negotiated\n");
1956                 return -ENOKEY;
1957         }
1958         for (i = 1; i < ctrl->queue_count; i++) {
1959                 ret = nvme_tcp_alloc_queue(ctrl, i,
1960                                 key_serial(ctrl->tls_key));
1961                 if (ret)
1962                         goto out_free_queues;
1963         }
1964
1965         return 0;
1966
1967 out_free_queues:
1968         for (i--; i >= 1; i--)
1969                 nvme_tcp_free_queue(ctrl, i);
1970
1971         return ret;
1972 }
1973
1974 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1975 {
1976         unsigned int nr_io_queues;
1977         int ret;
1978
1979         nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1980         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1981         if (ret)
1982                 return ret;
1983
1984         if (nr_io_queues == 0) {
1985                 dev_err(ctrl->device,
1986                         "unable to set any I/O queues\n");
1987                 return -ENOMEM;
1988         }
1989
1990         ctrl->queue_count = nr_io_queues + 1;
1991         dev_info(ctrl->device,
1992                 "creating %d I/O queues.\n", nr_io_queues);
1993
1994         nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1995                            to_tcp_ctrl(ctrl)->io_queues);
1996         return __nvme_tcp_alloc_io_queues(ctrl);
1997 }
1998
1999 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2000 {
2001         nvme_tcp_stop_io_queues(ctrl);
2002         if (remove)
2003                 nvme_remove_io_tag_set(ctrl);
2004         nvme_tcp_free_io_queues(ctrl);
2005 }
2006
2007 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2008 {
2009         int ret, nr_queues;
2010
2011         ret = nvme_tcp_alloc_io_queues(ctrl);
2012         if (ret)
2013                 return ret;
2014
2015         if (new) {
2016                 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2017                                 &nvme_tcp_mq_ops,
2018                                 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2019                                 sizeof(struct nvme_tcp_request));
2020                 if (ret)
2021                         goto out_free_io_queues;
2022         }
2023
2024         /*
2025          * Only start IO queues for which we have allocated the tagset
2026          * and limitted it to the available queues. On reconnects, the
2027          * queue number might have changed.
2028          */
2029         nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2030         ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2031         if (ret)
2032                 goto out_cleanup_connect_q;
2033
2034         if (!new) {
2035                 nvme_start_freeze(ctrl);
2036                 nvme_unquiesce_io_queues(ctrl);
2037                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2038                         /*
2039                          * If we timed out waiting for freeze we are likely to
2040                          * be stuck.  Fail the controller initialization just
2041                          * to be safe.
2042                          */
2043                         ret = -ENODEV;
2044                         nvme_unfreeze(ctrl);
2045                         goto out_wait_freeze_timed_out;
2046                 }
2047                 blk_mq_update_nr_hw_queues(ctrl->tagset,
2048                         ctrl->queue_count - 1);
2049                 nvme_unfreeze(ctrl);
2050         }
2051
2052         /*
2053          * If the number of queues has increased (reconnect case)
2054          * start all new queues now.
2055          */
2056         ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2057                                        ctrl->tagset->nr_hw_queues + 1);
2058         if (ret)
2059                 goto out_wait_freeze_timed_out;
2060
2061         return 0;
2062
2063 out_wait_freeze_timed_out:
2064         nvme_quiesce_io_queues(ctrl);
2065         nvme_sync_io_queues(ctrl);
2066         nvme_tcp_stop_io_queues(ctrl);
2067 out_cleanup_connect_q:
2068         nvme_cancel_tagset(ctrl);
2069         if (new)
2070                 nvme_remove_io_tag_set(ctrl);
2071 out_free_io_queues:
2072         nvme_tcp_free_io_queues(ctrl);
2073         return ret;
2074 }
2075
2076 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2077 {
2078         nvme_tcp_stop_queue(ctrl, 0);
2079         if (remove)
2080                 nvme_remove_admin_tag_set(ctrl);
2081         nvme_tcp_free_admin_queue(ctrl);
2082 }
2083
2084 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2085 {
2086         int error;
2087
2088         error = nvme_tcp_alloc_admin_queue(ctrl);
2089         if (error)
2090                 return error;
2091
2092         if (new) {
2093                 error = nvme_alloc_admin_tag_set(ctrl,
2094                                 &to_tcp_ctrl(ctrl)->admin_tag_set,
2095                                 &nvme_tcp_admin_mq_ops,
2096                                 sizeof(struct nvme_tcp_request));
2097                 if (error)
2098                         goto out_free_queue;
2099         }
2100
2101         error = nvme_tcp_start_queue(ctrl, 0);
2102         if (error)
2103                 goto out_cleanup_tagset;
2104
2105         error = nvme_enable_ctrl(ctrl);
2106         if (error)
2107                 goto out_stop_queue;
2108
2109         nvme_unquiesce_admin_queue(ctrl);
2110
2111         error = nvme_init_ctrl_finish(ctrl, false);
2112         if (error)
2113                 goto out_quiesce_queue;
2114
2115         return 0;
2116
2117 out_quiesce_queue:
2118         nvme_quiesce_admin_queue(ctrl);
2119         blk_sync_queue(ctrl->admin_q);
2120 out_stop_queue:
2121         nvme_tcp_stop_queue(ctrl, 0);
2122         nvme_cancel_admin_tagset(ctrl);
2123 out_cleanup_tagset:
2124         if (new)
2125                 nvme_remove_admin_tag_set(ctrl);
2126 out_free_queue:
2127         nvme_tcp_free_admin_queue(ctrl);
2128         return error;
2129 }
2130
2131 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2132                 bool remove)
2133 {
2134         nvme_quiesce_admin_queue(ctrl);
2135         blk_sync_queue(ctrl->admin_q);
2136         nvme_tcp_stop_queue(ctrl, 0);
2137         nvme_cancel_admin_tagset(ctrl);
2138         if (remove)
2139                 nvme_unquiesce_admin_queue(ctrl);
2140         nvme_tcp_destroy_admin_queue(ctrl, remove);
2141 }
2142
2143 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2144                 bool remove)
2145 {
2146         if (ctrl->queue_count <= 1)
2147                 return;
2148         nvme_quiesce_admin_queue(ctrl);
2149         nvme_quiesce_io_queues(ctrl);
2150         nvme_sync_io_queues(ctrl);
2151         nvme_tcp_stop_io_queues(ctrl);
2152         nvme_cancel_tagset(ctrl);
2153         if (remove)
2154                 nvme_unquiesce_io_queues(ctrl);
2155         nvme_tcp_destroy_io_queues(ctrl, remove);
2156 }
2157
2158 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2159 {
2160         enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2161
2162         /* If we are resetting/deleting then do nothing */
2163         if (state != NVME_CTRL_CONNECTING) {
2164                 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2165                 return;
2166         }
2167
2168         if (nvmf_should_reconnect(ctrl)) {
2169                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2170                         ctrl->opts->reconnect_delay);
2171                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2172                                 ctrl->opts->reconnect_delay * HZ);
2173         } else {
2174                 dev_info(ctrl->device, "Removing controller...\n");
2175                 nvme_delete_ctrl(ctrl);
2176         }
2177 }
2178
2179 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2180 {
2181         struct nvmf_ctrl_options *opts = ctrl->opts;
2182         int ret;
2183
2184         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2185         if (ret)
2186                 return ret;
2187
2188         if (ctrl->icdoff) {
2189                 ret = -EOPNOTSUPP;
2190                 dev_err(ctrl->device, "icdoff is not supported!\n");
2191                 goto destroy_admin;
2192         }
2193
2194         if (!nvme_ctrl_sgl_supported(ctrl)) {
2195                 ret = -EOPNOTSUPP;
2196                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2197                 goto destroy_admin;
2198         }
2199
2200         if (opts->queue_size > ctrl->sqsize + 1)
2201                 dev_warn(ctrl->device,
2202                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2203                         opts->queue_size, ctrl->sqsize + 1);
2204
2205         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2206                 dev_warn(ctrl->device,
2207                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2208                         ctrl->sqsize + 1, ctrl->maxcmd);
2209                 ctrl->sqsize = ctrl->maxcmd - 1;
2210         }
2211
2212         if (ctrl->queue_count > 1) {
2213                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2214                 if (ret)
2215                         goto destroy_admin;
2216         }
2217
2218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2219                 /*
2220                  * state change failure is ok if we started ctrl delete,
2221                  * unless we're during creation of a new controller to
2222                  * avoid races with teardown flow.
2223                  */
2224                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2225
2226                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2227                              state != NVME_CTRL_DELETING_NOIO);
2228                 WARN_ON_ONCE(new);
2229                 ret = -EINVAL;
2230                 goto destroy_io;
2231         }
2232
2233         nvme_start_ctrl(ctrl);
2234         return 0;
2235
2236 destroy_io:
2237         if (ctrl->queue_count > 1) {
2238                 nvme_quiesce_io_queues(ctrl);
2239                 nvme_sync_io_queues(ctrl);
2240                 nvme_tcp_stop_io_queues(ctrl);
2241                 nvme_cancel_tagset(ctrl);
2242                 nvme_tcp_destroy_io_queues(ctrl, new);
2243         }
2244 destroy_admin:
2245         nvme_stop_keep_alive(ctrl);
2246         nvme_tcp_teardown_admin_queue(ctrl, false);
2247         return ret;
2248 }
2249
2250 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2251 {
2252         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2253                         struct nvme_tcp_ctrl, connect_work);
2254         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2255
2256         ++ctrl->nr_reconnects;
2257
2258         if (nvme_tcp_setup_ctrl(ctrl, false))
2259                 goto requeue;
2260
2261         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2262                         ctrl->nr_reconnects);
2263
2264         ctrl->nr_reconnects = 0;
2265
2266         return;
2267
2268 requeue:
2269         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2270                         ctrl->nr_reconnects);
2271         nvme_tcp_reconnect_or_remove(ctrl);
2272 }
2273
2274 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2275 {
2276         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2277                                 struct nvme_tcp_ctrl, err_work);
2278         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2279
2280         nvme_stop_keep_alive(ctrl);
2281         flush_work(&ctrl->async_event_work);
2282         nvme_tcp_teardown_io_queues(ctrl, false);
2283         /* unquiesce to fail fast pending requests */
2284         nvme_unquiesce_io_queues(ctrl);
2285         nvme_tcp_teardown_admin_queue(ctrl, false);
2286         nvme_unquiesce_admin_queue(ctrl);
2287         nvme_auth_stop(ctrl);
2288
2289         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2290                 /* state change failure is ok if we started ctrl delete */
2291                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2292
2293                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2294                              state != NVME_CTRL_DELETING_NOIO);
2295                 return;
2296         }
2297
2298         nvme_tcp_reconnect_or_remove(ctrl);
2299 }
2300
2301 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2302 {
2303         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2304         nvme_quiesce_admin_queue(ctrl);
2305         nvme_disable_ctrl(ctrl, shutdown);
2306         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2307 }
2308
2309 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2310 {
2311         nvme_tcp_teardown_ctrl(ctrl, true);
2312 }
2313
2314 static void nvme_reset_ctrl_work(struct work_struct *work)
2315 {
2316         struct nvme_ctrl *ctrl =
2317                 container_of(work, struct nvme_ctrl, reset_work);
2318
2319         nvme_stop_ctrl(ctrl);
2320         nvme_tcp_teardown_ctrl(ctrl, false);
2321
2322         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2323                 /* state change failure is ok if we started ctrl delete */
2324                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2325
2326                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2327                              state != NVME_CTRL_DELETING_NOIO);
2328                 return;
2329         }
2330
2331         if (nvme_tcp_setup_ctrl(ctrl, false))
2332                 goto out_fail;
2333
2334         return;
2335
2336 out_fail:
2337         ++ctrl->nr_reconnects;
2338         nvme_tcp_reconnect_or_remove(ctrl);
2339 }
2340
2341 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2342 {
2343         flush_work(&to_tcp_ctrl(ctrl)->err_work);
2344         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2345 }
2346
2347 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2348 {
2349         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2350
2351         if (list_empty(&ctrl->list))
2352                 goto free_ctrl;
2353
2354         mutex_lock(&nvme_tcp_ctrl_mutex);
2355         list_del(&ctrl->list);
2356         mutex_unlock(&nvme_tcp_ctrl_mutex);
2357
2358         nvmf_free_options(nctrl->opts);
2359 free_ctrl:
2360         kfree(ctrl->queues);
2361         kfree(ctrl);
2362 }
2363
2364 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2365 {
2366         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2367
2368         sg->addr = 0;
2369         sg->length = 0;
2370         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2371                         NVME_SGL_FMT_TRANSPORT_A;
2372 }
2373
2374 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2375                 struct nvme_command *c, u32 data_len)
2376 {
2377         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2378
2379         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2380         sg->length = cpu_to_le32(data_len);
2381         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2382 }
2383
2384 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2385                 u32 data_len)
2386 {
2387         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2388
2389         sg->addr = 0;
2390         sg->length = cpu_to_le32(data_len);
2391         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2392                         NVME_SGL_FMT_TRANSPORT_A;
2393 }
2394
2395 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2396 {
2397         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2398         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2399         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2400         struct nvme_command *cmd = &pdu->cmd;
2401         u8 hdgst = nvme_tcp_hdgst_len(queue);
2402
2403         memset(pdu, 0, sizeof(*pdu));
2404         pdu->hdr.type = nvme_tcp_cmd;
2405         if (queue->hdr_digest)
2406                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2407         pdu->hdr.hlen = sizeof(*pdu);
2408         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2409
2410         cmd->common.opcode = nvme_admin_async_event;
2411         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2412         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2413         nvme_tcp_set_sg_null(cmd);
2414
2415         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2416         ctrl->async_req.offset = 0;
2417         ctrl->async_req.curr_bio = NULL;
2418         ctrl->async_req.data_len = 0;
2419
2420         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2421 }
2422
2423 static void nvme_tcp_complete_timed_out(struct request *rq)
2424 {
2425         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2426         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2427
2428         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2429         nvmf_complete_timed_out_request(rq);
2430 }
2431
2432 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2433 {
2434         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2435         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2436         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2437         struct nvme_command *cmd = &pdu->cmd;
2438         int qid = nvme_tcp_queue_id(req->queue);
2439
2440         dev_warn(ctrl->device,
2441                  "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2442                  rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2443                  nvme_fabrics_opcode_str(qid, cmd), qid);
2444
2445         if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2446                 /*
2447                  * If we are resetting, connecting or deleting we should
2448                  * complete immediately because we may block controller
2449                  * teardown or setup sequence
2450                  * - ctrl disable/shutdown fabrics requests
2451                  * - connect requests
2452                  * - initialization admin requests
2453                  * - I/O requests that entered after unquiescing and
2454                  *   the controller stopped responding
2455                  *
2456                  * All other requests should be cancelled by the error
2457                  * recovery work, so it's fine that we fail it here.
2458                  */
2459                 nvme_tcp_complete_timed_out(rq);
2460                 return BLK_EH_DONE;
2461         }
2462
2463         /*
2464          * LIVE state should trigger the normal error recovery which will
2465          * handle completing this request.
2466          */
2467         nvme_tcp_error_recovery(ctrl);
2468         return BLK_EH_RESET_TIMER;
2469 }
2470
2471 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2472                         struct request *rq)
2473 {
2474         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2475         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2476         struct nvme_command *c = &pdu->cmd;
2477
2478         c->common.flags |= NVME_CMD_SGL_METABUF;
2479
2480         if (!blk_rq_nr_phys_segments(rq))
2481                 nvme_tcp_set_sg_null(c);
2482         else if (rq_data_dir(rq) == WRITE &&
2483             req->data_len <= nvme_tcp_inline_data_size(req))
2484                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2485         else
2486                 nvme_tcp_set_sg_host_data(c, req->data_len);
2487
2488         return 0;
2489 }
2490
2491 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2492                 struct request *rq)
2493 {
2494         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2495         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2496         struct nvme_tcp_queue *queue = req->queue;
2497         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2498         blk_status_t ret;
2499
2500         ret = nvme_setup_cmd(ns, rq);
2501         if (ret)
2502                 return ret;
2503
2504         req->state = NVME_TCP_SEND_CMD_PDU;
2505         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2506         req->offset = 0;
2507         req->data_sent = 0;
2508         req->pdu_len = 0;
2509         req->pdu_sent = 0;
2510         req->h2cdata_left = 0;
2511         req->data_len = blk_rq_nr_phys_segments(rq) ?
2512                                 blk_rq_payload_bytes(rq) : 0;
2513         req->curr_bio = rq->bio;
2514         if (req->curr_bio && req->data_len)
2515                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2516
2517         if (rq_data_dir(rq) == WRITE &&
2518             req->data_len <= nvme_tcp_inline_data_size(req))
2519                 req->pdu_len = req->data_len;
2520
2521         pdu->hdr.type = nvme_tcp_cmd;
2522         pdu->hdr.flags = 0;
2523         if (queue->hdr_digest)
2524                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2525         if (queue->data_digest && req->pdu_len) {
2526                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2527                 ddgst = nvme_tcp_ddgst_len(queue);
2528         }
2529         pdu->hdr.hlen = sizeof(*pdu);
2530         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2531         pdu->hdr.plen =
2532                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2533
2534         ret = nvme_tcp_map_data(queue, rq);
2535         if (unlikely(ret)) {
2536                 nvme_cleanup_cmd(rq);
2537                 dev_err(queue->ctrl->ctrl.device,
2538                         "Failed to map data (%d)\n", ret);
2539                 return ret;
2540         }
2541
2542         return 0;
2543 }
2544
2545 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2546 {
2547         struct nvme_tcp_queue *queue = hctx->driver_data;
2548
2549         if (!llist_empty(&queue->req_list))
2550                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2551 }
2552
2553 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2554                 const struct blk_mq_queue_data *bd)
2555 {
2556         struct nvme_ns *ns = hctx->queue->queuedata;
2557         struct nvme_tcp_queue *queue = hctx->driver_data;
2558         struct request *rq = bd->rq;
2559         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2560         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2561         blk_status_t ret;
2562
2563         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2564                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2565
2566         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2567         if (unlikely(ret))
2568                 return ret;
2569
2570         nvme_start_request(rq);
2571
2572         nvme_tcp_queue_request(req, true, bd->last);
2573
2574         return BLK_STS_OK;
2575 }
2576
2577 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2578 {
2579         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2580
2581         nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2582 }
2583
2584 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2585 {
2586         struct nvme_tcp_queue *queue = hctx->driver_data;
2587         struct sock *sk = queue->sock->sk;
2588
2589         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2590                 return 0;
2591
2592         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2593         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2594                 sk_busy_loop(sk, true);
2595         nvme_tcp_try_recv(queue);
2596         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2597         return queue->nr_cqe;
2598 }
2599
2600 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2601 {
2602         struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2603         struct sockaddr_storage src_addr;
2604         int ret, len;
2605
2606         len = nvmf_get_address(ctrl, buf, size);
2607
2608         mutex_lock(&queue->queue_lock);
2609
2610         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2611                 goto done;
2612         ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2613         if (ret > 0) {
2614                 if (len > 0)
2615                         len--; /* strip trailing newline */
2616                 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2617                                 (len) ? "," : "", &src_addr);
2618         }
2619 done:
2620         mutex_unlock(&queue->queue_lock);
2621
2622         return len;
2623 }
2624
2625 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2626         .queue_rq       = nvme_tcp_queue_rq,
2627         .commit_rqs     = nvme_tcp_commit_rqs,
2628         .complete       = nvme_complete_rq,
2629         .init_request   = nvme_tcp_init_request,
2630         .exit_request   = nvme_tcp_exit_request,
2631         .init_hctx      = nvme_tcp_init_hctx,
2632         .timeout        = nvme_tcp_timeout,
2633         .map_queues     = nvme_tcp_map_queues,
2634         .poll           = nvme_tcp_poll,
2635 };
2636
2637 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2638         .queue_rq       = nvme_tcp_queue_rq,
2639         .complete       = nvme_complete_rq,
2640         .init_request   = nvme_tcp_init_request,
2641         .exit_request   = nvme_tcp_exit_request,
2642         .init_hctx      = nvme_tcp_init_admin_hctx,
2643         .timeout        = nvme_tcp_timeout,
2644 };
2645
2646 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2647         .name                   = "tcp",
2648         .module                 = THIS_MODULE,
2649         .flags                  = NVME_F_FABRICS | NVME_F_BLOCKING,
2650         .reg_read32             = nvmf_reg_read32,
2651         .reg_read64             = nvmf_reg_read64,
2652         .reg_write32            = nvmf_reg_write32,
2653         .free_ctrl              = nvme_tcp_free_ctrl,
2654         .submit_async_event     = nvme_tcp_submit_async_event,
2655         .delete_ctrl            = nvme_tcp_delete_ctrl,
2656         .get_address            = nvme_tcp_get_address,
2657         .stop_ctrl              = nvme_tcp_stop_ctrl,
2658 };
2659
2660 static bool
2661 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2662 {
2663         struct nvme_tcp_ctrl *ctrl;
2664         bool found = false;
2665
2666         mutex_lock(&nvme_tcp_ctrl_mutex);
2667         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2668                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2669                 if (found)
2670                         break;
2671         }
2672         mutex_unlock(&nvme_tcp_ctrl_mutex);
2673
2674         return found;
2675 }
2676
2677 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2678                 struct nvmf_ctrl_options *opts)
2679 {
2680         struct nvme_tcp_ctrl *ctrl;
2681         int ret;
2682
2683         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2684         if (!ctrl)
2685                 return ERR_PTR(-ENOMEM);
2686
2687         INIT_LIST_HEAD(&ctrl->list);
2688         ctrl->ctrl.opts = opts;
2689         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2690                                 opts->nr_poll_queues + 1;
2691         ctrl->ctrl.sqsize = opts->queue_size - 1;
2692         ctrl->ctrl.kato = opts->kato;
2693
2694         INIT_DELAYED_WORK(&ctrl->connect_work,
2695                         nvme_tcp_reconnect_ctrl_work);
2696         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2697         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2698
2699         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2700                 opts->trsvcid =
2701                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2702                 if (!opts->trsvcid) {
2703                         ret = -ENOMEM;
2704                         goto out_free_ctrl;
2705                 }
2706                 opts->mask |= NVMF_OPT_TRSVCID;
2707         }
2708
2709         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2710                         opts->traddr, opts->trsvcid, &ctrl->addr);
2711         if (ret) {
2712                 pr_err("malformed address passed: %s:%s\n",
2713                         opts->traddr, opts->trsvcid);
2714                 goto out_free_ctrl;
2715         }
2716
2717         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2718                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2719                         opts->host_traddr, NULL, &ctrl->src_addr);
2720                 if (ret) {
2721                         pr_err("malformed src address passed: %s\n",
2722                                opts->host_traddr);
2723                         goto out_free_ctrl;
2724                 }
2725         }
2726
2727         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2728                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2729                         pr_err("invalid interface passed: %s\n",
2730                                opts->host_iface);
2731                         ret = -ENODEV;
2732                         goto out_free_ctrl;
2733                 }
2734         }
2735
2736         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2737                 ret = -EALREADY;
2738                 goto out_free_ctrl;
2739         }
2740
2741         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2742                                 GFP_KERNEL);
2743         if (!ctrl->queues) {
2744                 ret = -ENOMEM;
2745                 goto out_free_ctrl;
2746         }
2747
2748         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2749         if (ret)
2750                 goto out_kfree_queues;
2751
2752         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2753                 WARN_ON_ONCE(1);
2754                 ret = -EINTR;
2755                 goto out_uninit_ctrl;
2756         }
2757
2758         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2759         if (ret)
2760                 goto out_uninit_ctrl;
2761
2762         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2763                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2764
2765         mutex_lock(&nvme_tcp_ctrl_mutex);
2766         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2767         mutex_unlock(&nvme_tcp_ctrl_mutex);
2768
2769         return &ctrl->ctrl;
2770
2771 out_uninit_ctrl:
2772         nvme_uninit_ctrl(&ctrl->ctrl);
2773         nvme_put_ctrl(&ctrl->ctrl);
2774         if (ret > 0)
2775                 ret = -EIO;
2776         return ERR_PTR(ret);
2777 out_kfree_queues:
2778         kfree(ctrl->queues);
2779 out_free_ctrl:
2780         kfree(ctrl);
2781         return ERR_PTR(ret);
2782 }
2783
2784 static struct nvmf_transport_ops nvme_tcp_transport = {
2785         .name           = "tcp",
2786         .module         = THIS_MODULE,
2787         .required_opts  = NVMF_OPT_TRADDR,
2788         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2789                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2790                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2791                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2792                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2793                           NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2794         .create_ctrl    = nvme_tcp_create_ctrl,
2795 };
2796
2797 static int __init nvme_tcp_init_module(void)
2798 {
2799         unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2800
2801         BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2802         BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2803         BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2804         BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2805         BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2806         BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2807         BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2808         BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2809
2810         if (wq_unbound)
2811                 wq_flags |= WQ_UNBOUND;
2812
2813         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2814         if (!nvme_tcp_wq)
2815                 return -ENOMEM;
2816
2817         nvmf_register_transport(&nvme_tcp_transport);
2818         return 0;
2819 }
2820
2821 static void __exit nvme_tcp_cleanup_module(void)
2822 {
2823         struct nvme_tcp_ctrl *ctrl;
2824
2825         nvmf_unregister_transport(&nvme_tcp_transport);
2826
2827         mutex_lock(&nvme_tcp_ctrl_mutex);
2828         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2829                 nvme_delete_ctrl(&ctrl->ctrl);
2830         mutex_unlock(&nvme_tcp_ctrl_mutex);
2831         flush_workqueue(nvme_delete_wq);
2832
2833         destroy_workqueue(nvme_tcp_wq);
2834 }
2835
2836 module_init(nvme_tcp_init_module);
2837 module_exit(nvme_tcp_cleanup_module);
2838
2839 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2840 MODULE_LICENSE("GPL v2");