f2bb9d95ecf4bc6cde907d1f9af3e2d89998f376
[sfrench/cifs-2.6.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <asm/unaligned.h>
20
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28
29 /*
30  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31  */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE               4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
35
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS                     8
38 #define NVMET_RDMA_MAX_METADATA_MDTS            5
39
40 #define NVMET_RDMA_BACKLOG 128
41
42 struct nvmet_rdma_srq;
43
44 struct nvmet_rdma_cmd {
45         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
46         struct ib_cqe           cqe;
47         struct ib_recv_wr       wr;
48         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
49         struct nvme_command     *nvme_cmd;
50         struct nvmet_rdma_queue *queue;
51         struct nvmet_rdma_srq   *nsrq;
52 };
53
54 enum {
55         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
56         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
57 };
58
59 struct nvmet_rdma_rsp {
60         struct ib_sge           send_sge;
61         struct ib_cqe           send_cqe;
62         struct ib_send_wr       send_wr;
63
64         struct nvmet_rdma_cmd   *cmd;
65         struct nvmet_rdma_queue *queue;
66
67         struct ib_cqe           read_cqe;
68         struct ib_cqe           write_cqe;
69         struct rdma_rw_ctx      rw;
70
71         struct nvmet_req        req;
72
73         bool                    allocated;
74         u8                      n_rdma;
75         u32                     flags;
76         u32                     invalidate_rkey;
77
78         struct list_head        wait_list;
79         struct list_head        free_list;
80 };
81
82 enum nvmet_rdma_queue_state {
83         NVMET_RDMA_Q_CONNECTING,
84         NVMET_RDMA_Q_LIVE,
85         NVMET_RDMA_Q_DISCONNECTING,
86 };
87
88 struct nvmet_rdma_queue {
89         struct rdma_cm_id       *cm_id;
90         struct ib_qp            *qp;
91         struct nvmet_port       *port;
92         struct ib_cq            *cq;
93         atomic_t                sq_wr_avail;
94         struct nvmet_rdma_device *dev;
95         struct nvmet_rdma_srq   *nsrq;
96         spinlock_t              state_lock;
97         enum nvmet_rdma_queue_state state;
98         struct nvmet_cq         nvme_cq;
99         struct nvmet_sq         nvme_sq;
100
101         struct nvmet_rdma_rsp   *rsps;
102         struct list_head        free_rsps;
103         spinlock_t              rsps_lock;
104         struct nvmet_rdma_cmd   *cmds;
105
106         struct work_struct      release_work;
107         struct list_head        rsp_wait_list;
108         struct list_head        rsp_wr_wait_list;
109         spinlock_t              rsp_wr_wait_lock;
110
111         int                     idx;
112         int                     host_qid;
113         int                     comp_vector;
114         int                     recv_queue_size;
115         int                     send_queue_size;
116
117         struct list_head        queue_list;
118 };
119
120 struct nvmet_rdma_port {
121         struct nvmet_port       *nport;
122         struct sockaddr_storage addr;
123         struct rdma_cm_id       *cm_id;
124         struct delayed_work     repair_work;
125 };
126
127 struct nvmet_rdma_srq {
128         struct ib_srq            *srq;
129         struct nvmet_rdma_cmd    *cmds;
130         struct nvmet_rdma_device *ndev;
131 };
132
133 struct nvmet_rdma_device {
134         struct ib_device        *device;
135         struct ib_pd            *pd;
136         struct nvmet_rdma_srq   **srqs;
137         int                     srq_count;
138         size_t                  srq_size;
139         struct kref             ref;
140         struct list_head        entry;
141         int                     inline_data_size;
142         int                     inline_page_count;
143 };
144
145 static bool nvmet_rdma_use_srq;
146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
147 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
148
149 static int srq_size_set(const char *val, const struct kernel_param *kp);
150 static const struct kernel_param_ops srq_size_ops = {
151         .set = srq_size_set,
152         .get = param_get_int,
153 };
154
155 static int nvmet_rdma_srq_size = 1024;
156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
158
159 static DEFINE_IDA(nvmet_rdma_queue_ida);
160 static LIST_HEAD(nvmet_rdma_queue_list);
161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
162
163 static LIST_HEAD(device_list);
164 static DEFINE_MUTEX(device_list_mutex);
165
166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
174                                 struct nvmet_rdma_rsp *r);
175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
176                                 struct nvmet_rdma_rsp *r);
177
178 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
179
180 static int srq_size_set(const char *val, const struct kernel_param *kp)
181 {
182         int n = 0, ret;
183
184         ret = kstrtoint(val, 10, &n);
185         if (ret != 0 || n < 256)
186                 return -EINVAL;
187
188         return param_set_int(val, kp);
189 }
190
191 static int num_pages(int len)
192 {
193         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
194 }
195
196 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
197 {
198         return nvme_is_write(rsp->req.cmd) &&
199                 rsp->req.transfer_len &&
200                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
201 }
202
203 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
204 {
205         return !nvme_is_write(rsp->req.cmd) &&
206                 rsp->req.transfer_len &&
207                 !rsp->req.cqe->status &&
208                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
209 }
210
211 static inline struct nvmet_rdma_rsp *
212 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
213 {
214         struct nvmet_rdma_rsp *rsp;
215         unsigned long flags;
216
217         spin_lock_irqsave(&queue->rsps_lock, flags);
218         rsp = list_first_entry_or_null(&queue->free_rsps,
219                                 struct nvmet_rdma_rsp, free_list);
220         if (likely(rsp))
221                 list_del(&rsp->free_list);
222         spin_unlock_irqrestore(&queue->rsps_lock, flags);
223
224         if (unlikely(!rsp)) {
225                 int ret;
226
227                 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
228                 if (unlikely(!rsp))
229                         return NULL;
230                 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
231                 if (unlikely(ret)) {
232                         kfree(rsp);
233                         return NULL;
234                 }
235
236                 rsp->allocated = true;
237         }
238
239         return rsp;
240 }
241
242 static inline void
243 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
244 {
245         unsigned long flags;
246
247         if (unlikely(rsp->allocated)) {
248                 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
249                 kfree(rsp);
250                 return;
251         }
252
253         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
254         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
255         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
256 }
257
258 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
259                                 struct nvmet_rdma_cmd *c)
260 {
261         struct scatterlist *sg;
262         struct ib_sge *sge;
263         int i;
264
265         if (!ndev->inline_data_size)
266                 return;
267
268         sg = c->inline_sg;
269         sge = &c->sge[1];
270
271         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
272                 if (sge->length)
273                         ib_dma_unmap_page(ndev->device, sge->addr,
274                                         sge->length, DMA_FROM_DEVICE);
275                 if (sg_page(sg))
276                         __free_page(sg_page(sg));
277         }
278 }
279
280 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
281                                 struct nvmet_rdma_cmd *c)
282 {
283         struct scatterlist *sg;
284         struct ib_sge *sge;
285         struct page *pg;
286         int len;
287         int i;
288
289         if (!ndev->inline_data_size)
290                 return 0;
291
292         sg = c->inline_sg;
293         sg_init_table(sg, ndev->inline_page_count);
294         sge = &c->sge[1];
295         len = ndev->inline_data_size;
296
297         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
298                 pg = alloc_page(GFP_KERNEL);
299                 if (!pg)
300                         goto out_err;
301                 sg_assign_page(sg, pg);
302                 sge->addr = ib_dma_map_page(ndev->device,
303                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
304                 if (ib_dma_mapping_error(ndev->device, sge->addr))
305                         goto out_err;
306                 sge->length = min_t(int, len, PAGE_SIZE);
307                 sge->lkey = ndev->pd->local_dma_lkey;
308                 len -= sge->length;
309         }
310
311         return 0;
312 out_err:
313         for (; i >= 0; i--, sg--, sge--) {
314                 if (sge->length)
315                         ib_dma_unmap_page(ndev->device, sge->addr,
316                                         sge->length, DMA_FROM_DEVICE);
317                 if (sg_page(sg))
318                         __free_page(sg_page(sg));
319         }
320         return -ENOMEM;
321 }
322
323 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
324                         struct nvmet_rdma_cmd *c, bool admin)
325 {
326         /* NVMe command / RDMA RECV */
327         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
328         if (!c->nvme_cmd)
329                 goto out;
330
331         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
332                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
333         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
334                 goto out_free_cmd;
335
336         c->sge[0].length = sizeof(*c->nvme_cmd);
337         c->sge[0].lkey = ndev->pd->local_dma_lkey;
338
339         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
340                 goto out_unmap_cmd;
341
342         c->cqe.done = nvmet_rdma_recv_done;
343
344         c->wr.wr_cqe = &c->cqe;
345         c->wr.sg_list = c->sge;
346         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
347
348         return 0;
349
350 out_unmap_cmd:
351         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
352                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
353 out_free_cmd:
354         kfree(c->nvme_cmd);
355
356 out:
357         return -ENOMEM;
358 }
359
360 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
361                 struct nvmet_rdma_cmd *c, bool admin)
362 {
363         if (!admin)
364                 nvmet_rdma_free_inline_pages(ndev, c);
365         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
366                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
367         kfree(c->nvme_cmd);
368 }
369
370 static struct nvmet_rdma_cmd *
371 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
372                 int nr_cmds, bool admin)
373 {
374         struct nvmet_rdma_cmd *cmds;
375         int ret = -EINVAL, i;
376
377         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
378         if (!cmds)
379                 goto out;
380
381         for (i = 0; i < nr_cmds; i++) {
382                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
383                 if (ret)
384                         goto out_free;
385         }
386
387         return cmds;
388
389 out_free:
390         while (--i >= 0)
391                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
392         kfree(cmds);
393 out:
394         return ERR_PTR(ret);
395 }
396
397 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
398                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
399 {
400         int i;
401
402         for (i = 0; i < nr_cmds; i++)
403                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
404         kfree(cmds);
405 }
406
407 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
408                 struct nvmet_rdma_rsp *r)
409 {
410         /* NVMe CQE / RDMA SEND */
411         r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
412         if (!r->req.cqe)
413                 goto out;
414
415         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
416                         sizeof(*r->req.cqe), DMA_TO_DEVICE);
417         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
418                 goto out_free_rsp;
419
420         if (ib_dma_pci_p2p_dma_supported(ndev->device))
421                 r->req.p2p_client = &ndev->device->dev;
422         r->send_sge.length = sizeof(*r->req.cqe);
423         r->send_sge.lkey = ndev->pd->local_dma_lkey;
424
425         r->send_cqe.done = nvmet_rdma_send_done;
426
427         r->send_wr.wr_cqe = &r->send_cqe;
428         r->send_wr.sg_list = &r->send_sge;
429         r->send_wr.num_sge = 1;
430         r->send_wr.send_flags = IB_SEND_SIGNALED;
431
432         /* Data In / RDMA READ */
433         r->read_cqe.done = nvmet_rdma_read_data_done;
434         /* Data Out / RDMA WRITE */
435         r->write_cqe.done = nvmet_rdma_write_data_done;
436
437         return 0;
438
439 out_free_rsp:
440         kfree(r->req.cqe);
441 out:
442         return -ENOMEM;
443 }
444
445 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
446                 struct nvmet_rdma_rsp *r)
447 {
448         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
449                                 sizeof(*r->req.cqe), DMA_TO_DEVICE);
450         kfree(r->req.cqe);
451 }
452
453 static int
454 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
455 {
456         struct nvmet_rdma_device *ndev = queue->dev;
457         int nr_rsps = queue->recv_queue_size * 2;
458         int ret = -EINVAL, i;
459
460         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
461                         GFP_KERNEL);
462         if (!queue->rsps)
463                 goto out;
464
465         for (i = 0; i < nr_rsps; i++) {
466                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
467
468                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
469                 if (ret)
470                         goto out_free;
471
472                 list_add_tail(&rsp->free_list, &queue->free_rsps);
473         }
474
475         return 0;
476
477 out_free:
478         while (--i >= 0) {
479                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
480
481                 list_del(&rsp->free_list);
482                 nvmet_rdma_free_rsp(ndev, rsp);
483         }
484         kfree(queue->rsps);
485 out:
486         return ret;
487 }
488
489 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
490 {
491         struct nvmet_rdma_device *ndev = queue->dev;
492         int i, nr_rsps = queue->recv_queue_size * 2;
493
494         for (i = 0; i < nr_rsps; i++) {
495                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
496
497                 list_del(&rsp->free_list);
498                 nvmet_rdma_free_rsp(ndev, rsp);
499         }
500         kfree(queue->rsps);
501 }
502
503 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
504                 struct nvmet_rdma_cmd *cmd)
505 {
506         int ret;
507
508         ib_dma_sync_single_for_device(ndev->device,
509                 cmd->sge[0].addr, cmd->sge[0].length,
510                 DMA_FROM_DEVICE);
511
512         if (cmd->nsrq)
513                 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
514         else
515                 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
516
517         if (unlikely(ret))
518                 pr_err("post_recv cmd failed\n");
519
520         return ret;
521 }
522
523 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
524 {
525         spin_lock(&queue->rsp_wr_wait_lock);
526         while (!list_empty(&queue->rsp_wr_wait_list)) {
527                 struct nvmet_rdma_rsp *rsp;
528                 bool ret;
529
530                 rsp = list_entry(queue->rsp_wr_wait_list.next,
531                                 struct nvmet_rdma_rsp, wait_list);
532                 list_del(&rsp->wait_list);
533
534                 spin_unlock(&queue->rsp_wr_wait_lock);
535                 ret = nvmet_rdma_execute_command(rsp);
536                 spin_lock(&queue->rsp_wr_wait_lock);
537
538                 if (!ret) {
539                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
540                         break;
541                 }
542         }
543         spin_unlock(&queue->rsp_wr_wait_lock);
544 }
545
546 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
547 {
548         struct ib_mr_status mr_status;
549         int ret;
550         u16 status = 0;
551
552         ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
553         if (ret) {
554                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
555                 return NVME_SC_INVALID_PI;
556         }
557
558         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
559                 switch (mr_status.sig_err.err_type) {
560                 case IB_SIG_BAD_GUARD:
561                         status = NVME_SC_GUARD_CHECK;
562                         break;
563                 case IB_SIG_BAD_REFTAG:
564                         status = NVME_SC_REFTAG_CHECK;
565                         break;
566                 case IB_SIG_BAD_APPTAG:
567                         status = NVME_SC_APPTAG_CHECK;
568                         break;
569                 }
570                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
571                        mr_status.sig_err.err_type,
572                        mr_status.sig_err.expected,
573                        mr_status.sig_err.actual);
574         }
575
576         return status;
577 }
578
579 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
580                 struct nvme_command *cmd, struct ib_sig_domain *domain,
581                 u16 control, u8 pi_type)
582 {
583         domain->sig_type = IB_SIG_TYPE_T10_DIF;
584         domain->sig.dif.bg_type = IB_T10DIF_CRC;
585         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
586         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
587         if (control & NVME_RW_PRINFO_PRCHK_REF)
588                 domain->sig.dif.ref_remap = true;
589
590         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
591         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
592         domain->sig.dif.app_escape = true;
593         if (pi_type == NVME_NS_DPS_PI_TYPE3)
594                 domain->sig.dif.ref_escape = true;
595 }
596
597 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
598                                      struct ib_sig_attrs *sig_attrs)
599 {
600         struct nvme_command *cmd = req->cmd;
601         u16 control = le16_to_cpu(cmd->rw.control);
602         u8 pi_type = req->ns->pi_type;
603         struct blk_integrity *bi;
604
605         bi = bdev_get_integrity(req->ns->bdev);
606
607         memset(sig_attrs, 0, sizeof(*sig_attrs));
608
609         if (control & NVME_RW_PRINFO_PRACT) {
610                 /* for WRITE_INSERT/READ_STRIP no wire domain */
611                 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
612                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
613                                           pi_type);
614                 /* Clear the PRACT bit since HCA will generate/verify the PI */
615                 control &= ~NVME_RW_PRINFO_PRACT;
616                 cmd->rw.control = cpu_to_le16(control);
617                 /* PI is added by the HW */
618                 req->transfer_len += req->metadata_len;
619         } else {
620                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
621                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
622                                           pi_type);
623                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
624                                           pi_type);
625         }
626
627         if (control & NVME_RW_PRINFO_PRCHK_REF)
628                 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
629         if (control & NVME_RW_PRINFO_PRCHK_GUARD)
630                 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
631         if (control & NVME_RW_PRINFO_PRCHK_APP)
632                 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
633 }
634
635 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
636                                   struct ib_sig_attrs *sig_attrs)
637 {
638         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
639         struct nvmet_req *req = &rsp->req;
640         int ret;
641
642         if (req->metadata_len)
643                 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
644                         cm_id->port_num, req->sg, req->sg_cnt,
645                         req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
646                         addr, key, nvmet_data_dir(req));
647         else
648                 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
649                                        req->sg, req->sg_cnt, 0, addr, key,
650                                        nvmet_data_dir(req));
651
652         return ret;
653 }
654
655 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
656 {
657         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
658         struct nvmet_req *req = &rsp->req;
659
660         if (req->metadata_len)
661                 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
662                         cm_id->port_num, req->sg, req->sg_cnt,
663                         req->metadata_sg, req->metadata_sg_cnt,
664                         nvmet_data_dir(req));
665         else
666                 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
667                                     req->sg, req->sg_cnt, nvmet_data_dir(req));
668 }
669
670 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
671 {
672         struct nvmet_rdma_queue *queue = rsp->queue;
673
674         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
675
676         if (rsp->n_rdma)
677                 nvmet_rdma_rw_ctx_destroy(rsp);
678
679         if (rsp->req.sg != rsp->cmd->inline_sg)
680                 nvmet_req_free_sgls(&rsp->req);
681
682         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
683                 nvmet_rdma_process_wr_wait_list(queue);
684
685         nvmet_rdma_put_rsp(rsp);
686 }
687
688 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
689 {
690         if (queue->nvme_sq.ctrl) {
691                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
692         } else {
693                 /*
694                  * we didn't setup the controller yet in case
695                  * of admin connect error, just disconnect and
696                  * cleanup the queue
697                  */
698                 nvmet_rdma_queue_disconnect(queue);
699         }
700 }
701
702 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
703 {
704         struct nvmet_rdma_rsp *rsp =
705                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
706         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
707
708         nvmet_rdma_release_rsp(rsp);
709
710         if (unlikely(wc->status != IB_WC_SUCCESS &&
711                      wc->status != IB_WC_WR_FLUSH_ERR)) {
712                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
713                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
714                 nvmet_rdma_error_comp(queue);
715         }
716 }
717
718 static void nvmet_rdma_queue_response(struct nvmet_req *req)
719 {
720         struct nvmet_rdma_rsp *rsp =
721                 container_of(req, struct nvmet_rdma_rsp, req);
722         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
723         struct ib_send_wr *first_wr;
724
725         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
726                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
727                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
728         } else {
729                 rsp->send_wr.opcode = IB_WR_SEND;
730         }
731
732         if (nvmet_rdma_need_data_out(rsp)) {
733                 if (rsp->req.metadata_len)
734                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735                                         cm_id->port_num, &rsp->write_cqe, NULL);
736                 else
737                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
738                                         cm_id->port_num, NULL, &rsp->send_wr);
739         } else {
740                 first_wr = &rsp->send_wr;
741         }
742
743         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
744
745         ib_dma_sync_single_for_device(rsp->queue->dev->device,
746                 rsp->send_sge.addr, rsp->send_sge.length,
747                 DMA_TO_DEVICE);
748
749         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
750                 pr_err("sending cmd response failed\n");
751                 nvmet_rdma_release_rsp(rsp);
752         }
753 }
754
755 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
756 {
757         struct nvmet_rdma_rsp *rsp =
758                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
759         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
760         u16 status = 0;
761
762         WARN_ON(rsp->n_rdma <= 0);
763         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
764         rsp->n_rdma = 0;
765
766         if (unlikely(wc->status != IB_WC_SUCCESS)) {
767                 nvmet_rdma_rw_ctx_destroy(rsp);
768                 nvmet_req_uninit(&rsp->req);
769                 nvmet_rdma_release_rsp(rsp);
770                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
771                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
772                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
773                         nvmet_rdma_error_comp(queue);
774                 }
775                 return;
776         }
777
778         if (rsp->req.metadata_len)
779                 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
780         nvmet_rdma_rw_ctx_destroy(rsp);
781
782         if (unlikely(status))
783                 nvmet_req_complete(&rsp->req, status);
784         else
785                 rsp->req.execute(&rsp->req);
786 }
787
788 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
789 {
790         struct nvmet_rdma_rsp *rsp =
791                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
792         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
793         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
794         u16 status;
795
796         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
797                 return;
798
799         WARN_ON(rsp->n_rdma <= 0);
800         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
801         rsp->n_rdma = 0;
802
803         if (unlikely(wc->status != IB_WC_SUCCESS)) {
804                 nvmet_rdma_rw_ctx_destroy(rsp);
805                 nvmet_req_uninit(&rsp->req);
806                 nvmet_rdma_release_rsp(rsp);
807                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
808                         pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
809                                 ib_wc_status_msg(wc->status), wc->status);
810                         nvmet_rdma_error_comp(queue);
811                 }
812                 return;
813         }
814
815         /*
816          * Upon RDMA completion check the signature status
817          * - if succeeded send good NVMe response
818          * - if failed send bad NVMe response with appropriate error
819          */
820         status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
821         if (unlikely(status))
822                 rsp->req.cqe->status = cpu_to_le16(status << 1);
823         nvmet_rdma_rw_ctx_destroy(rsp);
824
825         if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
826                 pr_err("sending cmd response failed\n");
827                 nvmet_rdma_release_rsp(rsp);
828         }
829 }
830
831 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
832                 u64 off)
833 {
834         int sg_count = num_pages(len);
835         struct scatterlist *sg;
836         int i;
837
838         sg = rsp->cmd->inline_sg;
839         for (i = 0; i < sg_count; i++, sg++) {
840                 if (i < sg_count - 1)
841                         sg_unmark_end(sg);
842                 else
843                         sg_mark_end(sg);
844                 sg->offset = off;
845                 sg->length = min_t(int, len, PAGE_SIZE - off);
846                 len -= sg->length;
847                 if (!i)
848                         off = 0;
849         }
850
851         rsp->req.sg = rsp->cmd->inline_sg;
852         rsp->req.sg_cnt = sg_count;
853 }
854
855 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
856 {
857         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
858         u64 off = le64_to_cpu(sgl->addr);
859         u32 len = le32_to_cpu(sgl->length);
860
861         if (!nvme_is_write(rsp->req.cmd)) {
862                 rsp->req.error_loc =
863                         offsetof(struct nvme_common_command, opcode);
864                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
865         }
866
867         if (off + len > rsp->queue->dev->inline_data_size) {
868                 pr_err("invalid inline data offset!\n");
869                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
870         }
871
872         /* no data command? */
873         if (!len)
874                 return 0;
875
876         nvmet_rdma_use_inline_sg(rsp, len, off);
877         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
878         rsp->req.transfer_len += len;
879         return 0;
880 }
881
882 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
883                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
884 {
885         u64 addr = le64_to_cpu(sgl->addr);
886         u32 key = get_unaligned_le32(sgl->key);
887         struct ib_sig_attrs sig_attrs;
888         int ret;
889
890         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
891
892         /* no data command? */
893         if (!rsp->req.transfer_len)
894                 return 0;
895
896         if (rsp->req.metadata_len)
897                 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
898
899         ret = nvmet_req_alloc_sgls(&rsp->req);
900         if (unlikely(ret < 0))
901                 goto error_out;
902
903         ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
904         if (unlikely(ret < 0))
905                 goto error_out;
906         rsp->n_rdma += ret;
907
908         if (invalidate) {
909                 rsp->invalidate_rkey = key;
910                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
911         }
912
913         return 0;
914
915 error_out:
916         rsp->req.transfer_len = 0;
917         return NVME_SC_INTERNAL;
918 }
919
920 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
921 {
922         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
923
924         switch (sgl->type >> 4) {
925         case NVME_SGL_FMT_DATA_DESC:
926                 switch (sgl->type & 0xf) {
927                 case NVME_SGL_FMT_OFFSET:
928                         return nvmet_rdma_map_sgl_inline(rsp);
929                 default:
930                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
931                         rsp->req.error_loc =
932                                 offsetof(struct nvme_common_command, dptr);
933                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
934                 }
935         case NVME_KEY_SGL_FMT_DATA_DESC:
936                 switch (sgl->type & 0xf) {
937                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
938                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
939                 case NVME_SGL_FMT_ADDRESS:
940                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
941                 default:
942                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
943                         rsp->req.error_loc =
944                                 offsetof(struct nvme_common_command, dptr);
945                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
946                 }
947         default:
948                 pr_err("invalid SGL type: %#x\n", sgl->type);
949                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
950                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
951         }
952 }
953
954 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
955 {
956         struct nvmet_rdma_queue *queue = rsp->queue;
957
958         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
959                         &queue->sq_wr_avail) < 0)) {
960                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
961                                 1 + rsp->n_rdma, queue->idx,
962                                 queue->nvme_sq.ctrl->cntlid);
963                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
964                 return false;
965         }
966
967         if (nvmet_rdma_need_data_in(rsp)) {
968                 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
969                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
970                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
971         } else {
972                 rsp->req.execute(&rsp->req);
973         }
974
975         return true;
976 }
977
978 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
979                 struct nvmet_rdma_rsp *cmd)
980 {
981         u16 status;
982
983         ib_dma_sync_single_for_cpu(queue->dev->device,
984                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
985                 DMA_FROM_DEVICE);
986         ib_dma_sync_single_for_cpu(queue->dev->device,
987                 cmd->send_sge.addr, cmd->send_sge.length,
988                 DMA_TO_DEVICE);
989
990         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
991                         &queue->nvme_sq, &nvmet_rdma_ops))
992                 return;
993
994         status = nvmet_rdma_map_sgl(cmd);
995         if (status)
996                 goto out_err;
997
998         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
999                 spin_lock(&queue->rsp_wr_wait_lock);
1000                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
1001                 spin_unlock(&queue->rsp_wr_wait_lock);
1002         }
1003
1004         return;
1005
1006 out_err:
1007         nvmet_req_complete(&cmd->req, status);
1008 }
1009
1010 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1011 {
1012         struct nvmet_rdma_cmd *cmd =
1013                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1014         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1015         struct nvmet_rdma_rsp *rsp;
1016
1017         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1018                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1019                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1020                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
1021                                 wc->status);
1022                         nvmet_rdma_error_comp(queue);
1023                 }
1024                 return;
1025         }
1026
1027         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1028                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1029                 nvmet_rdma_error_comp(queue);
1030                 return;
1031         }
1032
1033         cmd->queue = queue;
1034         rsp = nvmet_rdma_get_rsp(queue);
1035         if (unlikely(!rsp)) {
1036                 /*
1037                  * we get here only under memory pressure,
1038                  * silently drop and have the host retry
1039                  * as we can't even fail it.
1040                  */
1041                 nvmet_rdma_post_recv(queue->dev, cmd);
1042                 return;
1043         }
1044         rsp->queue = queue;
1045         rsp->cmd = cmd;
1046         rsp->flags = 0;
1047         rsp->req.cmd = cmd->nvme_cmd;
1048         rsp->req.port = queue->port;
1049         rsp->n_rdma = 0;
1050
1051         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1052                 unsigned long flags;
1053
1054                 spin_lock_irqsave(&queue->state_lock, flags);
1055                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1056                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1057                 else
1058                         nvmet_rdma_put_rsp(rsp);
1059                 spin_unlock_irqrestore(&queue->state_lock, flags);
1060                 return;
1061         }
1062
1063         nvmet_rdma_handle_command(queue, rsp);
1064 }
1065
1066 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1067 {
1068         nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1069                              false);
1070         ib_destroy_srq(nsrq->srq);
1071
1072         kfree(nsrq);
1073 }
1074
1075 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1076 {
1077         int i;
1078
1079         if (!ndev->srqs)
1080                 return;
1081
1082         for (i = 0; i < ndev->srq_count; i++)
1083                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1084
1085         kfree(ndev->srqs);
1086 }
1087
1088 static struct nvmet_rdma_srq *
1089 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1090 {
1091         struct ib_srq_init_attr srq_attr = { NULL, };
1092         size_t srq_size = ndev->srq_size;
1093         struct nvmet_rdma_srq *nsrq;
1094         struct ib_srq *srq;
1095         int ret, i;
1096
1097         nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1098         if (!nsrq)
1099                 return ERR_PTR(-ENOMEM);
1100
1101         srq_attr.attr.max_wr = srq_size;
1102         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1103         srq_attr.attr.srq_limit = 0;
1104         srq_attr.srq_type = IB_SRQT_BASIC;
1105         srq = ib_create_srq(ndev->pd, &srq_attr);
1106         if (IS_ERR(srq)) {
1107                 ret = PTR_ERR(srq);
1108                 goto out_free;
1109         }
1110
1111         nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1112         if (IS_ERR(nsrq->cmds)) {
1113                 ret = PTR_ERR(nsrq->cmds);
1114                 goto out_destroy_srq;
1115         }
1116
1117         nsrq->srq = srq;
1118         nsrq->ndev = ndev;
1119
1120         for (i = 0; i < srq_size; i++) {
1121                 nsrq->cmds[i].nsrq = nsrq;
1122                 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1123                 if (ret)
1124                         goto out_free_cmds;
1125         }
1126
1127         return nsrq;
1128
1129 out_free_cmds:
1130         nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1131 out_destroy_srq:
1132         ib_destroy_srq(srq);
1133 out_free:
1134         kfree(nsrq);
1135         return ERR_PTR(ret);
1136 }
1137
1138 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1139 {
1140         int i, ret;
1141
1142         if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1143                 /*
1144                  * If SRQs aren't supported we just go ahead and use normal
1145                  * non-shared receive queues.
1146                  */
1147                 pr_info("SRQ requested but not supported.\n");
1148                 return 0;
1149         }
1150
1151         ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1152                              nvmet_rdma_srq_size);
1153         ndev->srq_count = min(ndev->device->num_comp_vectors,
1154                               ndev->device->attrs.max_srq);
1155
1156         ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1157         if (!ndev->srqs)
1158                 return -ENOMEM;
1159
1160         for (i = 0; i < ndev->srq_count; i++) {
1161                 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1162                 if (IS_ERR(ndev->srqs[i])) {
1163                         ret = PTR_ERR(ndev->srqs[i]);
1164                         goto err_srq;
1165                 }
1166         }
1167
1168         return 0;
1169
1170 err_srq:
1171         while (--i >= 0)
1172                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1173         kfree(ndev->srqs);
1174         return ret;
1175 }
1176
1177 static void nvmet_rdma_free_dev(struct kref *ref)
1178 {
1179         struct nvmet_rdma_device *ndev =
1180                 container_of(ref, struct nvmet_rdma_device, ref);
1181
1182         mutex_lock(&device_list_mutex);
1183         list_del(&ndev->entry);
1184         mutex_unlock(&device_list_mutex);
1185
1186         nvmet_rdma_destroy_srqs(ndev);
1187         ib_dealloc_pd(ndev->pd);
1188
1189         kfree(ndev);
1190 }
1191
1192 static struct nvmet_rdma_device *
1193 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1194 {
1195         struct nvmet_rdma_port *port = cm_id->context;
1196         struct nvmet_port *nport = port->nport;
1197         struct nvmet_rdma_device *ndev;
1198         int inline_page_count;
1199         int inline_sge_count;
1200         int ret;
1201
1202         mutex_lock(&device_list_mutex);
1203         list_for_each_entry(ndev, &device_list, entry) {
1204                 if (ndev->device->node_guid == cm_id->device->node_guid &&
1205                     kref_get_unless_zero(&ndev->ref))
1206                         goto out_unlock;
1207         }
1208
1209         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1210         if (!ndev)
1211                 goto out_err;
1212
1213         inline_page_count = num_pages(nport->inline_data_size);
1214         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1215                                 cm_id->device->attrs.max_recv_sge) - 1;
1216         if (inline_page_count > inline_sge_count) {
1217                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1218                         nport->inline_data_size, cm_id->device->name,
1219                         inline_sge_count * PAGE_SIZE);
1220                 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1221                 inline_page_count = inline_sge_count;
1222         }
1223         ndev->inline_data_size = nport->inline_data_size;
1224         ndev->inline_page_count = inline_page_count;
1225
1226         if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1227                                   IBK_INTEGRITY_HANDOVER)) {
1228                 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1229                         cm_id->device->name);
1230                 nport->pi_enable = false;
1231         }
1232
1233         ndev->device = cm_id->device;
1234         kref_init(&ndev->ref);
1235
1236         ndev->pd = ib_alloc_pd(ndev->device, 0);
1237         if (IS_ERR(ndev->pd))
1238                 goto out_free_dev;
1239
1240         if (nvmet_rdma_use_srq) {
1241                 ret = nvmet_rdma_init_srqs(ndev);
1242                 if (ret)
1243                         goto out_free_pd;
1244         }
1245
1246         list_add(&ndev->entry, &device_list);
1247 out_unlock:
1248         mutex_unlock(&device_list_mutex);
1249         pr_debug("added %s.\n", ndev->device->name);
1250         return ndev;
1251
1252 out_free_pd:
1253         ib_dealloc_pd(ndev->pd);
1254 out_free_dev:
1255         kfree(ndev);
1256 out_err:
1257         mutex_unlock(&device_list_mutex);
1258         return NULL;
1259 }
1260
1261 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1262 {
1263         struct ib_qp_init_attr qp_attr = { };
1264         struct nvmet_rdma_device *ndev = queue->dev;
1265         int nr_cqe, ret, i, factor;
1266
1267         /*
1268          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1269          */
1270         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1271
1272         queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1273                                    queue->comp_vector, IB_POLL_WORKQUEUE);
1274         if (IS_ERR(queue->cq)) {
1275                 ret = PTR_ERR(queue->cq);
1276                 pr_err("failed to create CQ cqe= %d ret= %d\n",
1277                        nr_cqe + 1, ret);
1278                 goto out;
1279         }
1280
1281         qp_attr.qp_context = queue;
1282         qp_attr.event_handler = nvmet_rdma_qp_event;
1283         qp_attr.send_cq = queue->cq;
1284         qp_attr.recv_cq = queue->cq;
1285         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1286         qp_attr.qp_type = IB_QPT_RC;
1287         /* +1 for drain */
1288         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1289         factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1290                                    1 << NVMET_RDMA_MAX_MDTS);
1291         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1292         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1293                                         ndev->device->attrs.max_send_sge);
1294
1295         if (queue->nsrq) {
1296                 qp_attr.srq = queue->nsrq->srq;
1297         } else {
1298                 /* +1 for drain */
1299                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1300                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1301         }
1302
1303         if (queue->port->pi_enable && queue->host_qid)
1304                 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1305
1306         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1307         if (ret) {
1308                 pr_err("failed to create_qp ret= %d\n", ret);
1309                 goto err_destroy_cq;
1310         }
1311         queue->qp = queue->cm_id->qp;
1312
1313         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1314
1315         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1316                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1317                  qp_attr.cap.max_send_wr, queue->cm_id);
1318
1319         if (!queue->nsrq) {
1320                 for (i = 0; i < queue->recv_queue_size; i++) {
1321                         queue->cmds[i].queue = queue;
1322                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1323                         if (ret)
1324                                 goto err_destroy_qp;
1325                 }
1326         }
1327
1328 out:
1329         return ret;
1330
1331 err_destroy_qp:
1332         rdma_destroy_qp(queue->cm_id);
1333 err_destroy_cq:
1334         ib_cq_pool_put(queue->cq, nr_cqe + 1);
1335         goto out;
1336 }
1337
1338 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1339 {
1340         ib_drain_qp(queue->qp);
1341         if (queue->cm_id)
1342                 rdma_destroy_id(queue->cm_id);
1343         ib_destroy_qp(queue->qp);
1344         ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1345                        queue->send_queue_size + 1);
1346 }
1347
1348 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1349 {
1350         pr_debug("freeing queue %d\n", queue->idx);
1351
1352         nvmet_sq_destroy(&queue->nvme_sq);
1353
1354         nvmet_rdma_destroy_queue_ib(queue);
1355         if (!queue->nsrq) {
1356                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1357                                 queue->recv_queue_size,
1358                                 !queue->host_qid);
1359         }
1360         nvmet_rdma_free_rsps(queue);
1361         ida_free(&nvmet_rdma_queue_ida, queue->idx);
1362         kfree(queue);
1363 }
1364
1365 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1366 {
1367         struct nvmet_rdma_queue *queue =
1368                 container_of(w, struct nvmet_rdma_queue, release_work);
1369         struct nvmet_rdma_device *dev = queue->dev;
1370
1371         nvmet_rdma_free_queue(queue);
1372
1373         kref_put(&dev->ref, nvmet_rdma_free_dev);
1374 }
1375
1376 static int
1377 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1378                                 struct nvmet_rdma_queue *queue)
1379 {
1380         struct nvme_rdma_cm_req *req;
1381
1382         req = (struct nvme_rdma_cm_req *)conn->private_data;
1383         if (!req || conn->private_data_len == 0)
1384                 return NVME_RDMA_CM_INVALID_LEN;
1385
1386         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1387                 return NVME_RDMA_CM_INVALID_RECFMT;
1388
1389         queue->host_qid = le16_to_cpu(req->qid);
1390
1391         /*
1392          * req->hsqsize corresponds to our recv queue size plus 1
1393          * req->hrqsize corresponds to our send queue size
1394          */
1395         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1396         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1397
1398         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1399                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1400
1401         /* XXX: Should we enforce some kind of max for IO queues? */
1402
1403         return 0;
1404 }
1405
1406 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1407                                 enum nvme_rdma_cm_status status)
1408 {
1409         struct nvme_rdma_cm_rej rej;
1410
1411         pr_debug("rejecting connect request: status %d (%s)\n",
1412                  status, nvme_rdma_cm_msg(status));
1413
1414         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1415         rej.sts = cpu_to_le16(status);
1416
1417         return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1418                            IB_CM_REJ_CONSUMER_DEFINED);
1419 }
1420
1421 static struct nvmet_rdma_queue *
1422 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1423                 struct rdma_cm_id *cm_id,
1424                 struct rdma_cm_event *event)
1425 {
1426         struct nvmet_rdma_port *port = cm_id->context;
1427         struct nvmet_rdma_queue *queue;
1428         int ret;
1429
1430         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1431         if (!queue) {
1432                 ret = NVME_RDMA_CM_NO_RSC;
1433                 goto out_reject;
1434         }
1435
1436         ret = nvmet_sq_init(&queue->nvme_sq);
1437         if (ret) {
1438                 ret = NVME_RDMA_CM_NO_RSC;
1439                 goto out_free_queue;
1440         }
1441
1442         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1443         if (ret)
1444                 goto out_destroy_sq;
1445
1446         /*
1447          * Schedules the actual release because calling rdma_destroy_id from
1448          * inside a CM callback would trigger a deadlock. (great API design..)
1449          */
1450         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1451         queue->dev = ndev;
1452         queue->cm_id = cm_id;
1453         queue->port = port->nport;
1454
1455         spin_lock_init(&queue->state_lock);
1456         queue->state = NVMET_RDMA_Q_CONNECTING;
1457         INIT_LIST_HEAD(&queue->rsp_wait_list);
1458         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1459         spin_lock_init(&queue->rsp_wr_wait_lock);
1460         INIT_LIST_HEAD(&queue->free_rsps);
1461         spin_lock_init(&queue->rsps_lock);
1462         INIT_LIST_HEAD(&queue->queue_list);
1463
1464         queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1465         if (queue->idx < 0) {
1466                 ret = NVME_RDMA_CM_NO_RSC;
1467                 goto out_destroy_sq;
1468         }
1469
1470         /*
1471          * Spread the io queues across completion vectors,
1472          * but still keep all admin queues on vector 0.
1473          */
1474         queue->comp_vector = !queue->host_qid ? 0 :
1475                 queue->idx % ndev->device->num_comp_vectors;
1476
1477
1478         ret = nvmet_rdma_alloc_rsps(queue);
1479         if (ret) {
1480                 ret = NVME_RDMA_CM_NO_RSC;
1481                 goto out_ida_remove;
1482         }
1483
1484         if (ndev->srqs) {
1485                 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1486         } else {
1487                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1488                                 queue->recv_queue_size,
1489                                 !queue->host_qid);
1490                 if (IS_ERR(queue->cmds)) {
1491                         ret = NVME_RDMA_CM_NO_RSC;
1492                         goto out_free_responses;
1493                 }
1494         }
1495
1496         ret = nvmet_rdma_create_queue_ib(queue);
1497         if (ret) {
1498                 pr_err("%s: creating RDMA queue failed (%d).\n",
1499                         __func__, ret);
1500                 ret = NVME_RDMA_CM_NO_RSC;
1501                 goto out_free_cmds;
1502         }
1503
1504         return queue;
1505
1506 out_free_cmds:
1507         if (!queue->nsrq) {
1508                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1509                                 queue->recv_queue_size,
1510                                 !queue->host_qid);
1511         }
1512 out_free_responses:
1513         nvmet_rdma_free_rsps(queue);
1514 out_ida_remove:
1515         ida_free(&nvmet_rdma_queue_ida, queue->idx);
1516 out_destroy_sq:
1517         nvmet_sq_destroy(&queue->nvme_sq);
1518 out_free_queue:
1519         kfree(queue);
1520 out_reject:
1521         nvmet_rdma_cm_reject(cm_id, ret);
1522         return NULL;
1523 }
1524
1525 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1526 {
1527         struct nvmet_rdma_queue *queue = priv;
1528
1529         switch (event->event) {
1530         case IB_EVENT_COMM_EST:
1531                 rdma_notify(queue->cm_id, event->event);
1532                 break;
1533         case IB_EVENT_QP_LAST_WQE_REACHED:
1534                 pr_debug("received last WQE reached event for queue=0x%p\n",
1535                          queue);
1536                 break;
1537         default:
1538                 pr_err("received IB QP event: %s (%d)\n",
1539                        ib_event_msg(event->event), event->event);
1540                 break;
1541         }
1542 }
1543
1544 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1545                 struct nvmet_rdma_queue *queue,
1546                 struct rdma_conn_param *p)
1547 {
1548         struct rdma_conn_param  param = { };
1549         struct nvme_rdma_cm_rep priv = { };
1550         int ret = -ENOMEM;
1551
1552         param.rnr_retry_count = 7;
1553         param.flow_control = 1;
1554         param.initiator_depth = min_t(u8, p->initiator_depth,
1555                 queue->dev->device->attrs.max_qp_init_rd_atom);
1556         param.private_data = &priv;
1557         param.private_data_len = sizeof(priv);
1558         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1559         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1560
1561         ret = rdma_accept(cm_id, &param);
1562         if (ret)
1563                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1564
1565         return ret;
1566 }
1567
1568 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1569                 struct rdma_cm_event *event)
1570 {
1571         struct nvmet_rdma_device *ndev;
1572         struct nvmet_rdma_queue *queue;
1573         int ret = -EINVAL;
1574
1575         ndev = nvmet_rdma_find_get_device(cm_id);
1576         if (!ndev) {
1577                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1578                 return -ECONNREFUSED;
1579         }
1580
1581         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1582         if (!queue) {
1583                 ret = -ENOMEM;
1584                 goto put_device;
1585         }
1586
1587         if (queue->host_qid == 0) {
1588                 struct nvmet_rdma_queue *q;
1589                 int pending = 0;
1590
1591                 /* Check for pending controller teardown */
1592                 mutex_lock(&nvmet_rdma_queue_mutex);
1593                 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1594                         if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1595                             q->state == NVMET_RDMA_Q_DISCONNECTING)
1596                                 pending++;
1597                 }
1598                 mutex_unlock(&nvmet_rdma_queue_mutex);
1599                 if (pending > NVMET_RDMA_BACKLOG)
1600                         return NVME_SC_CONNECT_CTRL_BUSY;
1601         }
1602
1603         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1604         if (ret) {
1605                 /*
1606                  * Don't destroy the cm_id in free path, as we implicitly
1607                  * destroy the cm_id here with non-zero ret code.
1608                  */
1609                 queue->cm_id = NULL;
1610                 goto free_queue;
1611         }
1612
1613         mutex_lock(&nvmet_rdma_queue_mutex);
1614         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1615         mutex_unlock(&nvmet_rdma_queue_mutex);
1616
1617         return 0;
1618
1619 free_queue:
1620         nvmet_rdma_free_queue(queue);
1621 put_device:
1622         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1623
1624         return ret;
1625 }
1626
1627 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1628 {
1629         unsigned long flags;
1630
1631         spin_lock_irqsave(&queue->state_lock, flags);
1632         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1633                 pr_warn("trying to establish a connected queue\n");
1634                 goto out_unlock;
1635         }
1636         queue->state = NVMET_RDMA_Q_LIVE;
1637
1638         while (!list_empty(&queue->rsp_wait_list)) {
1639                 struct nvmet_rdma_rsp *cmd;
1640
1641                 cmd = list_first_entry(&queue->rsp_wait_list,
1642                                         struct nvmet_rdma_rsp, wait_list);
1643                 list_del(&cmd->wait_list);
1644
1645                 spin_unlock_irqrestore(&queue->state_lock, flags);
1646                 nvmet_rdma_handle_command(queue, cmd);
1647                 spin_lock_irqsave(&queue->state_lock, flags);
1648         }
1649
1650 out_unlock:
1651         spin_unlock_irqrestore(&queue->state_lock, flags);
1652 }
1653
1654 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1655 {
1656         bool disconnect = false;
1657         unsigned long flags;
1658
1659         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1660
1661         spin_lock_irqsave(&queue->state_lock, flags);
1662         switch (queue->state) {
1663         case NVMET_RDMA_Q_CONNECTING:
1664                 while (!list_empty(&queue->rsp_wait_list)) {
1665                         struct nvmet_rdma_rsp *rsp;
1666
1667                         rsp = list_first_entry(&queue->rsp_wait_list,
1668                                                struct nvmet_rdma_rsp,
1669                                                wait_list);
1670                         list_del(&rsp->wait_list);
1671                         nvmet_rdma_put_rsp(rsp);
1672                 }
1673                 fallthrough;
1674         case NVMET_RDMA_Q_LIVE:
1675                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1676                 disconnect = true;
1677                 break;
1678         case NVMET_RDMA_Q_DISCONNECTING:
1679                 break;
1680         }
1681         spin_unlock_irqrestore(&queue->state_lock, flags);
1682
1683         if (disconnect) {
1684                 rdma_disconnect(queue->cm_id);
1685                 queue_work(nvmet_wq, &queue->release_work);
1686         }
1687 }
1688
1689 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1690 {
1691         bool disconnect = false;
1692
1693         mutex_lock(&nvmet_rdma_queue_mutex);
1694         if (!list_empty(&queue->queue_list)) {
1695                 list_del_init(&queue->queue_list);
1696                 disconnect = true;
1697         }
1698         mutex_unlock(&nvmet_rdma_queue_mutex);
1699
1700         if (disconnect)
1701                 __nvmet_rdma_queue_disconnect(queue);
1702 }
1703
1704 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1705                 struct nvmet_rdma_queue *queue)
1706 {
1707         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1708
1709         mutex_lock(&nvmet_rdma_queue_mutex);
1710         if (!list_empty(&queue->queue_list))
1711                 list_del_init(&queue->queue_list);
1712         mutex_unlock(&nvmet_rdma_queue_mutex);
1713
1714         pr_err("failed to connect queue %d\n", queue->idx);
1715         queue_work(nvmet_wq, &queue->release_work);
1716 }
1717
1718 /**
1719  * nvmet_rdma_device_removal() - Handle RDMA device removal
1720  * @cm_id:      rdma_cm id, used for nvmet port
1721  * @queue:      nvmet rdma queue (cm id qp_context)
1722  *
1723  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1724  * to unplug. Note that this event can be generated on a normal
1725  * queue cm_id and/or a device bound listener cm_id (where in this
1726  * case queue will be null).
1727  *
1728  * We registered an ib_client to handle device removal for queues,
1729  * so we only need to handle the listening port cm_ids. In this case
1730  * we nullify the priv to prevent double cm_id destruction and destroying
1731  * the cm_id implicitely by returning a non-zero rc to the callout.
1732  */
1733 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1734                 struct nvmet_rdma_queue *queue)
1735 {
1736         struct nvmet_rdma_port *port;
1737
1738         if (queue) {
1739                 /*
1740                  * This is a queue cm_id. we have registered
1741                  * an ib_client to handle queues removal
1742                  * so don't interfear and just return.
1743                  */
1744                 return 0;
1745         }
1746
1747         port = cm_id->context;
1748
1749         /*
1750          * This is a listener cm_id. Make sure that
1751          * future remove_port won't invoke a double
1752          * cm_id destroy. use atomic xchg to make sure
1753          * we don't compete with remove_port.
1754          */
1755         if (xchg(&port->cm_id, NULL) != cm_id)
1756                 return 0;
1757
1758         /*
1759          * We need to return 1 so that the core will destroy
1760          * it's own ID.  What a great API design..
1761          */
1762         return 1;
1763 }
1764
1765 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1766                 struct rdma_cm_event *event)
1767 {
1768         struct nvmet_rdma_queue *queue = NULL;
1769         int ret = 0;
1770
1771         if (cm_id->qp)
1772                 queue = cm_id->qp->qp_context;
1773
1774         pr_debug("%s (%d): status %d id %p\n",
1775                 rdma_event_msg(event->event), event->event,
1776                 event->status, cm_id);
1777
1778         switch (event->event) {
1779         case RDMA_CM_EVENT_CONNECT_REQUEST:
1780                 ret = nvmet_rdma_queue_connect(cm_id, event);
1781                 break;
1782         case RDMA_CM_EVENT_ESTABLISHED:
1783                 nvmet_rdma_queue_established(queue);
1784                 break;
1785         case RDMA_CM_EVENT_ADDR_CHANGE:
1786                 if (!queue) {
1787                         struct nvmet_rdma_port *port = cm_id->context;
1788
1789                         queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1790                         break;
1791                 }
1792                 fallthrough;
1793         case RDMA_CM_EVENT_DISCONNECTED:
1794         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1795                 nvmet_rdma_queue_disconnect(queue);
1796                 break;
1797         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1798                 ret = nvmet_rdma_device_removal(cm_id, queue);
1799                 break;
1800         case RDMA_CM_EVENT_REJECTED:
1801                 pr_debug("Connection rejected: %s\n",
1802                          rdma_reject_msg(cm_id, event->status));
1803                 fallthrough;
1804         case RDMA_CM_EVENT_UNREACHABLE:
1805         case RDMA_CM_EVENT_CONNECT_ERROR:
1806                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1807                 break;
1808         default:
1809                 pr_err("received unrecognized RDMA CM event %d\n",
1810                         event->event);
1811                 break;
1812         }
1813
1814         return ret;
1815 }
1816
1817 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1818 {
1819         struct nvmet_rdma_queue *queue;
1820
1821 restart:
1822         mutex_lock(&nvmet_rdma_queue_mutex);
1823         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1824                 if (queue->nvme_sq.ctrl == ctrl) {
1825                         list_del_init(&queue->queue_list);
1826                         mutex_unlock(&nvmet_rdma_queue_mutex);
1827
1828                         __nvmet_rdma_queue_disconnect(queue);
1829                         goto restart;
1830                 }
1831         }
1832         mutex_unlock(&nvmet_rdma_queue_mutex);
1833 }
1834
1835 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1836 {
1837         struct nvmet_rdma_queue *queue, *tmp;
1838         struct nvmet_port *nport = port->nport;
1839
1840         mutex_lock(&nvmet_rdma_queue_mutex);
1841         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1842                                  queue_list) {
1843                 if (queue->port != nport)
1844                         continue;
1845
1846                 list_del_init(&queue->queue_list);
1847                 __nvmet_rdma_queue_disconnect(queue);
1848         }
1849         mutex_unlock(&nvmet_rdma_queue_mutex);
1850 }
1851
1852 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1853 {
1854         struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1855
1856         if (cm_id)
1857                 rdma_destroy_id(cm_id);
1858
1859         /*
1860          * Destroy the remaining queues, which are not belong to any
1861          * controller yet. Do it here after the RDMA-CM was destroyed
1862          * guarantees that no new queue will be created.
1863          */
1864         nvmet_rdma_destroy_port_queues(port);
1865 }
1866
1867 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1868 {
1869         struct sockaddr *addr = (struct sockaddr *)&port->addr;
1870         struct rdma_cm_id *cm_id;
1871         int ret;
1872
1873         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1874                         RDMA_PS_TCP, IB_QPT_RC);
1875         if (IS_ERR(cm_id)) {
1876                 pr_err("CM ID creation failed\n");
1877                 return PTR_ERR(cm_id);
1878         }
1879
1880         /*
1881          * Allow both IPv4 and IPv6 sockets to bind a single port
1882          * at the same time.
1883          */
1884         ret = rdma_set_afonly(cm_id, 1);
1885         if (ret) {
1886                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1887                 goto out_destroy_id;
1888         }
1889
1890         ret = rdma_bind_addr(cm_id, addr);
1891         if (ret) {
1892                 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1893                 goto out_destroy_id;
1894         }
1895
1896         ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG);
1897         if (ret) {
1898                 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1899                 goto out_destroy_id;
1900         }
1901
1902         port->cm_id = cm_id;
1903         return 0;
1904
1905 out_destroy_id:
1906         rdma_destroy_id(cm_id);
1907         return ret;
1908 }
1909
1910 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1911 {
1912         struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1913                         struct nvmet_rdma_port, repair_work);
1914         int ret;
1915
1916         nvmet_rdma_disable_port(port);
1917         ret = nvmet_rdma_enable_port(port);
1918         if (ret)
1919                 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1920 }
1921
1922 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1923 {
1924         struct nvmet_rdma_port *port;
1925         __kernel_sa_family_t af;
1926         int ret;
1927
1928         port = kzalloc(sizeof(*port), GFP_KERNEL);
1929         if (!port)
1930                 return -ENOMEM;
1931
1932         nport->priv = port;
1933         port->nport = nport;
1934         INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1935
1936         switch (nport->disc_addr.adrfam) {
1937         case NVMF_ADDR_FAMILY_IP4:
1938                 af = AF_INET;
1939                 break;
1940         case NVMF_ADDR_FAMILY_IP6:
1941                 af = AF_INET6;
1942                 break;
1943         default:
1944                 pr_err("address family %d not supported\n",
1945                         nport->disc_addr.adrfam);
1946                 ret = -EINVAL;
1947                 goto out_free_port;
1948         }
1949
1950         if (nport->inline_data_size < 0) {
1951                 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1952         } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1953                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1954                         nport->inline_data_size,
1955                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1956                 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1957         }
1958
1959         if (nport->max_queue_size < 0) {
1960                 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1961         } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1962                 pr_warn("max_queue_size %u is too large, reducing to %u\n",
1963                         nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1964                 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1965         }
1966
1967         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1968                         nport->disc_addr.trsvcid, &port->addr);
1969         if (ret) {
1970                 pr_err("malformed ip/port passed: %s:%s\n",
1971                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1972                 goto out_free_port;
1973         }
1974
1975         ret = nvmet_rdma_enable_port(port);
1976         if (ret)
1977                 goto out_free_port;
1978
1979         pr_info("enabling port %d (%pISpcs)\n",
1980                 le16_to_cpu(nport->disc_addr.portid),
1981                 (struct sockaddr *)&port->addr);
1982
1983         return 0;
1984
1985 out_free_port:
1986         kfree(port);
1987         return ret;
1988 }
1989
1990 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1991 {
1992         struct nvmet_rdma_port *port = nport->priv;
1993
1994         cancel_delayed_work_sync(&port->repair_work);
1995         nvmet_rdma_disable_port(port);
1996         kfree(port);
1997 }
1998
1999 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
2000                 struct nvmet_port *nport, char *traddr)
2001 {
2002         struct nvmet_rdma_port *port = nport->priv;
2003         struct rdma_cm_id *cm_id = port->cm_id;
2004
2005         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
2006                 struct nvmet_rdma_rsp *rsp =
2007                         container_of(req, struct nvmet_rdma_rsp, req);
2008                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
2009                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
2010
2011                 sprintf(traddr, "%pISc", addr);
2012         } else {
2013                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2014         }
2015 }
2016
2017 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2018 {
2019         if (ctrl->pi_support)
2020                 return NVMET_RDMA_MAX_METADATA_MDTS;
2021         return NVMET_RDMA_MAX_MDTS;
2022 }
2023
2024 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2025 {
2026         if (ctrl->pi_support)
2027                 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2028         return NVME_RDMA_MAX_QUEUE_SIZE;
2029 }
2030
2031 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2032         .owner                  = THIS_MODULE,
2033         .type                   = NVMF_TRTYPE_RDMA,
2034         .msdbd                  = 1,
2035         .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2036         .add_port               = nvmet_rdma_add_port,
2037         .remove_port            = nvmet_rdma_remove_port,
2038         .queue_response         = nvmet_rdma_queue_response,
2039         .delete_ctrl            = nvmet_rdma_delete_ctrl,
2040         .disc_traddr            = nvmet_rdma_disc_port_addr,
2041         .get_mdts               = nvmet_rdma_get_mdts,
2042         .get_max_queue_size     = nvmet_rdma_get_max_queue_size,
2043 };
2044
2045 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2046 {
2047         struct nvmet_rdma_queue *queue, *tmp;
2048         struct nvmet_rdma_device *ndev;
2049         bool found = false;
2050
2051         mutex_lock(&device_list_mutex);
2052         list_for_each_entry(ndev, &device_list, entry) {
2053                 if (ndev->device == ib_device) {
2054                         found = true;
2055                         break;
2056                 }
2057         }
2058         mutex_unlock(&device_list_mutex);
2059
2060         if (!found)
2061                 return;
2062
2063         /*
2064          * IB Device that is used by nvmet controllers is being removed,
2065          * delete all queues using this device.
2066          */
2067         mutex_lock(&nvmet_rdma_queue_mutex);
2068         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2069                                  queue_list) {
2070                 if (queue->dev->device != ib_device)
2071                         continue;
2072
2073                 pr_info("Removing queue %d\n", queue->idx);
2074                 list_del_init(&queue->queue_list);
2075                 __nvmet_rdma_queue_disconnect(queue);
2076         }
2077         mutex_unlock(&nvmet_rdma_queue_mutex);
2078
2079         flush_workqueue(nvmet_wq);
2080 }
2081
2082 static struct ib_client nvmet_rdma_ib_client = {
2083         .name   = "nvmet_rdma",
2084         .remove = nvmet_rdma_remove_one
2085 };
2086
2087 static int __init nvmet_rdma_init(void)
2088 {
2089         int ret;
2090
2091         ret = ib_register_client(&nvmet_rdma_ib_client);
2092         if (ret)
2093                 return ret;
2094
2095         ret = nvmet_register_transport(&nvmet_rdma_ops);
2096         if (ret)
2097                 goto err_ib_client;
2098
2099         return 0;
2100
2101 err_ib_client:
2102         ib_unregister_client(&nvmet_rdma_ib_client);
2103         return ret;
2104 }
2105
2106 static void __exit nvmet_rdma_exit(void)
2107 {
2108         nvmet_unregister_transport(&nvmet_rdma_ops);
2109         ib_unregister_client(&nvmet_rdma_ib_client);
2110         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2111         ida_destroy(&nvmet_rdma_queue_ida);
2112 }
2113
2114 module_init(nvmet_rdma_init);
2115 module_exit(nvmet_rdma_exit);
2116
2117 MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2118 MODULE_LICENSE("GPL v2");
2119 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */